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Abstract

Let f(x) = xn + (an−1t+ bn−1)x
n−1 + · · ·+ (a0t+ b0) be of constant degree n ≥ 2 in x

and degree ≤ 1 in t, where all ai, bi are randomly and uniformly selected from a finite
field Fq of q elements. Then the probability that the Galois group of f over Fq(t) is the
symmetric group Sn on n elements is 1 − O(1/q). Furthermore, the probability that
the Galois group of f(x) over Fq(t) is not Sn is ≥ 1/q for n ≥ 3 and > 1/q − 1/(2q2)
for n = 2.

1. Introduction

Let n be an integer constant ≥ 2. The van der Waerden conjecture states that

Prob
(

Galois group over Q of xn +
n−1∑

i=0

aix
i is not the symmetric group Sn

∣
∣ ai ∈ Z and |ai| ≤ H

)

= O
( 1

H

)
. (1)

In [Bhargava 2021] there is the first proof and an extensive bibliography; see also [Anderson,
Gafni, Oliver, Lowry-Duda, Shakan, and Zhang 2021]. Note that the probability (1) is
asymptotically sharp: for a0 = 0 all polynomials are reducible and have a smaller Galois
group. From (1) one can derive (see Section 3) the following function field analog:

Prob
(

Galois group over Q(t) of xn +
n−1∑

i=0

(ait+ bi)x
i is not the symmetric group Sn

∣
∣ ai, bi ∈ Z and |ai| ≤ H, |bi| ≤ H

)

= O
( 1

H2

)
. (2)
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Again, the probability (2) is asymptotically sharp. Here we consider the coefficient field Fq(t)
where Fq is a finite field with q = pℓ elements, for ℓ ≥ 1 and the prime characteristic p ≥ 2.
We prove that

Prob
(

Galois group over Fq(t) of x
n +

n−1∑

i=0

(ait+ bi)x
i is not the symmetric group Sn

∣
∣ ai, bi ∈ Fq

)

= O
(1

q

)
. (3)

Again the probability (3) is asymptotically sharp: the probability that GCD(A(x), B(x)) 6= 1
for A(x) =

∑n−1
i=0 aix

i and B(x) = xn+
∑n−1

i=0 bix
i is exactly 1/q (see, for instance, [Benjamin

and Bennett 2007]), so at least q2n−1 polynomials xn +
∑n−1

i=0 (ait+ bi)x
i have smaller Galois

group. Note that the Galois group of a polynomial of degree n ≥ 3 in Fq[x] is not the
symmetric group Sn. For n = 2, one subtracts the (q2 − q)/2 irreducible x2 + b1x + b0 at
a1 = a0 = 0 from the count.

2. Proof of Probability Estimate (3)

Let K be a field and f(x) ∈ K[x] be a polynomial, not necessarily irreducible, over K of
degree n with leading coefficient = 1. A splitting field N = SFK(f) of f over K is constructed
by a tower of fields

L0 = K ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Lℓ = N, Li = Li−1[yi]/(gi(yi)), i = 1, 2, . . . , ℓ, (4)

where y1, . . . , yℓ are fresh variables and where gi(x) ∈ Li−1[x] is an irreducible factor in Li−1[x]
with degx(gi) ≥ 2 of

f(x) if i = 1 and
f(x)

(x− y1) . . . (x− yi−1)
∈ Li−1[x] if i ≥ 2. (5)

At index ℓ we have f(x) = (x − α1) · · · (x − αn) for αi ∈ N. All fields N constructed in the
manner (4) are isomporhic with an isomorphism that is the identity function on K. Note that
for all 1 ≤ i ≤ ℓ the fields Li are the quotient rings K[y1, . . . , yi] modulo the triangular set
g1(y1), g2(y1, y2), . . . , gi(y1, . . . , yi) over K. Arithmetic in Li is done recursively as univariate
polynomial residue arithmetic in Li−1[yi]/(gi(yi)). By (4), N = SFLi

(f) for all 0 ≤ i ≤ ℓ. The
Galois group ΓN/K of f(x) over K is the group of all field automorphisms ψ : N −→ N with
ψ(a) = a for all a ∈ K. Each automorphism ψ uniquely permutes the distinct roots of f :
ψ(αi) = ατ(i), and if f(x) is separable, which means all roots are distinct: αi 6= αj for all
1 ≤ i < j ≤ n, then τ ∈ Sn, where Sn is the symmetric group of permutations on 1, . . . , n,
and all permutations τ form a subgroup.

In [van der Waerden 1940, Section 61] the permutations τ in the Galois group of a
separable polynomial f over a field K are characterized as follows.

