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Extended Abstract

1. INTRODUCTION

In this paper we give the explicit form of the modular equation of
order 11: ¢;4(z,y) = 0, computed using the computer algebra system
MACSYMA [10].

The modular equation ¢,(z,¥) = 0 (n = 2) was introduced by
Kronecker and used by Kronecker and Weber in the theoi"y of complex
multiplication to prove the (algebraic) integrality of the "class invari-
ants”. The equation ¢, (z,y) = 0 defines a (singular) affine curve over Z.
We hope that our result will be of some use for the study of its geometri-
cal as well as arithmetical properties (e. g. 1rreduc:1b111ty, singularities
and desingularization).

In 1878, Smith [11] computed $5 (see also Fricke [3, 11.4]). &5 was
first computed by Berwick [1] in 1918. In 1974, Herrmann [5] deter-
mined ¢, explicitly. Yui [13] described an algorithm which we used in [7]
to compute ¢5 and ¢,, being unaware of previous work. The equation we
next aimed to determine was ®;;. However, our algorithm when applied
to ¢;; became ineflicient, and in fact, we ran out of storage after 7 hours
of VAX-780 CPU-time. Herrmann, using a slightly different algorithm,
stated that his program would consume unjustifiable much of comput-
ing time to produce ®,,. In spite of this pessimistic forecast, owing to a
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very lucky, so far unnoticed, mathematical property of the coefficients
of the modular equation (see section 3) we were able to modify our algo-
rithm in such a way that it reqﬁires much less space. The renewed
altack, running in the background of UNIX on a VAX-780, finally pro-
duced ¢,;;. Because of several system failures, which, though partial
information was retained, destroyed our time keeping records, we can-
not tell how much CPU-time was consumed. However, we are not too far
off to say that the time was 20 + 5 hours.

We present a hard copy of ¢,,(z,y) in the appendix. We factored out
primes = 1000 in the coefficients, but the remaining factors are still of
substantial size (e.g. 60 digits). Readers who are interested in using ¢,
can obtain either a FORTRAN-style source file or a MACSYMA save module
from the authors. :

Since ‘t‘fle coefficients of ¢, are rather large, we felt that it was
paramount to provide an independent test to check its correctness. In
section 4, we describe such a test, based on a theorem of Kronecker (the
Kronecker relation) (cf. Weber [12]) and our previous ‘work [7] on the
determination of class equations. This test verified our computation. We
recommend that readers who are interested in using our result apply
this test to avoid typographical or transmission errors when defining the
polynomial. '

<. MATHEMATICAL PREREQUISITES

We first introduce the elliptic modular Jj-invariant. For each com-
plex number z with non-negative imaginary part, let ¢ = e272 and let

Ey(z) = 1+240 Y o5(n)q™, og(n) = Y £°
e fd
>

Furthermore, let
1 1 n(3n—1) n(3n+1)

n(2)=q£ﬁ(l—q”):q§4—1+ i(—l)"(q = &g 2 N

n=1 n=1

The elliptic modular j-invariant j(z) is defined as
_E_f.;_@r

12) = n(z)®
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We see that j(z) has the ¢-expansion with integer coefficients

jlg) = é + 744 + 196884g + 21493760¢% + 864299970¢3 + - - -

Now let GLF (Z) denote the set of 2x2 matrices with entries in % and
positive determinant. If a = (g’ 3) € GLJ (Z), we say that « is primitive

if GCD(a, b, ¢, d) = 1. For a prime p, let A, denote the subset of GL$ (Z)
consisting of primitive matrices with determinant p. Then SLy(Z) acts
on Ay (indeed, the multiplication on the left or right by elements of
SLa(Z) maps A, into itself). The left coset representatives of A; modulo

P
SLy(7Z) are given by the set 4 of the p+1 matrices:

A=1R D) withosi<p

For o = (g’g) €Adandforz =z +V—-1y withy > 0, we write jea for

az+b

(Jea)(z) =j(a(z)) = EETJ)'

and form the polynomial

. ; =l oz 41
Pp(2) = [I(z —j o) =(z —j(pz)) [[(z —j(EEL)) = zP+1 4 f)&(x)
acd i=Q p i=0
with an indeterminate z, where S;(x) are the elementary symmetric
functions in the j « «. Then the coeflicients of P, () are in Z[j], i.e.,
polynomials in J(2) with integral coefficients. Thus, we may view @, (=)
as a polynomial in two variables z and j, and we write it as’
bp(2) = Op(x,j) € Z[z,5].
We call this the modular polynomial of order p. The equation ¢, (z.7) =
0 is called the modular equation of order p. .

