
Computing with Polynomials Given by Straight-Line Programs II
Sparse Factorization*

Erich Kaltofen

Rensselaer Polytechnic Institute
Department of Computer Science

Troy, New York 12181

Abstract

We develop an algorithm for the factorization of a multivariate polynomial represented
by a straight-line program into its irreducible factors represented as sparse polynomials. Our
algorithm is in random polynomial-time for the usual coefficient fields and outputs with con-
trollably high probability the correct factorization. It only requires an a priori bound for the
total degree of the input and over rational numbers a bound on the size of the polynomial
coefficients.

Keywords. Polynomial factorization, sparse polynomial, straight-line program, random
polynomial-time.

1. Introduction

In [1] we have started developing a theory for manipulating polynomials given by
straight-line programs. There we have shown that the GCD of multivariate polynomials given
by straight-line programs can be found again in terms of a straight-line program in probabilis-
tic polynomial-time as a function of the input size and the total degree of the inputs. We
have also presented a probabilistic polynomial-time solution for converting a polynomial
given by a straight-line program into its sparse representation. Here we continue this theory
by presenting a probabilistic polynomial-time procedure for factoring a polynomial given by a
straight-line program into its sparse irreducible factors.

Our model of computation is that of a sequential algebraic RAM over a field as intro-
duced in [2]. Our algorithm calls a bivariate polynomial factorization procedure and is
_ ______________
* This material is based upon work supported by the National Science Foundation under Grant No. DCR-85-
04391 and by an IBM Faculty Development Award. Part of this work was done while the author was visiting
the Tektronix Computer Research Laboratory in Beaverton, Oregon. An extended abstract appeared in Proc. 26th
IEEE Symp. Foundations Comp. Sci., 451-458 (1985).

1 E. Kaltofen, ‘‘Computing with polynomials given by straight-line programs I; Greatest common divisors,’’
Proc. 17th ACM Symp. Theory Comp., pp. 131-142, 1985.

2 E. Kaltofen, ‘‘Computing with polynomials given by straight-line programs I; Greatest common divisors,’’
Proc. 17th ACM Symp. Theory Comp., pp. 131-142, 1985.

- 2 -

therefore only effective and of polynomial running time for the usual coefficient fields. Over
the rationals, for instance, we get an algorithm of expected binary complexity that is a poly-
nomial function in the binary size of the straight-line program computing the input polyno-
mial, in a priori bounds for its total degree and for the size of the numerators and the com-
mon denominator of its rational coefficients, and in the number of monomials occurring in its
sparse irreducible factors. The algorithm with controllably high probability outputs the
correct sparse factorization. Polynomial-time factorization of rational bivariate polynomials is
guaranteed by the results in [3] and [4]. Let us illustrate the power of our algorithm on a
classical example, that of the van der Monde determinant

det







 1

...

1

1

xn

...

x 2

x 1

xn
2

...

x 2
2

x 1
2

. . .

. . .

. . .

xn
n −1

...

x 2
n −1

x 1
n −1








=
i > j
Π(xi − xj).

Our algorithm can with high probability find the right-hand side factorization in n O (1)

expected steps even though the product consists of n ! monomials. This remains true, of
course, if we randomly perturb the input by multiplying the matrix with random unimodular
matrices from the left and right and thus destroy any of its symmetries.

Multivariate polynomial factorization has been studied extensively in the past twenty
years. Musser [5] not only for the first time applied Zassenhaus’s [6] approach of Hensel lift-
ing to the multivariate problem but he also realized that the algorithm could still take
exponential running time. In [7] we showed that for multivariate polynomials in dense
representation the problem is polynomial-time reducible to univariate factorization and there-
fore by [8] can be solved in polynomial-time. However, the dense representation seems to be
useful only if the input polynomial has few variables. Already Zippel [9] investigated how
the sparsity of input and output could be probabilistically preserved during the multivariate
Hensel lifting algorithm. However, the problem of factoring a sparse multivariate polynomial
_ ______________

3 A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász, ‘‘Factoring polynomials with rational coefficients,’’ Math.
Ann., vol. 261, pp. 515-534, 1982.

4 E. Kaltofen, ‘‘Polynomial-time reductions from multivariate to bi- and univariate integral polynomial
factorization,’’ SIAM J. Comp., vol. 14, pp. 469-489, 1985.

5 D. R. Musser, ‘‘Multivariate polynomial factorization,’’ J. ACM, vol. 22, pp. 291-308, 1975.
6 H. Zassenhaus, ‘‘On Hensel factorization I,’’ J. Number Theory, vol. 1, pp. 291-311, 1969.
7 E. Kaltofen, ‘‘Polynomial-time reductions from multivariate to bi- and univariate integral polynomial

factorization,’’ SIAM J. Comp., vol. 14, pp. 469-489, 1985.
8 A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász, ‘‘Factoring polynomials with rational coefficients,’’ Math.

Ann., vol. 261, pp. 515-534, 1982.
9 R. E. Zippel, ‘‘Newton’s iteration and the sparse Hensel algorithm,’’ Proc. ’81 ACM Symp. Symbolic

Algebraic Comp., pp. 68-72, 1981.

- 3 -

into its sparse irreducible factors in expected polynomial-time could not be solved before
fairly deep effective versions of the Hilbert irreducibility theorem were established, cf. [10]
and [11]. The theorem in the latter reference has a better probability of success and and
simpler substitutions therefore will be used here. We refer to [12] for a sparse factoring algo-
rithm that is polynomial-time provided the number of irreducible factors is small. In this
paper we remove this provision and the necessity that the polynomial to be factored be also
sparse.

