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' 1. Introduction

A lemma by C. F. causs [3, article 42] states ttrat if a pollmonial

over a unique factorization domain is irreducible it remains irreducible over

the field of quotients of this domain. This theorem d,oes not hoId, in general,

if ttre coefficient domain is ttre ring of algebraic integers 0X of a number

field K. Using an old generalization of Gaussr lenma by R. Dedekind [I] it is

shown in [8] that t]re additional denominator needed to express the factori-

zation of a univariate polynornj-al over K can be choosen equal to the leading

coefficient of ttre trrcIynomial to be factored. Several papers on factoringi

nultivariate polynomials over algebraic numher fields 14r 5,6r 7,81 have

made reference to this fact without showing that the univariate lemrna genera-

lizes. In section 2 we trill prove a multivariate version of first Dedekindrs

theorem and then a slightly more general rnultivariate version of the theorem

in t8l designating possible denorninators. Since the teading coefficient of

a multivariate polynoroial is not uniquely determined, we can further optinize

the choice of a sufficient denominator needed to exPress the multivariate

factors, a phenomenon which seems not to have been noticed before.
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2. Main Results

We first state and prove Dedekindrs generalization of Gauss' lemma.

But first we need to clarify our notation. We say ttrat an algebraic integer

a €0K divides b€Oiq, "lb, iff there exists a number c€0* such ttrat ac = b.

Theorem I [I]: Let K be a number field, f(x) = "X*g 
+... + ag, g(x) = bnxn

+ "' +bO€ 0*lxl , h(x) =f(x)g(x) =crrxn+ ..' *cgr n= i*m, andletd €0r

suchttratd I qpforaII0<k<n. Then d I "ibj forallO<i( land0<j <m.

Proof 12, Sec.4]: We firstprove thatd I "fbj fora1I0( j (n. Forj =6,

d I "r, = arbm by assumption. Let !1, ..., Eabe the roots of g(x) and qr*1, ...,

kr+g the roots of f (x). t{ultiplying g(x) by aX,

agg(x) = cnxh + a*th-t xm-I + "' * a1b6

we see that

(-r)n-j 
agbj 

= srn-i(E1,...,Er)
cn

where si denotes the i-th basic symmetric function

si(E1,...,!rn) = I A-'... En.
krnl( ... (mi( rn r r

Now, w'ith t = nt r the coefficients of

zt + eg-1 zt-l + "' * eg = II (z-sr-3(eo(1) ,...r E61r1)) ,
o€Sn

S' the set of peroutations on {1r...rr}, are s}rnmetric functions in elr...rQ1.

l{oreover, each individual fk occurs to power t - i in ei. By the fundamental

theorem on slmmetric functions, ei can be rrritten as .ut integral polynomial in

cn-I c6
s1( 61r... r 611) = ' 

- 

, ..., sn( eyr..., 6n) = (-I)n 
-cn cn

r-i I t-i
of total degree t - i. Therefore, d I .r, ei and
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/".r\t cn€n-r ["n=\t-r
\./ 

+ 
d \^)

f or z = sur-j ( 6f , . .. ,6m) and has coef f icient

now f ollows by induction on L. For 9" = 0,

tion. By our previous conclusions , tlte coe

(f (x) - agxg) g(x) = (cn-I - agbtn-I)

t
"r, to+ ..o + 

- 

= O

6t

s in 0*. Thus

arbitrary aibj

ients of

I + o" + ("I -

the theoremFor

dl
ff ic

xn- agbO)xl

+ cg-IX'g-I + o" + cg

are divi s ible bY d, thus by induction hypothesis, afe the prod.ucts aibi,

o<isl-l,0< j<rn. tr

We next show that theorem I generalizes to nultivariate pol1momials.

Theorem 2: Let K be a number field,

ir
EI.l + X5-Ir... ,-V I

b;I.r r...f a
I- V

F.ta, ,... rar-V

v 6 Ortxl , o o o rxy,l ,

v 6 Orctxl , o. o rxgl ,9(xI ,... rXv) -

h=fg=

Thus,

f(y) = f (V, Y(n+l),

f(x1 t... rXv) =
tr
L

_r

i
... X

v

i
... f(

v

i
r.. X t,

v
n = 9. + IIIT

I
)

I
J

*t'
I

a

1

xr
I

and, let d €0f be such tkrat d I "i'r...ri, for all O

proof: We use Kroneckerts homomorphism on f, g and h, that is we subsiitute

;Y
,L v

iI*(n+Lli 2+-
tr-L.

+(r+I) v 
:.
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has as i ts coef f icients 0 or ttre individual d;*1' , i.,

and h to gtyl ana I-(y) e O*tyJ. Theorem I now applies t" ?! = f, and proves our

statement. fl

We finally prove a multivariate version of lemma 7.1 in [8]. Eowever, we

shall use a weaker notion for monicity which yields a slight improvement to the

denominator prediction nethods discussed later. We first define:

The polynomial h(x1 , .

normalizeC if one of

with r

Ltzed.

Proof:

.. rxv) 6 K[*t r... rx1,7l , K a number field,

its coefficients ( e r) is a unit in 0*.