The properties of <Iip(x,j). which are relevant in our discussion, are
collected in the following theorem:.

Theorem (see, e.g. Weber [12, §69], Fricke [3, II.4] and Lang [9]).

(a) <Pp(a.:,j) is symmetric with respect to = and j, ie. $,(z,7) =
D 5,4 ).
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(b) ®,(z,2) € Z[z] and the leading term is —z?P.

(c) ¢,(x,j) satisfies the congruence $p(z,j) = (2P -7 ){z—jP) (mod p).
By virtue of the properties of ¢,(z, j) stated in the theorem above,

we can write

oy (z,7) = (2P —j)x —jP) = 3 ¢, pzTg"

m.,n=0
where ¢,, , are integers such that

Cmn = Cn.m
c 0 (mod p) forall m,n=0,1,...,p

mmn

and ¢, 5 = 0. Putting all the above together we get the following result.

Theorer';l,'(-Y-iAi [13]). Let z = j(p=z). Then

0=8,(z,7) = (2P —5) (2 —32) —p 3 "5 dp o (@™ + 2"j™)

‘ m=1 n=0
= m.m
-p 2 Sy T J
m =0

where d,, ., and d,, , are integers.

m

3. THE ALGORITHM

The above theorem is the basis for our algorithm. In order to deter-
mine d,, , and d,, ,,, we substitute for j and z their g-expansions j(g)
and j(g?), and then equate the coefficients of the power of g in

(F(gP)P — 7 (@)(j(gP) —j(g)?) =

m—1 e

P 3 7S A @I I @™ + @ @™) * DTS i (22D ()™
m=1 n=0 m =0

Note that in this expression the term of lowest order is q_pz_p, and that
dgp occurs in the term of order zero. Therefore, one needs the g-
expansion of j to order p? + p — 1. This leaves us with a linear system
of (p? + 3p)/2 variables and p? + p equations (the lowest term
coefficient is 0). Smith [11], Berwick [1], Herrmann [5] and Yui [13] all
suggest setting up this linear system and solving it for d,, , and d,, ,,.

For p = 11 we get an expansion with 132 terms in 77 variables whose
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integer coefficients are typically 80 digits long. This expression is much
too large, even before one attempts to solve the resulting system. How-
ever, on inspecting this system for ¢5 and ., one quickly discovers the
following computationally important fact: The resulting linear system is
subdiagonal from lowest to highest, coefficient, i.e. has the shape.

. -131
coeff. of g 3 d].l,l()
-130
~oeff.
coeff. of g / o dll,9
d]_l,O
} 1 .
. t 10,16
10

3

AOOONONNNNNNNRY

1.
}
-

0 v / d
coeff, of g N 0,0

-

Though it might appear that this observation is "imfj'drtant for the
linear system solver, we make use of it long before that step. The idea is
Lo set up the system for, say, the first 11 unknowns, di110 - - -0 yy0
To do this we only need the g-expansion of J to order 10. After having
found the correct values, we repeat this procedure for the next 11 unk-
nowns, dyg49 ., ..., dygg now already using the values for the known
coefficients. The g-expansion of j is needed to order 21, but the number
of unknowns does not grow. In fact, one could introduce one variable at
a time, instead of 11 new unknowns, thus reducing the storage require-
ment approximately 77-fold. Actually, we broke up the system into only
two parts, since our available computing resources are abundant. Our
observation also resolves an old question, namely, whether the linear
system obtained from the g-expansion sufficiently determines the unk-
nowns. It could have been that the system (of even infinitely many
equations) was underdetermined, but this is not the case.
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4. THE VERIFICATION

We use another property of the modular polynomial, known as the
Kronecker relation.