Although our algorithm borrows the application of the effective Hilbert irreducibility
theorem and the idea that resolves the so-called leading coefficient problem from [13], we
must employ a very different sparse lifting method. The key idea, already described in [14],
is to lift bivariate polynomials only and to make the coefficients rational functions over the
remaining variables. It has been observed [15] that if one would carry this approach through
by representing those rational functions as sparse polynomials then the intermediate results
become very dense prohibiting efficient or polynomial-time solutions. However, our theory
allows us to represent those coefficients as straight-line programs of small size. Two algo-
rithms from [16] become crucial for successfully carrying out the lifting, namely the algo-
rithm for determining a straight-line program for the coefficients of a single variable and that
for converting a polynomial given by a straight-line program to its sparse representation. We
note that our algorithm also provides an alternate solution to the problem of factoring a sparse
input because the sparse representation of a polynomial always can be converted into a
straight-line program of polynomial size.

Notation: We use the same notation as in [17] but for the convenience of the reader we
shall repeat it here. By Q we denote the the rational numbers and by GF(q) the finite field
with q elements. F usually denotes a field and char(F) its characteristic. The coefficient of
the highest power of x 1 in f ∈ (F [x 2 , . . . , xn])[x 1] is referred to as the leading coefficient of
_ ______________

10 J. von zur Gathen, ‘‘Irreducibility of multivariate polynomials,’’ J. Comp. System Sci., vol. 31, pp. 225-264,
1985.

11 E. Kaltofen, ‘‘Effective Hilbert irreducibility,’’ Information and Control, vol. 66, pp. 123-137, 1985.
12 J. von zur Gathen and E. Kaltofen, ‘‘Factoring sparse multivariate polynomials,’’ J. Comp. System Sci., vol.

31, pp. 265-287, 1985.
13 J. von zur Gathen and E. Kaltofen, ‘‘Factoring sparse multivariate polynomials,’’ J. Comp. System Sci., vol.

31, pp. 265-287, 1985.
14 D. R. Musser, ‘‘Multivariate polynomial factorization,’’ J. ACM, vol. 22, pp. 291-308, 1975.
15 P. S. Wang and L. Rothschild, ‘‘Factoring multivariate polynomials over the integers,’’ Math. Comp., vol.

29, pp. 935-950, 1975.
16 E. Kaltofen, ‘‘Computing with polynomials given by straight-line programs I; Greatest common divisors,’’

Proc. 17th ACM Symp. Theory Comp., pp. 131-142, 1985.
17 E. Kaltofen, ‘‘Computing with polynomials given by straight-line programs I; Greatest common divisors,’’

Proc. 17th ACM Symp. Theory Comp., pp. 131-142, 1985.

- 4 -

f in x 1, ldcfx 1
(f), the content of f with respect to x 1 is denoted by contx 1

(f). Two polyno-

mials f 1 and f 2 are associates, f 1 ∼ f 2, if f 1 = c f 2 with c ∈ F \ {0}. The number of
monomials of f ∈ F [x 1 , . . . , xn] in its sparse representation is denoted by mon(f). For F =
Q the binary size of the monomial coefficients as fractions of integers with a common
denominator, the combined coefficient size, is denoted by cc-size(f).

A straight-line program over a domain D is formally a quadruple P = (X , V , C , S)
where X is the set of inputs, V the set of program variables, C the computation sequence,
and S the set of scalars occurring in the computation sequence. The length of C is the length
of P , len(P). Each program variable v computes an element f (v) ∈ D , and f (P) =

∪v ∈V f (v). A polynomial f ∈ F [x 1 , . . . , xn] is given by a straight-line program P if P =

({x 1 , . . . , xn }, V , C , S) over F (x 1 , . . . , xn) and S ⊂ F . The program P is defined at φ:{x 1

, . . . , xn } → F if no zero-division occurs when evaluating P at φ(xm) in place of xm . The
element size of P , el-size(P), denotes the number of bits it takes to represent X ∪ S .

By M (d) we denote a function dominating the time for multiplying polynomials in F [x]
of maximum degree d . The cardinality of a set S is denoted by card(S). The vertical stroke

 denotes the divisibility relation.

2. Evaluation and Factorization Pattern

For several reasons it is crucial for our Sparse Factoring algorithm that the Hensel lifting
is started with true factor images. Fortunately, the effective versions of the Hilbert irreduci-
bility theorem [18] and [19] make it possible to probabilistically enforce this assumption. In
this section we present a theorem on the probabilities that certain evaluations preserve the fac-
torization pattern that determines the number of irreducible factors, their multiplicities, and
their total degrees. The argument is essentially the same as that in [20], Theorem 3.6, but
with our effective version of the Hilbert irreducibility theorem. The main advantage of this
change is that the evaluations are simpler and the probability of success is higher.

Theorem 2.1: Let f ∈ F [x 1 , . . . , xn], F a perfect field, d = deg(f), R ⊂ F . The factoriza-
tion pattern of f is a lexicographically ordered vector ((di , ei))i =1, . . . , r such that for f =

Πi =1
r hi

ei , hi ∈ F [x 1 , . . . , xn],

hi irreducible, di = deg(hi) ≥ 1, 1 ≤ i ≤ r , hi ∼  hj for i ≠ j.

Let a 1, a 3 , . . . , an , b 3 , . . . , bn ∈ R be randomly selected elements,
_ ______________

18 J. von zur Gathen, ‘‘Irreducibility of multivariate polynomials,’’ J. Comp. System Sci., vol. 31, pp. 225-264,
1985.

19 E. Kaltofen, ‘‘Effective Hilbert irreducibility,’’ Information and Control, vol. 66, pp. 123-137, 1985.
20 J. von zur Gathen, ‘‘Irreducibility of multivariate polynomials,’’ J. Comp. System Sci., vol. 31, pp. 225-264,

1985.

