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1. Introduction

A lemma by C. F. Gauss [3, article 42] states that if a'polynomial
over a unique factorization domain is irreducible it remains irreducible over
the field of quotients of this domain. This theorem does not hold, in general,
if the coefficient domain is the ring of algebraic integers OK of a number
field K. Using an old generalization of Gauss' lemma by R. Dedekind [1] it.is
shown in [8] that the additional denominator needed to express the factori-
zation of a univariate polynomial over K can be choosen equal to the leading
coefficient of the polynomial to be factored. Several papers on factoring
multivariate polynomials over algebraic number fields [4, 5, 6, 7, 8] have
made reference to this fact without showing that the univariate lemma genera-
lizes. In section 2 we will prove a multivariate version of first Dedekind's
theorem and then a slightly more general multivariate version of the theorem
in (8] designating pbssible denominators. Since the leading coefficient of
a multivariate polynomial is not uniquely determined, we can further optimize
the choice of a sufficient denominator needed to express the multivariate

factors, a phenomenon which seems not to have been noticed before.




2. Main Results

We first state and prove Dedekind's generalization of Gauss' lemma.

But first we need to clarify our notation. We say that an algebraic integer

a EOK divides bE‘OK, alb, iff there exists a number c(fOK such that ac b.

Theorem 1 [1]: Let K be a number field, f(x) = agxl B ok an, glx] = Bt
Forea g Be € OK[X], hix) = Flx)glx) = g 2 & *¢= $ g5, = £ & m, and let d € OK
such that d | cx for all 0 ¢ k < n. Then d | ajbj for all 0 < i < £and 0< j < m.
Proof [2, Bec.-4]l: We first prove that d l agby for all 0 < j < m. For j =m,
d | ¢, = agby by assumption. Let Zj, ..., Iy be the roots of g(x) and Gy y, ese,
Cm+g the roots of f(x). Multiplying g(x) by ag,

2pgix) = e 2™ + aghy ) 2L & see & aghg

we see that
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where s; denotes the i-th basic symmetric function
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Now, with t = n!, the coefficients of
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S, the set of permutations on {l,...,n}, are symmetric functions in Cireeer Gye

n

Moreover, each individual gy occurs to power t - i in ej. By the fundamental

theorem on symmetric functions, ej can be written as an integral polynomial in
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of “ total degree t - 1. Therefore, d €h ©i and
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for z = sm_j(cl,...,cm) and has coefficients in OK. Thus

Cp Sm=j(&1reeerlp)/d = (-1)m-] agby/d €OK. For arbitrary ajbj the theorem

now follows by induction on &. For £ =0, 4 I cy = agby, 0 < j <m, by assump-
tion. By our previous conclusions, the coefficients of

(£(x) - azxi) g({x) = {(cp_7 - agbp.3) AL o eee 4 (cg - agbo)xl
+ cgyx¥l 4 ce0 3 ¢

are divis ible by d, thus by induction hypothesis, are the products aibj,
get et 0¢) o O
We next show that theorem 1 generalizes to multivariate polynomials.

Theorem 2: Let K be a number field,
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for alli 0 S_i~ < n.

and let 4 €OK be such that 4 cj j
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Then d | a3 By ...k forall i< i, 0Ck < m.
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Proof: We use Kronecker's homomorphism on £, g and h, that is we substitute

j-1
y(n+l) for x4, 1 < J < V.

Thus, k ; v-1,

(v=1) . 1 s v
£(y) = £(y, y(rtlD), ..., y(n+l) =0 .
v
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has as its coefficients O or the individual a;  ,,, i . Similarly, we map g

v

and h toig(y) and Eky)ffox[y]. Theorem 1 now applies to E-§'= h and proves our
statement. O