Theorem (Kronecker, see e.g. Weber [12, 115]). We have
Sp(x,xz) = HHD (z)T (D)

where the quantities in the right-hand side are defined as follows. The
product ranges over all D € Z, D < 0, such that y2 — Dx? = 4p has a solu-
tion (z,y) € Zx Z with x > 0. Denoting by (D) the number of such
solutions, the multiplicity v '(D) is equal to »(D) if D < —4, r{(D)/ 2 if D
= —4and r(D)/34if D = —6. Hp(x) denotes the class equation for the
imaginary qua,o!ratzc order of discriminant D; it is an integral polyno-
maial of d.egree hp (the class number of order).

In case —D is a prime (so necessarily = 3 mod 4, since it must be a
discriminant), we can determine the class equation Hp(z) using the
algorithm developed in Kaltofen and Yui [7]. For composite D the theory
is more complicated and readers are referred to our full paper [8] for

the explanation (see, also Weber [12] and Lang [9, §10]).

For p = 11, we list the disceriminants D, class numbers hj,, and the
corresponding class equations Hp(z) with their multiplicities » (D) in
the table below.

Our results satisfies the relation of Kronecker:
~®y1(z,2) = H_o(x)? H_g(x)® H_, (x) H_19(x)? H_sg(z)?
X H_gs(x)? H_yo(zx)? H_y5(x )2 H_y4(x).

This verifies that the equation ®,,(z,y) = 0 is indeed correct.
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D PRl  hyg z Hp(z)=TI(z—j(2)) r'(D)
—7 Y=zx4,2=2 | -l-t\zi-_—z z + 33583 2
-8 Yy=+16,z=1 1 3+vV =2 r — 2653 2
-1 y=0z=2 1 ii\é:—l—l— z + 216 1
—19 Y=+5,x=1 1 ]'j——é:_l_g_ r + 21533 o
-28  y=14,z=1 1 2+V =7 x — 3353173 2

!’}i_‘g_ﬁf’_ 22 + 2193252,
=35 =48, w= 2 — : 2
Y | 3+V-35 _ 53043
® 2
(1+vV=30 22 - 27325%13.379¢
—43 y=:l,z=1 1 —li\é—"—il—?’— z + 2183358 2
V=11 23 — 241709 41057 22
; o e
44 y=0z=1 3 —11\";——@_1— + 28311424049 2 |
3+vV-11

— 2121131732093
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0. ADDITIONAL PROPERTIES

It is known that ¢,(z,y) is absolutely irreducible. This fact can be
easily proved for ¢,,(x,y) with the help of a criterion developed by Kal-
tofen [B8] stating that if ¢,,(z,¥) is irreducible over Q and ¢,,(z,7) has a
linear factor for some r € Q, then ®,,(z,y) is absolutely irreducible.
Choosing r = j((1+V—-11)/2) = —2!% we get a linear factor H_ (z) =
z + 2% dividing &,,(z, —2'%). The irreducibility of ®,,(z,y) over Q may
be verified directly on MACSYMA.

David Masser communicated to us that Paula Cohen [2] had recently
established the following bound for the absolutely largest coefficient of

S (195 ]I
" log [[@,]l = 69(n)(log n — 2k(n) + O(1)) asn -

T
where © .

y)=n I1 (1+ ). wn)= 5 182

pln pln P
pprime pprime

Her estimate (ignoring 0O(1) term) leads to log||®;4]| = 141.25, whereas

the true log||®,,]| = 289.09. The difference by a factor of 2 can, perhaps,
be explained by the fact that our n is rather small.

6. CONCLUSION

The modular equation ®;,(z,y) = 0 represents the {(modular) alge-
braic correspondence

(i), jla(z))|a€ A, z =2 + V-1y withy >0} c P! x P!

and it defines an affine curve over Z. After desingularization, this yields
a (modular) elliptic curve with conductor 11. (For p < 11, ®,(z,y) = 0,
after desingularization, gives rise to a rational curve). It, therefore,
seemed important to us to compute this equation explicitly to be used
in future investigations.