- 5 -

f 1 = f (x 1 + a 1, x 2, b 3x 1 + a 3, . . . , bn x 1 + an).

Then

Prob(f and f 1 have the same factorization pattern) ≥ 1 −
card(R)

4d 2d + d 3
_ _________ .

Proof: By [21], theorem 3,

hi 1 = hi (x 1 + a 1, x 2, b 3x 1 + a 3, . . . , bn x 1 + an)

remains irreducible in F [x 1, x 2] with probability ≥ 1 – 4di 2di ⁄card(R). It remains to estimate
the probability that deg(hi 1) = di and that hi 1 ∼  hj 1 for all i ≠ j . Let

ĥi = hi (x 1 + α1, x 2, β3x 1 + α3, . . . , βn x 1 + αn)

in F (α1, α3 , . . . , αn , β3 , . . . , βn)[x 1, x 2]. Clearly, degx 1,x 2
(ĥi) = di . Let

πi (β3, . . . , βn) ∈ F [β3, . . . , βn] \ {0}

be the coefficient of a monomial x 1
j 1x 2

j 2 , j 1 + j 2 = di , in ĥi . Now deg(πi) ≤ di and

πi (b 3, . . . , bn) ≠ 0 implies deg(hi 1) = di .

By [22], Lemma 1, this happens with probability ≥

1 −
card(R)

deg(πi)_ ______ ≥ 1 −
card(R)

di_ ______ .

We finally estimate the chance that hi 1 ∼  hj 1 by completing an argument made in [23],
Theorem 4.5. First we note that ĥi ∼  ĥj in F (α1, α3 , . . . , αn , β3 , . . . , βn)[x 1, x 2], i ≠ j ,
because both polynomials are irreducible and not associated in F [α1, α3 , . . . , αn , β3 , . . . , βn ,
x 1, x 2]. Irreducibility of ĥi , say, follows because any factorization of it could be back-
translated by αk ← xk – βk x 1, 3 ≤ k ≤ n and then x 1 ← x 1 – α1 into a factorization of hi .
We also note that each of ĥi and ĥj has at least two non-zero monomials. Therefore there
exist two monomials σi 1, σi 2 ∈ F [α1, α3 , . . . , αn , β3 , . . . , βn] of ĥi and two monomials σj 1,
σj 2 of ĥj such that

τi j = σi 1σj 1 − σi 2σj 2 ≠ 0.

Now

τi j (a 1, a 3, . . . , an , b 3, . . . , bn) ≠ 0 implies hi 1 ∼  hj 1.
_ ______________

21 E. Kaltofen, ‘‘Effective Hilbert irreducibility,’’ Information and Control, vol. 66, pp. 123-137, 1985.
22 J. T. Schwartz, ‘‘Fast probabilistic algorithms for verification of polynomial identities,’’ J. ACM, vol. 27,

pp. 701-717, 1980.
23 J. von zur Gathen, ‘‘Irreducibility of multivariate polynomials,’’ J. Comp. System Sci., vol. 31, pp. 225-264,

1985.

- 6 -

Since deg(τi j) ≤ di + dj the probability of this event is ≥ 1 – (di +dj)⁄card(R). Overall, the
factorization pattern is preserved with probability not less than

1 −




i =1
Σ
r

card(R)

4di 2di

_ ______ +
i =1
Σ
r

card(R)

di_ ______ +
1≤i <j ≤r

Σ card(R)

di +dj_ ______





≥ 1 −


 card(R)

4d 2d
_ ______ +

card(R)
d_ ______ +

2
d (d −1)_ ______

card(R)
d_ ______





≥ 1 −
card(R)

4d 2d + d 3
_ __________ .

It is clear from the above theorem that we can probabilistically obtain the factorization
pattern of a polynomial given by a straight-line program by evaluation. The assumption that
the field is perfect can be dropped at the cost of increasing the failure probability somewhat
(cf. [24], Lemma 3.2), but since the usual coefficient fields are perfect we do not incorporate
this generalization. A more important observation is that with high probability the factor
degrees in x 2 are preserved as well. We define as the extended factorization pattern of f the
lexicographically ordered vector

((di , ei , di ,1, . . . , di ,n))i =1, . . . , r

where di and ei are as in the factorization pattern and di ,m = degxm
(hi). By letting each vari-

able in turn take the role of x 2 in the theorem and mapping the obtained bivariate factors
down to

f (b 1x 1 + a 1, b 2x 1 + a 2, . . . , bn x 1 + an)

we can deduce the extended factorization pattern of f given by a straight-line program in pro-
babilistic polynomial-time. The relevant theorem follows now.

Theorem 2.2: Let f = Πi =1
r hi

ei ∈ F [x 1 , . . . , xn], F a perfect field, d = deg(f), R ⊂ F \

{0}, and let am , bm ∈ R , 1 ≤ m ≤ n , be randomly selected elements. We define

f (m) = f (b 1x 0+a 1, . . . , bm −1x 0+am −1, xm , bm +1x 0+am +1, . . . , bn x 0+an), 1 ≤ m ≤ n ,

and

f (m)(x 0, xm) =
i =1
Π
rm 

hi
(m)(x 0, xm) 


ei ,m

its factorization. Furthermore, we set

hi
(0) = hi (b 1x 0+a 1, . . . , bn x 0+an), 1 ≤ i ≤ r.

Then the probability that
_ ______________

24 J. von zur Gathen, ‘‘Irreducibility of multivariate polynomials,’’ J. Comp. System Sci., vol. 31, pp. 225-264,
1985.

- 7 -

i) the polynomials f and f (m), 1 ≤ m ≤ n , have the same factorization pattern,

ii) degxm
(hi) = degxm

(hi
(m)), 1 ≤ m ≤ n , 1 ≤ i ≤ r ,

iii) hi
(0) ∼  hj

(0) for 1 ≤ i < j ≤ r ,

is not less than

1 −
card(R)

4nd 2d + (n +1)d 3 + nd_ ____________________ .