Theorem 2.1. Let f(x) =
∏n

i=1(x− αi) ∈ K[x] where αi ∈ N = SFK(f) with αi 6= αj for all

1 ≤ i < j ≤ n, and let

F (z, u1, . . . , un) =
∏

σ∈Sn

(

z −
(

n∑

i=1

ασ(i)ui
))

∈ K[z, u1, . . . , un]. (6)
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Furthermore, let F1 be an irreducible factor of F in K[z, u1, . . . , un] such that z− (
∑n

i=1 αiui)
is a factor of F1 over N. Then the permutations τ in the Galois group of f over K are exactly

those permutations such that z − (
∑n

i=1 ατ(i)ui) is a factor of F1.

Note that the assumption that the roots αi of f are distinct is a necessary condition. Let
K = F2(t) and f(x) = x2 + t = (x+

√
t)2. Then F (z) = (z + u1

√
t+ u2

√
t)2 = z2 + u21t+ u22t,

which is irreducible over F2(t)[z, u1, u2], but the Galois group of f(x) over F2(t) has a single
element. Because x2+ t is irreducible in Fq(t)[x], it is squarefree in Fq[x, t] but not squarefree
(inseparable) over the algebraic closure of Fq(t).

For generic polynomials the Galois group is the full symmetric group for all fields.

Theorem 2.2. For the generic polynomial f [v] = xn+
∑n−1

i=0 vi x
i over K

[v] = K(v0, . . . , vn−1)
the polynomial F [v] corresponding to (6) is a separable polynomial in z, hence ∂F [v]/∂z 6= 0,
and an irreducible polynomial in K[z, u1, . . . , un, v0, . . . , vn−1], for all fields K.

Classically, one uses the Hilbert Irreducibility Theorem to count for which evaluations
of the vi at values in K one preserves irreducibility of F [Kobloch 1956]. For K = Fq(t) we
can use our effective Hilbert Irreducibility Theorems [Kaltofen 1985, 1995]. We have the
following theorem.

Theorem 2.3. Let F (X1, . . . , Xm) ∈ K[X1, . . . , Xm], K a field, have total degree δ and be

irreducible. Assume that ∂F/∂Xm 6= 0. Let S ⊆ K be a finite set, and let a2, . . . , am−1,

b1, . . . , bm−1 be randomly and uniformly sampled elements in S. Then the probability

Prob
(

F (b1, b2, . . . , bm−1, z) ∈ K[z] is of degree degXm
(F ) and has discriminant 6= 0

and F (t+ b1, a2t+ b2, . . . , am−1t+ bm−1, z) is irreducible in K[t, z]
)

≥ 1− 4δ 2δ

|S| , (7)

where |S| is the number of elements in the set S [Kaltofen 1985, Theorem 2 and its proof].

We apply Theorem 2.3 to

F [v](z, u1, . . . , un, v0, . . . , vn−1) ∈ K(u1, . . . , un)[z, v0, . . . , vn−1], (8)

which is defined above for the generic f [v](x). The leading coefficient of F [v] in z is = 1
and F [v] is irreducible over K(u1, . . . , un). We have for randomly and uniformly sampled
a1, . . . , an−1, b0, . . . , bn−1 ∈ S ⊆ K ⊂ K(u1, . . . , un) and

F [v](z, u1, . . . , un, t)
def
= F [v](z, u1, . . . , un, t+ b0, a1t+ b1, . . . , an−1t+ bn−1) (9)

the probability estimate

Prob
(

the discriminant of F [v](z, u1, . . . , un, t) in the variable z is 6= 0 and

F [v](z, u1, . . . , un, t) is irreducible in K[z, u1, . . . , un, t]
)

≥ 1− 4δ[v] 2δ
[v]

|S| , (10)
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where δ[v] is the total degree of F [v] in z, v0, . . . , vn−1. All polynomials f̄(x) = xn + (an−1t+

bn−1)x
n−1 + · · · + (a0t + b0) for which F [v](z, u1, . . . , un, t) is irreducible and separable, the

latter of which implies that f̄(x) is separable, have Galois group Sn over K(t). Because n is
a constant, δ[v] is a constant. For the actual probability estimate (3) we can set K = S =
Fq and t = t/a0 and multiply the probability (10) by (1 − 1/|S|) for a0 6= 0. The more
specific evaluation X1 = t+ b1 in Theorem 2.3 strengthens our effective Hilbert Irreducibility
Theorem.

3. Remarks

Better estimates than (7) in terms of the degree for the effective Hilbert Irreduciblity Theo-
rems for function fields are possible. An estimate 1 − O(deg(F )4/|S|) is in [Kaltofen 1995]
for perfect fields K, which includes all Fq.

The estimate (2) follows from (1) by counting the irreducible F [v](z, u1, . . . , un) for vi =
ai+tbi with integers bounded by |ai| ≤ H and |bi| ≤ H and the variable evaluation t = 2H+1
which implies |vi| ≤ 2H2 + 2H, with (2H + 1)2 values for each vi. The count implies that
GCD(xn +

∑n−1
i=0 aix

i,
∑n−1

i=0 bix
i) 6= 1 occurs with probability O(1/H2) for fixed n.
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4. Appendix

The norm normN/K(β(y1, . . . , yℓ)) of an element β(y1, . . . , yℓ) ∈ N over K, where N is the
splitting field (4) of a possible inseparable polynomial f , is defined recursively:

normLℓ−1/K

( k∏

j=1

β(y1, . . . , yℓ−1, γj)
)

︸ ︷︷ ︸

normN/Lℓ−1
(β(y1,...,yℓ))∈Lℓ−1

1

∈ K, gℓ(x) = (x− γ1) · · · (x− γk), γi ∈ N, γ1 = yℓ. (11)

The definition (11) extends to the rational function fields N(X1, . . . , Xm) over K(X1, . . . , Xm),
where we have the following theorem.