Finally, we remark that the methods recently developed by Gross
and Zagier [4] for computing values of class equations also seem to yield
a very efficient algorithm for determining the explicit form of ¢, with p
< 13.
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APPENDIX

¢z, y)=0=

x12+y12+23_ 3. 11.31(y10x11+y11x10)

~71411-22.32% .11 (y% ! + y''z9)

+.152519883-25- 11 (y 8z + y1128)

-185027238353-2-3-5-11(y 'z} + y!'z")

+ 2443204381063 - 2%. 32 112 (y8z 1 + ¢ 1129)

- B803967223898807 - 2% 117 23 (y =z + y''x %)
+2400992(1§a2166?-2"-3-6' 11223 87 (yiz!! +yllz4)
—24911078195656531 - 3?.5-11%7-47 83 (y3z ! + y1x3)

+ 1302854865?15323531 29, 5% 112 863 (y?x1 + y'12?)
—2835361656197600834891 -2%-3 7 11% 13{yz ' +yi'z)

+ 204842039071 -215-34.55. 11-29 /547 (z!! + y!1) —y !l - g1!
+304071601918951-28.3%. 7. 113.59 . 313 (y %210 + y102?)
+2136328579151531252537261237 - 24- 3 117 (y8x 10 + y 1028)

+ 1390024623964499806523710733 - 2%-5- 7% 11289 (y 2 1% + %2 ")
+216211652871283314750852744 72672205209 3+ 112 (38210 + ¢ 1%2%)
+ 119861866208038556229405240376863844363 - 24- 35 112 83 (y°z 10 + y'%2%)
+2135071602429469388549989199230285333001

2%3.3.5.7-11%. 183 (y*x 10+ 3y 10z*)
+4009436914258508906988957285878140897

.28.32.52.11%. 13- 41 97- 313 (y3z 10 + y 1%29)
+12641348771076696318309918980527813350533469967

B B+ 117 198 (y 210 4+ gy 0z)
+570691334149011771523068094755653851

.218.3%.55.7.11%. 53 . 787 (yz 1° + y'%z)

+17705071088740866307323006103219 - 252 . 37 .58. 1141 (210 + y10)

481
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+2310043787617 237 117 137410510
+95898615266887459564667829595002797749 - 2% 32. 112. 29 (829 + %z¢)
—227023852347378294634000352833934025481847

'2%.3.5%.112. 17 . 73 (y"z% + %2 ")
+398218210423415599112603061821999718129105297253

2% 511737103 (y®z® + y%26)
—1563634B956916775374459962506623439044625336536043561
+2%3%.5.11%. 23 127 (y5z % + y"25)
+5084592561048113954497357458608235518570914753005936792557

2% 3%-5%- 117 (y 12 + yz*)
—2631641938847849826248466004202500462392871407080226827723
2%:5-7-11%-73- 97 631 (y32? + y2%)
+352818445887269745051900699794093679044821349334 19992191
+218.3%.5%. 112. 37 307 (y?z® + y°z ?)
—998299078424935082621413893760760760631 178362298 17429
23137577112 47 (yz® + yOz)
+6201360168079554794154776324781254624005839317983
.247.39. 510, 11. 523 (z® + y®)
—5549102003290133646182846491 - 11223 107 - 347 %z ®
+6538603459601786748399998328460836913035658866376243

+25:3%:5:11%-13 43 (y"x® + y827)
+395758233346482430456997717572625143743364530514 10244101837
-2%.39.5.11%. 191 (y%z8 + y9z9)

+55184946694943711741085559572229904964 7463607980 10979607934039691
+2%:3-5%-11%. 13 (y%z8 + y8z9)
+47667893763427400590733682246640762520305038257533404702442273428197

-3%:5-11%- 137239 (y*z® + y8z%)
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+797486113325666051207144427556019607967175266756951523267265691
2183858 118 37 179(y =" + 4%%)

+ BO099B0374040182967007753370486902998209765597 1162111387839
2903950 117 18- 118 (yR e 4y ¥a®)
+697758403620157678136473723132640683814946939452754144989