Proof: Condition i) is probabilistically enforced essentially by theorem 2.1. We apply it to
f (m)(b 1x 0, x 2 , . . . , xn) with x 0, xm , a 1⁄b 1 taking the place of x 1, x 2, and a 1, respectively. For
m = 1 we replace x 2 by b 2x 0. This means that a 1 of theorem 2.1 is chosen from a different
set, but since Lemma 1 of [25] can be trivially generalized to choosing the values for each
variable from different sets, all probability estimates for theorem 3 of [26] remain the same.
Therefore, the probability that i) is violated is no more than n (4d 2d + d 3)⁄card(R).

Conditions ii) and iii) are proven as for theorem 2.1. In other words, there exist polynomials
πi

(m) ∈ F [β1 , . . . , βm −1, βm +1 , . . . , βn] and τi j ∈ F [α1 , . . . , αn , β1 , . . . , βn] with

deg(πi
(m)) ≤ deg(hi

(m)) and πi
(m)(b 1, . . . , bn) ≠ 0 implies degxm

(hi) = degxm
(hi

(m))

and

deg(τi j) ≤ deg(hi) + deg(hj) and τi j (a 1, . . . , bn) ≠ 0 implies hi
(0) ∼  hj

(0).

Thus, condition ii) is not met with probability ≤ nd ⁄card(R) and condition iii) with probability
≤ d 3⁄(2card(R)). Adding up the failure probabilities now gives the theorem.

It should be clear now how to determine the extended factorization pattern. First we fac-
tor all f (m). Then we compute

hi
(m)(x 0, bm x 0 + am).

By iii) with high probability those polynomials that are associates are images of the same
irreducible factor of f , and by ii) we now know its degrees in xm . One can accomplish the
task of factoring all f (m), m ≠ 2, efficiently by separately lifting the factorization

i =1
Π

r
hi

(2)(x 0, b 2x 0 + a 2) = f (2)(x 0, b 2x 0 + a 2)

with respect to the variables x 1, x 3 , . . . , xn , see §3, algorithm One-Variable Lifting. We men-
tion that von zur Gathen [27], Remark 5.6, has later shown how to obtain the extended
_ ______________

25 J. T. Schwartz, ‘‘Fast probabilistic algorithms for verification of polynomial identities,’’ J. ACM, vol. 27,
pp. 701-717, 1980.

26 E. Kaltofen, ‘‘Effective Hilbert irreducibility,’’ Information and Control, vol. 66, pp. 123-137, 1985.
27 J. von zur Gathen, ‘‘Irreducibility of multivariate polynomials,’’ J. Comp. System Sci., vol. 31, pp. 225-264,

- 8 -

factorization pattern from his version of the Hilbert irreducibility theorem. However, that
solution requires to factor trivariate polynomials and is therefore computationally less efficient
than ours.

3. Sparse Lifting of Polynomials in Straight-Line Representation

We now present the algorithm for lifting the last variable in the sparse factorization of a
polynomial given by a straight-line program. The algorithm is derived from a bivariate ver-
sion of the Hensel lemma (cf. [28], Lemma 2.1) together with the ability to compute the
coefficients of individual variables as well as the solution of linear systems in terms of
straight-line programs, and the ability to convert the resulting straight-line programs to sparse
representation [29]. In order for the process to work we must make several assumptions
about the leading multivariate coefficients and the factor images. The sparse factorization
algorithm in §4 probabilistically enforces all these conditions before calling the lifting algo-
rithm repeatedly with new variables.

Algorithm One-Variable Lifting

Input: f ∈ F [x 1 , . . . , xm] given by a straight-line program P that is defined at φ(x 1) =
φ(xm) = 0, a bound d ≥ degxm

(f), a failure probability ε < < 1, and gi ∈ F [x 1 , . . . ,

xm −1] \ F [x 2 , . . . , xm −1] in sparse representation, ei ≥ 1 with char(F) \ ei , 1 ≤ i ≤ r ,
such that

i) ldcfx 1
(f) ∈ F [x 2 , . . . , xm −1], f (x 1 , . . . , xm −1, 0) = Πi =1

r gi
ei ,

ii) GCD(gi , gj) = 1 for 1 ≤ i < j ≤ r ,

iii) there exist hi ∈ F [x 1 , . . . , xm] with hi (x 1 , . . . , xm −1, 0) = gi , 1 ≤ i ≤ r , and f =

Πi =1
r hi

ei .

Notice that by ii) and iii) the hi are uniquely determined. Also by i) ldcfx 1
(hi) =

ldcfx 1
(gi), 1 ≤ i ≤ r .

Output: Either ‘‘failure’’ (that with probability < ε) or r sparse polynomials in F [x 1 , . . . , xm]
that with probability 1 – ε are equal to h 1 , . . . , hr .

FOR k ← 1, 2,. . . WHILE(d > Σi =1
r ei degxm

(hi)) DO step L.

Then return hi ← gi
(k).

_ ______________
1985.

28 E. Kaltofen, ‘‘Sparse Hensel lifting,’’ Proc. EUROCAL ’85, Vol. 2, Springer Lec. Notes Comp. Sci., vol.
204, pp. 4-17, 1985.

29 E. Kaltofen, ‘‘Computing with polynomials given by straight-line programs I; Greatest common divisors,’’
Proc. 17th ACM Symp. Theory Comp., pp. 131-142, 1985.