Theorem 4.1. Let G ∈ N[X1, . . . , Xm] be an irreducible polynomial over N, where N is the

splitting field (4) of a not necessarily separable polynomial. Then normN/K(G) = Hk where

H ∈ K[X1, . . . , Xm] is irreducible over K and k ≥ 1.

Proof. Suppose normN/K(G) = H1H2 with H1, H2 ∈ K[X1, . . . , Xm] and GCD(H1, H2) = 1.
Note that relatively primeness as an arithmetic property over K remains valid over N. Now
suppose that G(X1, . . . , Xm, y1, . . . , yℓ) is an irreducible factor of H1 over N. By definition
(11) there exist roots γi ∈ N of gi(x) such that G(X1, . . . , Xm, γ1, . . . , γℓ) divides H2 over
N. The field N is isomorphic to K(γ1, . . . , γℓ) by ψ : yi 7→ γi and ψ(a) = a for all a ∈ K,
so G(X1, . . . , Xm, γ1, . . . , γℓ) divides ψ(H1) = H1 over N, which contradicts that H1, H2 are
relatively prime. �

Note that for β ∈ N we have normN/K(x−β) = h(x)k where h(x) ∈ K[x] is the irreducible
minimum polynomial with h(β) = 0, which means that normN/K(β) is k-th power of the
product of all conjugates of β over K, which are the roots of h with multiplicities. For
a separable polynomial f(x) and β ∈ N = SFK(f), we have normN/K(β) =

∏

ψ∈ΓN/K
ψ(β),

where ΓN/K is the Galois group as a group of field automorphisms.

Proof of Theorem 2.1. Let F1 =
(
z − (

∑n
i=1 αiui)

)
G1 with G1 ∈ N[z, u1, . . . , un]. Then

F1 = ψ(F1) =
(
z − (

∑n
i=1 ψ(αi)ui)

)
ψ(G1) for all ψ ∈ ΓN/K. Because f is separable all

∑n
i=1 ψ(αi)ui are distinct, and therefore all z − (

∑n
i=1 ψ(αi)ui) divide F1 over N, whose

product is the norm in the splitting field N(z, u1, . . . , un) of f(x) over K(z, u1, . . . , un), and
therefore ∈ K[z, u1, . . . , un]. �

Second proof of Theorem 2.1. By Theorem 4.1 the norm of z−∑n
i=1 αiui is H(z, u1, . . . , un)

k

with H irreducible in K[z, u1, . . . , un]. The norm’s discriminant in z is 6= 0 because the roots
are distinct, which implies k = 1. �

1Note that normN/Lℓ−1
(β(y1, . . . , yℓ)) is the Sylvester resultant of gℓ(x) and β(y1, . . . , yℓ−1, x) with respect

to the variable x.
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Proof of Theorem 2.2. First, f [v](x) is separable in x because it is irreducible over K[v] and
its derivative with respect to z is 6= 0. The univariate polynomial discriminant is a non-zero
polynomial in the coefficients over fields of all characteristics, which is 6= 0 for exactly the
separable polynomials. Therefore, F [v] is also separable in z implying that ∂F [v]/∂z 6= 0.

Let
∏n

i=1(x− wi) = xn + en−1(w1, . . . , wn)x
n−1 + · · ·+ e0(w1, . . . , wn) ∈ K[z, w1, . . ., wn],

where ei are plus/minus the (n − i)’th elementary symmetric functions in fresh variables
w1, . . . , wn, and let F̄ [v] be F [v] evaluated at vi = ei(w1, . . . , wn). We have F̄ [v] =

∏

σ∈Sn

(
z −

∑n
i=1wσ(i)ui). Now let F

[v]
1 be an irreducible factor of F [v] in K[z, u1, . . . , un, v0, . . ., vn−1]

and let F̄1 be F
[v]
1 evaluated at vi = ei(w1, . . . , wn). Then by definition of F̄ [v], there is

a permutation τ ∈ Sn such that z − (wτ(1)u1 + · · · + wτ(n)un) divides F̄1 with co-factor
Ḡ1 ∈ K[z, u1, . . . , un, w1, . . . , wn]. Permuting the wi’s in that factorization of F̄1 does not
change F̄1 and shows that z − (wσ(1)u1 + · · · + wσ(n)un) divides F̄1 for all permutations
σ ∈ Sn. Therefore F1 has degree n! in z. �
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