Similarly, we map g

is called treakly

or bkl t... ,k, tlre unit

.EI

Theorem Let K be a number field and let h(x1,...,xr) € lL/rlQtx1,...rx'l

e 0x, such that r I s (i.€. s may not be

optirnal). Then 
"2h = (=f ) (sg) with sf, sg e 0Klx1,...rxrl and s26 ai'vi..aes all

coefficients of s2h. By theorem 2, s2/r nust divide aII prod.ucts

(="ir,...,rr) (=hr_,...,*r) of coefficients ai',---,iv of f and hr.,--.,kv of g'

This, in turn, is equivalent to

f E.:^r' h.I ,... rk',,€ 0x

€0r1 y * O. Assume t}at f g - h

Then f , g € (I /r)O*tx1 ,... rxv] .

Let f, g€0/s) Orc[*tt...,xyl 7 s

In theunivariate case

i n orde r tc enf orce thre vreak

with f , g€K[x1 t...rxvl weakly norma-

, i.,

which, if we choose air,...riv the unit coefficient in f

coefficient in g, shows that

tr"" v r' .k € 0r
'v

(v = 1) it is sufficient to choose f, g and h monic

normaLtzation assumption. In thre multivariate case

one sufficient

exPonent vect,or

condition is tJ:at the non-zero nonomials in f, g and h of maximum

with respect to a lexicographical ordering are normalizei, to I.

In fact, besides lexicographical orderingsr any linear ordering on the exponent

vectors of the monomials which satisfies
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(t) (i1r...rir) < (.j1,...,jy) ==+(i1+k1,"',irr+kr) < (j1+k1,"'rjv+kv)

could be selected. One such ordering is

(iI,...,ir) < (jt,...,jy) iff iI+"'+iv ( j1+"'+j., or

iI+"'*iu, = jt+"'+jv and

(ilr. '. rir) <Iexico ( jtr..., j.,,7).

3. Application to Factorization Algoii-ttrns

Factorization algorithms for pollmomial over an algebraic nunber field K

have been devised by several authors. [treorem 3 enters when estimates for

occurring rational numerators and denomiators are sought. Ihe following

representation for the coefficient domain K is usually adopted. First we choose

cr€0* such that Q(c) = Kby virtue of its ninimal pollmomial U(a)€zlo;l. The

pollmourial f to be factored then can be transformed by uultiplication wittr a

rational integer to an element

f(x1,...,xr,) € (zlcl /(v)) [x1,...'xvl

However, unlike in the integral case, the factorization of f = 91"'9g,

Si€Qtx1r...rxr.lr may not have an associate factorization Ln (Zlo)/( u))[x1,...,xyJ.

The reasons are trrofold.

I) Z[c] can be a proper subset of 0X. One can Prove, however, t]rat

ztalc0Kc.(* z)tels (-L z)tct

where D = discrininant(u) = T resultant(p, U') ana a2l o. In fact, D = d2A

with A being the discriminant of K.

2) f € 0K[x1,...,xr] nay factor in K[x1,...,xr,) but not in 06[x1,...,x,nJ .. one

example, taken from [8], is K = q(El, 0* = 71G) (-5 = 3urod 4)r f(x) =

22x'+ 2x+ 3 =!(r*+t+G)tz** t-Bl. ApplyingtJreorem 3to*2***3
2

with r = 2 both monic linear factors oust be elenents in (!- Zt 6t )txt which,z
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they are: x + r+G r X * L-{-J .
22

This example shows ttrat, in the univariate case (v=l), monicity is one way

of enforcing the weakly normalization assumption. But it is not the only

possibility: E.g., we could have applied theoreur 3 to Z*'*l* + I =33

(r+Es x+r)(r-6 x+1) choosing the constant coefficients 1 (r = 3).'33

In t]re multivariate case, one has even more choices. Let

aka,...,kv (a) €Z[a] be the coefficient "a {' + 
in f(x1,...,xr.) such that

(k1,...,kv) is maximal with respect to some ordering < satisfying(t). We

now multiply f witJr ayr,...rkv(c)-1 mod u(a) and get ak1r...,kv(c)-1 f(x1,...,xr)€

lL/r Zlcl)txtr...,xr.) with r€2. Therefore, applying theorem 3 to a factorization

of f = 9t...gt such that a1I non-zero mononials of uraximum order w.r.t < have

coefficient 1, we get gi€ L/r 011[*1 ,...,Xyl .

ft night not be apparent, at this point, vhy ttre ninimization of r is of

computational advantage. It mainly depends at which uoment in ttre multivariate

Ilensel algorithm one switches from the nod 1F ..p..=entation of numeric coeffi-

back to rational ones. t4l suggests doing tltis before lifting the minor

variables, whereas 16, 7, 81 at the very end for the recovery of the true factors.

In the first case, comparing the denominators of the univariate factorization of

f (erl ,..., wv-lrx.,,), wi6 0f, to rD (or rd, if d is known) uight help discover

some extraneous factorsr but we believe ttris is not too helpful. Keeping t.lle

mod 1F representation of rationals to the very end, just before the trial diver-

sions, seems a much better idea. One tius can keep trf small by firstly working

with tJre minimal r and secondly, one can recover tire true denominators dr with

a2lo Uy ccmputing a continued fraction approximation of t}re residues and f.
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