- 9 -

Step L (Lift): At this point we have gi
(k) ∈ F [x 1 , . . . , xm], 1 ≤ i ≤ r , in sparse representa-

tion, such that with high probability

gi
(k) ≡ hi mod xm

k , degxm
(gi

(k)) < k , 1 ≤ i ≤ r. (†)

In this step we determine ĝi ∈ F [x 1 , . . . , xm −1] in sparse representation, degx 1
(ĝi) < degx 1

(gi),

1 ≤ i ≤ r , such that

gi
(k +1) = gi

(k) + ĝi xm
k ≡ hi mod xm

k +1, 1 ≤ i ≤ r.

From iii) and (†) we get

g 1
e 1−1 . . .gr

er −1

i =1
Σ
r

(ei ĝi xm
k

j ≠i
j =1
Π

r
gj) ≡ f −

i =1
Π

r
(gi

(k))ei mod xm
k +1 (‡)

and

f −
i =1
Π

r
(gi

(k))ei ≡ τ(x 1, . . . , xm −1) xm
k mod xm

k +1, τ ∈ F [x 1, . . . , xm −1].

We can construct a straight-line program P τ = ({x 1 , . . . , xm −1}, V τ, C τ, S τ) with τ ∈ f (P τ)

by applying the Polynomial Coefficients algorithm to a program Pk with f – Πi =1
r (gi

(k))ei ∈
f (Pk). Since Pk is defined at φ(xm) = 0, we can even use k as the degree bound needed in
the Polynomial Coefficients algorithm. Notice that

len(Pk) = O (len(P) +
i =1
Σ
r

log(ei) mon(gi
(k)) m log(d))

and that len(P τ) = O (M (k) len(Pk)). By iii), (†), (‡), and the bounds on the degree in x 1 we
conclude that

ρ =
g 1

e 1−1 . . . gr
er −1

τ(x 1, . . . , xm −1)____________ ∈ F [x 1, . . . , xm −1], degx 1
(ρ) < degx 1

(g 1
. . . gr).

Furthermore,

g 1
. . . gr

ρ_ ______ =
g 1

e 1ĝ 1_ ____ + . . . +
gr

er ĝr_ ____, (§)

and hence by ii) ĝi /ei form the partial fraction decomposition of ρ⁄(g 1
. . .gr) in F (x 2 , . . . ,

xm −1)[x 1].

The sparse representation for ĝi now can be computed in several ways. One idea is to first
compute the coefficients of

ĝi =
j =1
Σ
di

ci ,j (x 2, . . . , xm −1) x 1
j −1 , di = degx 1

(gi), 1 ≤ i ≤ r ,

as straight-line programs and then convert those into sparse representation. A straight-line
program for ci ,j can be obtained by starting out with a straight-line program for the

- 10 -

coefficients of

ρ =
j =1
Σ

d 1+. . .+dr

cj (x 2, . . . , xm −1) x 1
j −1 ,

which can be obtained from P τ, g 1 , . . . , gr , and again by the Polynomial Coefficients algo-
rithm. Notice that P τ is defined at ψ(x 1) = 0 because P is assumed to be defined at φ. Now
the ci ,j form the unique solution of a Σdi by Σdi linear system, all of whose entries are

given by straight-line programs. We can obtain straight-line programs for ci ,j from Strassen’s
[30] division-free determinant program and by Cramer’s rule. Finally, we perform the Sparse
Conversion algorithm on the straight-line programs determining ci ,j with failure probability
ε/d 2. For F = Q we must also have a bound for cc-size(f) to carry out this last step.

‘‘Failure’’ or an incorrect result can be produced in any conversion of ci ,j to sparse
representation. Clearly, for each k there are at most d such conversions and hence such
events do not occur at all with probability 1 – ε. We conclude this section by mentioning an
alternate way of computing the sparse representation of ĝ . The idea is to apply the sparse
interpolation algorithm (cf. [31], §6) directly to (§). This is possible because if the evalua-
tions in the minor variables preserve pairwise relative primeness of the gi then the partial
fraction decomposition is unique. Note that the partial fraction decomposition can be com-
puted quickly by the algorithm of [32].

4. Sparse Factorization of Polynomials in Straight-Line Representation

We now describe the factorization algorithm itself and analyze its total complexity.
Since this algorithm calls Sparse Lifting, the input conditions to Sparse Lifting must be
enforced. Conditions ii) and iii) can be probabilistically guaranteed by theorem 2.1. It is
quite coincidental that the kind of evaluations used in that theorem also allow to guarantee
condition iii), which is important for overcoming the so-called leading coefficients problem.

Algorithm Sparse Factorization

Input: f ∈ F [x 1 , . . . , xn] given by a straight-line program P of length l , a bound d ≥
deg(f), and the allowed failure probability ε < < 1.

Output: Either ‘‘failure’’ (that with probability < 2ε) or the sparse representation of polyno-
mials hi ∈ F [x 1 , . . . , xn], ei ≥ 1, 1 ≤ i ≤ r , such that with probability > 1 – ε

_ ______________
30 V. Strassen, ‘‘Vermeidung von Divisionen,’’ J. reine u. angew. Math., vol. 264, pp. 182-202, 1973. (In

German).
31 E. Kaltofen, ‘‘Computing with polynomials given by straight-line programs I; Greatest common divisors,’’

Proc. 17th ACM Symp. Theory Comp., pp. 131-142, 1985.
32 H. T. Kung and D. M. Tong, ‘‘Fast algorithms for partial fraction decomposition,’’ SIAM J. Comp., vol. 6,

pp. 582-593, 1977.

- 11 -

f =
i =1
Π

r
hi

ei

is the factorization of f into irreducible polynomials.

Step R (Random Points Selection): From a set R ⊂ F with

card(R) >
ε

max(2l +4, 8d 2d + 2d 3 + 2(n −2)d)_ _____________________________

select random elements a 1 , . . . , an , b 3 , . . . , bn . If F = GF(q) with q small we can instead
work over GF(q p), p a prime integer > d . By Theorem 6.1 in [33] no additional factors
occur.