We finally prove a multivariate version of Lemma 7.1 in [8]. However, we
shall use a weaker notion for monicity which yields a slight improvement to the
denominator prediction methods discussed later. We first define:
The polynomial h(xl,...,xv)E'K[xl,...,xv], K a number field, is called weakly
normalized if one of its coefficients ( € K) is a unit in OK'
Theorem 3: Let K be a number field and let h(Xj,ee.,Xy) € (1/1) Oglxy, 00 ,Xy]
with rE'OK, r # 0. Assume that f g = h with £, g€K[x;,...,%x,] weakly norma-
lized. Then £, g €(l/r)OK[xl,...,xv].
Proof: Let £, g€i{l/s) OK[xl,...,xV], s € O, such that r | s (i.e. s may not be
optimal). Then s?h = (sf) (sg). with s, sqg €OK[xl,...,xv] and sz/r divides all

coefficients of sZh. By theorem 2, sz/r must divide all products

(Sail,...,iv) (Sbkl

This, in turn, is equivalent to

,__.,ka of coefficients ail""’iv of £ and bkl""’kv of g.
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the unit coefficient in £ or by x the unit
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coefficient in g, shows that
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In theunivariate case (v = 1) it is sufficient to choose £, g and h monic
in order to enforce the weak normalization assumption. In the multivariate case
one sufficient condition is that the non-zero monomials in £, g and h of maximum
exponent vector with respect to a lexicographical ordering are normalized to 1.

In fact, besides lexicographical orderings, any linear ordering on the exponent

vectors of the monomials which satisfies




(1) (ip,eeeriy) < (G1reeerdy) =>(i14Kk),eeeriytky) =< (J1+K1, e e Tytky)
could be selected. One such ordering is
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3. Application to Factorization Algorithms

Factorization algorithms for polynomial over an algebraic number field K
have been devised by several authors. Theorem 3 enters when estimates for
occurring rational numerators and denomiators are sought. The following
representation for the coefficient domain K is usually adopted. First we choose
aEfOK such that Q(a) = K by virtue of its minimal polynomial u(a)€ z2{al. The
polynomial f to be factored then can be transformed by multiplication with a
rational integer to an element

£(XreeerXy) €(20al/())Ix1,ee0rxy]l
However, unlike in the integral case, the factorization of f = gj°*°°gy,
gieoK[xl,...,xv], may not have an associate factorization in (Z[a]l/(u))[X),ee0,%4].
The reasons are twofold.

1) 2[a] can be a proper subset of OK' One can prove, however, that

zlalcO0 c (L z)talc (L 2)10
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where D = discriminant(u) = ¥ resultant(u, u') and d2| D. In fact, D = 424
with A being the discriminant of K.
2) £€0¢(x1,.++r%Xy] may factor in K[xj,...,X,] but not in el ;< %ol One

example, taken from (8], is K = Q(/:g), OK = Z(frgl (-5 = 3 mod 4), f(x) =

|w

.£(2x - l+v—5)(2x ¥ 1), Applying theorem 3 to x2 + X +
2

N

Wwith r = 2 both monic linear factors must be elements in LL Z[/:gl)[x] which
2
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they are:

This example shows that, in the univariate case (v=1), monicity is one way

of enforcing the weakly normalization assumption. But it is not the only

2
possibility: E.g., we could have applied theorem 3 to2x " +2x+1 =
3 3

LkiL:é x+l)(l:L:§.x+l) choosing the constant coefficients 1 (r = 3).
3 3

In the multivariate case, one has even more choices. Let

E k k
akl""’k (a) € Z[a] be the coefficient of xll ves XV &N Fl%y,ccviX,) such that
v v

.(klr'°"kv) is maximal with respect to some ordering < satisfying(t). We

now multiply £ with ap

P ey reeey

kv(oz)"l mod u(a) and get ap kv(cn)‘l F(xX],000,Xy)€
(1/r zlal)[x3,+.0,%y] with r € 2. Therefore, applying theorem 3 to a factorization
of £ = gj...9¢ such that all non-zero mononials of maximum order w.r.t < have
coefficient 1, we get g; € 1/t OK[xl,...,xV].

Tt miqht not be apparent, at this point, why the minimization of r is of
computational advantage. It mainly depends at which moment in the multivariate
Hensel algorithm one switches from the mod pk representation of numeric coeffi-
back to rational ones. [4] suggests doing this before 1lifting the minor
variables, whereas [6, 7, 8] at the very end for the recovery of the true factors.
In the first case, comparing the denominators of the univariate factorization of
£(Wy,eeer Wy_1sXy), wi€ Og, to D (or rd, if d is known) might help discover
some extraneous factors, but we believe this is not too helpful. Keeping the
mod pk representation of rationals to the very end, just before the trial diver-
sions, seems a much better idea. One thus can keep pk small by firstly working

with the minimal r and secondly, one can recover the true denominators dr with

da?lp by computing a continued fraction approximation of the residues and pk.
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