.245,311 ; 510_ 112.13(yz8+y3z)
+68373043210852121539422934230893108139260834914441
-@201.31%. 512, 11 . 661- (9 +9°)
+551175148962314491470689831868719645976312445171 23+ 112+ 73y°z®
+19624159586613730913255818360523449571328983547789405044812271453111
-24-32-53;1§5-29(yﬂx7-+y728)
—37903b3489503132780553935283224487%1758507242&05063902?59879883112563523117
29 3% 117 23 (y Pz + 4 T2)
+1608245774067308602737893871650240017377325761986092721685799680436681
+216.35.59.112. 307 (y*z" + y"z*)

— 1599578435274 1545183058918094 143654855207137198627849332244 1015207

‘g 385711817 61{g " # '2")

+ 18496189672180702475002689829123548285937055486002772199048899
.2%8.311.510. 11241 (y%x" + y"z?)
~32320503289753251520227540443699131147932410508589007797

V@8R BV BIR. TP B Bl By a)
+687009021714920181070182211269378797568514277601491

.278.317.517. 112 (27 4+ 47)
—1967?003744712708547039589241259134968401021358155471217901735%
22l 7 = 1% 10y "
+5232274577417488964787126622934682294886024034629041340855068559830069

V@19 g% BB 7 117 187 (%2 + y®=")
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+2639597822321660760623986551115137186103254693853880722408285800749
-230-35r57-112-41-269(y426-ky6x4) '
—339000645059197744157498717388588189582645439822 7872777 126649
'2%.310.510. 112.13. 191 - 349 (y%z® + 38z %)
+46450164003704918627078029514360416674036555921085321230453 1

_260.314.512. 112'13‘31(y2I6+y61¢2)
—2118697753055142065178040088792429290689974069187753077301

,2?5,31?_517, 112(y2:3+y8:r)
+2?090964?8553138993f563200281035226311929052227303

292,319 520, 11253 (28 + y6)

+ 1792982247961168256901574721155956 162834 748946098328451 239727895431 76121251
"2%:3- 7117 641926
—6041960954418084310745542364468369615403409110560703637590332262133

,24?’, 31[ . 510, 112(y425 +y53:4)
—50989444320695027911825310821174628867090275457599551374195427 1

_264, 314, 512_ 112 (y3x5+yﬁzﬁ)
+288273875757574108718257118868547016275500534534111371

$278.318.519. 112. 499 (y2x5 + y52?) oot

¥

—95542536595341816308458120486330917516087051337613161 =
(8% 3% 5% 112 7 (yz 5 + y5x)
—1653476895503145332636396574661852948285989619

2107 3%3.5%2. 7. 112. 61 (2% + y5)
—192262416122548321953137134772767570206376697307986458387807452615953
.233,39.57.72, 112y525
—231269172271974353664230209620036871044329015363345898573 1
,275_317.51?,72.112(y3144_y4x8)

+568778932684149150734B06516764852153707646931 1725881 1



. 292. 320 . 518, 112 . 167(?’,224 4 yq,zz)
+5415225397677834475422807358887936494076 7008724759

2105, 323 ; 522 i 112(?}3’;4 +y4:c)
+1793947598352023908427680476767722792326062137
P 2120_ 326 ! 5?.4, 112(:!:4' + y4)
+744018817165838537635833700212125511774629464 122336139999
281, 34518, 118 13 -7 1R  ga Ty tet
+498568919626003910457499486074957156706317883779
-2105.3%3. 5% . 112. 31 61 (y*z % + y3z®)
+ 4584255115'026?98324594?96901385866890?3859163
-glee. 326, 52-5:4112- 13- 17 (yz3+ y3z)
—10988376211907318963527055223442842217 - 2199 327. 529 118 373 (28 + y9)
—-1'?56916645734597206593?3928318884803?2022052147353
- 298319 519..112..17- 263 - BAT 9 35
—37183159968727376980451651056501 135078603
,2135, 328) 530 , llz(yzz +y22)
+ 1646536955955348221662739- 2153 . 331. 533. 7. 118. 179. 2098 (22 + y?)
—26133502139612394794832987638425967293174813
,2121 . 327 . 524—, 112 . 791{21’2
— 162899624593 - 2171.334.534. 113.176. 298 . 41 (z +y)
+26094174253158533018911091 - 2153331 . 531. 173.298. 139 487 yx

+2189.3%6. 586, 113. 178 299
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