Step I (Initialize for Lifting): Test whether P is defined at φ(xm) = am , 1 ≤ m ≤ n . For F =
Q we call algorithm Zero-Division Test in [34] so often that the probability of ‘‘failure’’
occurring all the times even if P were defined at φ is less than ε/8.

If P turns out to be (probably) undefined at φ we return ‘‘failure’’. Otherwise, P is definitely
defined at φ and we compute the dense representation of

f 1 = f (x 1 + a 1, x 2, b 3x 1 + a 3, . . . , bn x 1 + an).

This can be done similarly to the Sparse Conversion algorithm and we must again make the
probability that ‘‘failure’’ occurs less than ε/4. If F = Q, a bound for the cc-size(f) must be
added to the input parameters.

Factor f 1 = Πi =1
r gi ,2

ei , gi ,2 ∈ F [x 1, x 2] irreducible and pairwise not associated. Notice that

with high probability f and f 1 have the same factorization pattern.

Step V (Variable by variable lifting): FOR m ← 3 , . . . , n DO step L.

Step L (Lift one variable): At this point we have gi ,m −1 ∈ F [x 1 , . . . , xm −1] such that with
high probability

i =1
Π

r
gi ,m −1

ei = f (x 1 + a 1, x 2, . . . , xm −1, bm x 1 + am , . . . , bn x 1 + an)

and

gi ,m −1(x 1, x 2, b 3x 1 + a 3, . . . , bm −1x 1 + am −1) = gi ,2, 1 ≤ i ≤ r.

Let J ⊂ {1 , . . . , r } be such that j ∈ J if and only if gj ,m −1 ∈ F [x 2 , . . . , xm −1]. For
_ ______________

33 J. von zur Gathen, ‘‘Irreducibility of multivariate polynomials,’’ J. Comp. System Sci., vol. 31, pp. 225-264,
1985.

34 E. Kaltofen, ‘‘Computing with polynomials given by straight-line programs I; Greatest common divisors,’’
Proc. 17th ACM Symp. Theory Comp., pp. 131-142, 1985.

- 12 -

= f (x 1+a 1, x 2, . . . , xm −1, bm x 1+am +y , bm +1x 1+am +1, . . . , bn x 1+an)

fm (x 1, . . . , xm −1, y)

construct a straight-line program Pm = ({x 1 , . . . , xm −1, y }, Vm , Cm , Sm) over F (x 1 , . . . , xm −1,
y) that computes

f m =

j ∈J
Πgj ,m −1

e j

fm_ ________ .

We will show below that with high probability

f m ∈ F [x 1, . . . , xm −1, y] and ldcfx 1
(f m) ∈ F [x 2, . . . , xm −1]. (*)

Call the One-Variable Lifting algorithm with f m ∈ f (Pm), d – Σj ∈J ej deg(gj ,m −1), failure

probability ε/(2n −4), and gi ,m −1, ei for i ∈ {1 , . . . , r } \ J .

If p = char(F) divides one of the ei , the algorithm has to be slightly modified. We then lift

gi ,2
p

ν
i

instead of gi ,2, where ei = p νi µi and p \ µi . We ultimately obtain hi
p

ν
i

from which we
recover hi by taking p th roots of the coefficients.

The polynomials hi ,m ∈ F [x 1 , . . . , xm −1, y] are returned such that with high probability

i ∈{1, . . . , r }\J
Π hi ,m

ei = f m .

Set gi ,m ← hi ,m (x 1 , . . . , xm −1, xm – bm x 1 – am) for all i ∈ {1 , . . . , r } \ J , gj ,m ← gj ,m −1

for all j ∈ J .

Step T (Final Translation): Return

hi ← gi ,n (x 1 − a 1, x 2, . . . , xn), ei , 1 ≤ i ≤ r.

We wish to remark that the lifting with the multiplicities ei could have been avoided
over fields of characteristic 0. Once we know the factorization of f 1 we can lift Πgi ,2 with

respect to the squarefree part of f . A straight-line program for the squarefree part of f can
be obtained by using the Polynomial GCD algorithm [35] on a translated image of f and its
partial derivative. We mention this fact because it distinguishes our straight-line approach
further from sparse factorization algorithm in [36]. That algorithm cannot afford to compute
the squarefree part of the sparse input since that part can become dense. However, with our
theory we can always find a straight-line program computing this dense squarefree part.
_ ______________

35 E. Kaltofen, ‘‘Computing with polynomials given by straight-line programs I; Greatest common divisors,’’
Proc. 17th ACM Symp. Theory Comp., pp. 131-142, 1985.

36 J. von zur Gathen and E. Kaltofen, ‘‘Factoring sparse multivariate polynomials,’’ J. Comp. System Sci., vol.
31, pp. 265-287, 1985.

- 13 -

We now analyze the overall failure probability of the Sparse Factorization algorithm.
We first estimate the probability with which the correct answer is computed, under the
assumption that ‘‘failure’’ does not occur. First of all, f 1 must have the same factorization
pattern as f . The probability of this event is estimated in theorem 2.1. We shall assume
now that the event has happened. The second event necessary is (*) for all 2 ≤ m ≤ n , which
guarantees the input conditions for the calls to One-Variable Lifting. We will show in the
proof of theorem 4.1 that this event occurs with probability > 1 – (n −2)d /card(R). Now also
assume that the second event has occurred. Then all n −2 calls to One-Variable Lifting pro-
duce correct answers with probability > 1 – ε/2. Therefore all three events occur together
with with probability greater than




1 −

card(R)
4d 2d + d 3
_ _________








1 −

card(R)
(n −2)d_ ______








1 −

2
ε_ _





> 1 − ε.

‘‘Failure’’ is returned under three circumstances in step I and during the calls to One-
Variable Lifting. First, P is not defined at φ with probability < 2l +1/card(R) < ε/8 by an
argument similar to that used in Lemma 4.3 of [37]. The remaining two possibilities of step I
to fail are that P is not recognized to be defined at φ in case F = Q or that the computation
of f 1 fails. In summary, ‘‘failure’’ is returned in step I with probability < ε/2. Any of the
calls to One-Variable Lifting can fail in two different ways, namely that either it is called
with incorrect inputs or that the Sparse Conversion inside the Lifting procedure fails. By the
above analysis the first event does not happen with probability > 1 – ε and then the second
does not happen in all n −2 calls to Lifting with probability > 1 – ε/2. Therefore ‘‘failure’’ is
not returned by Sparse Factorization with probability > 1 – 2ε. We have the following
theorem.

Theorem 4.1: Algorithm Sparse Factorization does not fail and outputs the sparse factoriza-
tion of f with probability 1 – 3ε. In that case it reduces the problem in polynomially many
arithmetic steps on an algebraic RAM over F as a function of

len(P), d , and mon(hi), 1 ≤ i ≤ r ,

to factoring bivariate polynomials. It requires polynomially many randomly selected field ele-
ments.

Proof: If the algorithm does not fail or does not compute an intermediate incorrect result, it
clearly takes polynomial-time. It remains to show that condition (*) is satisfied with the said
probability. We have assumed that the evaluations preserve the factorization pattern. Now if
hi ∈ F [x 2 , . . . , xm −1] then hi is equal to some gj ,m −1, j ∈ J . Clearly such a gj ,m −1 must
divide fm . We need to insure that for
_ ______________

37 E. Kaltofen, ‘‘Computing with polynomials given by straight-line programs I; Greatest common divisors,’’
Proc. 17th ACM Symp. Theory Comp., pp. 131-142, 1985.

- 14 -

hi ,m (x 1 + a 1, x 2, . . . , xm −1, bm x 1 + y + am , bm +1x 1 + am +1, . . . , bn x 1 + an)

we have hi ,m (x 1 , . . . , xm −1, 0) ∈ ⁄ F [x 2 , . . . , xm −1] if hi ∈ ⁄ F [x 2 , . . . , xm −1]. Assuming the latter
let

ĥi ,m = hi (x 1 + α1, x 2, . . . , xm −1, βm x 1 + y + αm , βm +1x 1 + αm +1, . . . , βn x 1 + αn)

∈ F [α1, αm , . . . , αn , βm , . . . , βn , x 1 , . . . , xm −1, y]. Now

degx 1
(ĥi ,m) > 0 and ldcfx 1

(ĥi ,m) ∈ F [βm , . . . , βn , x 2, . . . , xm −1].

Let σi (βm , . . . , βn)x 2
j 2 . . . xm −1

jm −1 be a non-zero monomial in the ldcfx 1
(ĥi ,m). Then Πi ∈ ⁄ J σi (bm

, . . . , bn) ≠ 0 guarantees that

hi ,m (x 1, . . . , xm −1, 0) = gi ,m −1 ∈ ⁄ F [x 2, . . . , xm −1] for all i ∈ ⁄ J ,

which already implies (*). Since deg(Πσi) ≤ Σdeg(hi) ≤ d , this happens for all 3 ≤ m ≤ n

with probability ≥ 1 – (n −2)d ⁄card(R).

From the polynomial-time results on bivariate factorization [38] and [39] we get the fol-
lowing corollary.

Corollary: If F = Q or F = GF(q) the sparse factorization of f ∈ F [x 1 , . . . , xn] given by a
straight-line program P can be computed correctly with probability 1 – ε on an algebraic
RAM over F in expected polynomially many binary steps in

len(P), d , log(
ε
1_ _), cc-size(f), el-size(P), and mon(hi), 1 ≤ i ≤ r.

Proof: The difference between theorem 4.1 and this corollary is that we would always output
a factorization of f . If ‘‘failure’’ occurs we just restart the algorithm. We now note that the
algorithm may in unfortunate circumstances take exponential or even infinite time. However,
such an event can be made quite unlikely so that the expected running time stays polynomial.

As in the Sparse Conversion algorithm, it is an important feature of the Sparse Factoriza-
tion algorithm that the number of monomials need not be known before-hand. Therefore, a
symbolic computation system can begin the factorization and inform the user of lower bounds
of the output size from time to time. Usually, it suffices to know that the final factorization is
large without completely computing it. The question most users have about their computa-
tions is whether they lead to simple answers and if so which.

_ ______________
38 E. Kaltofen, ‘‘Polynomial-time reductions from multivariate to bi- and univariate integral polynomial

factorization,’’ SIAM J. Comp., vol. 14, pp. 469-489, 1985.
39 J. von zur Gathen and E. Kaltofen, ‘‘Factoring multivariate polynomials over finite fields,’’ Math. Comp.,

vol. 45, pp. 251-261, 1985.

- 15 -

5. Conclusion

Our development of a theory for manipulating polynomials given by straight-line pro-
grams lead us to what we believe is one of the most sophisticated random polynomial-time
algorithm among problems being known to belong to the random polynomial-time complexity
class. To justify our claim we wish to again refer to the classical problem of factoring the
van der Monde determinant as mentioned in the introduction. We are in the position of
automatically producing its factorization in random polynomial-time by bringing together
several very different and important ideas. First, the Hensel lemma applied to polynomial
factorization in the uni-, bi-, and multivariate situation. Second, Berlekamp’s polynomial fac-
torization algorithm over finite fields and Lovász’s short lattice-vector algorithm, which are
the keystones for univariate rational polynomial factorization in polynomial-time. Third, the
Hilbert irreducibility theorem and its effective versions. Then the technique of randomly
evaluating multivariate polynomials at points and modulo large primes leading also to the
Sparse Conversion algorithm. And finally, Strassen’s technique of eliminating divisions from
straight-line programs that has helped us to produce the Polynomial Coefficients algorithm.

We are, however, left with an important open problem. Notice that our Sparse Factori-
zation algorithm is of random polynomial running time only if the input polynomial factors
sparsely. This is the case for the van der Monde determinant and it is easy to construct dif-
ferent classes of determinants that factor sparsely. However, even sparse polynomials can
have dense irreducible factors [40], and it would be better if we could compute the factoriza-
tion in terms of straight-line programs themselves. Then one could always convert those fac-
tors that are sparse to their sparse representation but leave the dense factors in straight-line
representation. At this moment we cannot prove that the irreducible factors of a polynomial
given by a straight-line program can always be represented by straight-line programs of poly-
nomial length. The possibility that this problem is inherently difficult cannot be completely
ruled out. For instance, Valiant [41] has demonstrated that p-computable polynomials, which
are those of polynomially bounded degree and straight-line program length, are very unlikely
closed under operations such as multiple partial derivatives. However, from our experience
with the GCD problem [42] we conjecture that p-computable polynomials are closed under
factorization into irreducibles. The more important problem is, of course, to find the
straight-line programs for the irreducible factors in polynomial-time.

_ ______________
40 J. von zur Gathen and E. Kaltofen, ‘‘Factoring sparse multivariate polynomials,’’ J. Comp. System Sci., vol.

31, pp. 265-287, 1985.
41 L. Valiant, ‘‘Reducibility by algebraic projections,’’ L’Enseignement mathématique, vol. 28, pp. 253-268,

1982.
42 E. Kaltofen, ‘‘Computing with polynomials given by straight-line programs I; Greatest common divisors,’’

Proc. 17th ACM Symp. Theory Comp., pp. 131-142, 1985.

- 16 -

Note added in on November 9, 1985: The author has shown that the above mentioned prob-
lem has indeed a positive solution. The paper containing the proof, ‘‘Uniform closure proper-
ties of p-computable functions’’, is currently being written.

Corrections to [Ka85d]

p. 132, c. 2, l.+8:
The example should read

f =
i =2
Π
n

(xi − 1)
i =2
Π
n

(x 1 −
j =0
Σ
d

xi
j).

p. 137, c. 1, Step BT:
Replace step BT by
Step BT (Back-Transformation): At this point Q computes wl +1,δ with

f (x 1, . . . , xn) =
δ=0
Σ
d

f (wl +1,δ) (x 1 − a 1)δ.

We compute wl +2,δ such that

f (x 1, . . . , xn) =
δ=0
Σ
d

f (wl +2,δ) x 1
δ.

by a fast ‘‘radix conversion’’ method [43], §4.4, Exercise 14, which we shall briefly present as an
algebraic RAM algorithm.

Split f = f 0 + (x 1 − a 1) d ⁄2 f 1 with

f 0=
0≤δ< d ⁄2

Σ c δ(x 1 − a 1)δ, f 1=
0≤δ≤ d ⁄2

Σ c δ+ d ⁄2(x 1 − a 1)δ.

Convert f 0 and f 1 by recursive application of the algorithm.
Compute f 2 = (x 1 − a 1) d ⁄2 by repeated squaring.
Compute f 1 f 2 + f 0 by multiplication and addition.

The complexity T (d) of this algorithm satisfies T (d) ≤ 2 T (d ⁄2) + c M (d), c a constant, and
hence is T (d) = O (log(d) M (d)).

Finally, set W = {w λδ} ∪ {u  u is any of the intermediate variables}. Return Q = ({x 2 , . . . ,
xn }, W , CQ , S ∪ {a 1}).

p. 138, c. 2, l.+3:
... stating that products_ ______ of primitive polynomials ...

p. 138, c. 2, Step R:
card(R) > max(2l +4, 8d 3)/ε, because of changes in step C. Note that Theorem 5.2 remains valid
as stated.

p. 138, c. 2, Step C:
Replace step C by
Step C (Coefficient Determination): For ρ = 1, 2 test whether P̃ ρ is defined at φ(y ν) = a ν, 1 ≤ ν ≤
n . If not return ‘‘failure’’. For F = Q we proceed as follows. We call algorithm Zero-Division

_ ______________
43 D. E. Knuth, The Art of Programming, vol. 2, Semi-Numerical Algorithms, ed. 2, Addison Wesley,

Reading, MA, 1981.

- 17 -

Test on each P ρ five times. If ‘‘failure’’ occurs all five times for any of the two programs return
‘‘failure’’. Otherwise both P ρ are defined at φ.

Now call algorithm Polynomial Coefficients with input P̃ ρ, a 1, and d . We obtain Q ρ = ({y 2 , . . . ,
yn }, W ρ, C ρ, T ρ) such that c ρδ ∈ f (Q ρ). Notice that Q ρ are still defined at φ(y ν) = a ν, 2 ≤ ν
≤ n .

p. 140, c. 1, l.-1:
The very faint equation is

(e 1, . . . , ei −1)∈Ji

Σ
δ=0
Σ

d −e 1−. . .−ei −1

γe 1, . . . , ei −1,δ bk 1
e 1 . . .bk ,i −1

ei −1 bki
δ = gki , (†)

p. 140, c. 2, l.-14:
Since the events are not independent, the probability estimate should be

1 −
i =1
Σ
n

r

deg(σi)_ ______ ≥ 1 −
r

ndm_ ____ > 1 −
r

nd (d +1)n
_ ________ > 1 − ε.

