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1. Introduction

We present a parallel algebraic PRAM algorithm that can compute the greatest common

divisor of two polynomials of maximal degree n with coe�cients from a �eld simultaneously

in O(log(n)

2

) time using n

!+1

processors, where ! denotes the matrix multiplication ex-

ponent (currently the best being 2.37 (Coppersmith and Winograd 1987)). Our algorithm

actually can �nd all subresultants of the input polynomials and the corresponding multiplier

polynomials in the extended Euclidean scheme on an algebraic circuit of

size = O(n

!+1

log(n)) and depth = O(log(n)

2

)

This more general result also leads to processor-e�cient poly-log time parallel solutions to

the Berlekamp-Massey problem (Massey 1969) of �nding a linear generating recurrence for

a sequence of �eld elements, or for the problem of counting the number of real zeros of a

rational polynomial in a given interval. The processor/size measure that we achieve compares

favorable to the best known sequential solutions if one restricts to algebraic computations

without divisions.

The �rst poly-log solution to the polynomial greatest common divisor problem was de-

scribed by Borodin, von zur Gathen, and Hopcroft (1982). In terms of network size or

processor count, depending on the model of parallel algebraic computation, their algorithm

computes O(n) determinants of dimension O(n). Using the most processor e�cient poly-log

determinant algorithms known to-date (Chistov 1985) and (Galil and Pan 1989), one obtains

as the size of their network

O(n

!+2

log(n)) or O(n

!+1:5��

)

for arbitrary or zero characteristic, respectively. Our solution essentially reduces this size

to the size of a single arbitrary characteristic n-dimensional determinant computation. We

remark that Pan and Reif (1987) have investigated this problem for polynomials with rational

coe�cients and for iterative algorithms, i.e., for algorithms that compute high precision

oating point approximations to the GCD before converting the result to the exact answer.

Even though they obtain a better processor count, it must be realized that each processor

has to carry out high precision oating point arithmetic, where the number of bits in the

*This material is based on work supported in part by the National Science Foundation under Grant No.

CCR-87-05363 and under Grant No. CDA-88-05910.
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precision depends on the input degree. Such an approach excludes a modular GCD algorithm

(Brown 1971), which is an excellent means to parallelize the arithmetic itself and to control

intermediate coe�cient length growth, and it does not apply to �nite coe�cient �elds, which

is, e.g., the situation if one wants a poly-log parallel solution for the Berlekamp-Massey

decoding problem.

We accomplish our processor/size improvement by making use of a drawback in the

best-known parallel algorithms for computing matrix determinants, e.g., Chistov's (1985)

algorithm. That algorithm can be made to actually produce, at a processor cost of n

!+1

, not

only the characteristic polynomial of the input matrix, but the characteristic polynomials

of all principal submatrices. From a sequential algebraic complexity point of view the cost

for this augmented problem might actually be optimal. We can construct a matrix, similar

to the Sylvester matrix of the two polynomials, that has the matrices whose determinants

are the leading coe�cients of all subresultants in principal submatrix position. Using the

construction of the subresultant as a polynomial matrix we observe that the coe�cients

of the polynomial multipliers in the Euclidean scheme that corresponds to a subresultant

are actual entries in the �rst row of the adjoints of all these principal submatrices. These

�rst rows we can obtain from the corresponding characteristic polynomials by the Cayley-

Hamilton theorem and a processor e�cient matrix power times vector pre�x sum algorithm.

Of course, the fundamental theorem of subresultants plays a crucial rol�e for deciding the

degrees of the remainders in the Euclidean sequence.

2. Subresultants

We now describe the theory of subresultants (Collins 1967), (Brown and Traub 1971) that

underlies all known poly-log algorithms for computing polynomial greatest common divisors

(Borodin et al. 1982). Consider a polynomial pseudo-remainder sequence for polynomials

over an integral domain D:

�

i

f

i

(x) = �

i

f

i�2

(x)� q

i

(x)f

i�1

(x); 2 � i � k + 1;

where

f

i

; q

i

2 D[x]; d

i

:= deg(f

i

) < d

i�1

; �

i

; �

i

2 D n f0g; f

k+1

= 0:

Then f

k

(x) is a scalar multiple of the GCD of f(x) := f

0

(x) and g(x) := f

1

(x) computed

over the �eld of quotients QF(D) of D. The Fundamental Theorem of Subresultants relates

the coe�cients of f

i

(x) to minors in the Sylvester matrix of f

0

(x) and f

1

(x): Let

f(x) =: a

n

x

n

+ � � �+ a

0

; f

1

(x) := b

m

x

n

+ � � �+ b

0

; n := d

0

� m := d

1

:

De�ne as the j-th subresultant S

j

(f; g), 0 � j � m, the determinant of the (n +m� 2j)�
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(n+m� 2j) matrix with entries in D[x],

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

a

n

a

n�1

a

n�2

: : : a

n�(m�j�1)
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a

n

: : : : : : : : : : : : : : : : : : : : : a

j+1

f(x)

b

m

b

m�1

b

m�2

: : : b

j+1

: : : : : b

0

x

n�j�1

g(x)

b

m

b

m�1

: : : : : : : : : : : : : : : : : b

0

x

n�j�2

g(x)

.

.
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.

.
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.

.

b

0

x

j+1
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.
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.

.
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b

m

: : : : : : : : : : : : : : : : b

j+1

g(x)

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

: (1)

Performing minor expansion along the last row of (1) produces polynomials

u

j

f + v

j

g = S

j

(f; g); u

j

(x); v

j

(x) 2 D[x]; deg(u

j

) < m� j; deg(v

j

) < n� j:

In fact, the coe�cients of u

j

and v

j

are the (n+m� 2j� 1)� (n+m� 2j� 1) minors along

the last column of (1). The fundamental theorem states (Brown and Traub 1971):

Let �

i

:= d

i

� d

i�1

and c

i

be the leading coe�cient of f

i

. Then for all 3 � i � k,

S

d

i�1

�1

= 

i

f

i

with



i

= (�1)

�

i

c

1��

i�1

i�1

i

Y

l=3

�

�

l

�

l

�

d

l�1

�d

i�1

+1

c

�

l�2

+�

l�1

l�1

and �

i

=

i

X

l=3

(d

l�2

� d

i�1

+ 1)(d

l�1

� d

i�1

+ 1);

S

d

i

= #

i

f

i

with

#

i

= (�1)

�

i

c

�

i�1

�1

i

i

Y

l=3

�

�

l

�

l

�

d

l�1

�d

i

c

�

l�2

+�

l�1

l�1

and �

i

=

i

X

l=3

(d

l�2

� d

i

)(d

l�1

� d

i

);

S

j

(f; g) = 0 for all j with d

i�1

� 1 > j > d

i

or d

k

> j � 0:

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>
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=
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>
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>

>

>

>

>

>

>

>

>

>

>

>

;

(2)

Our parallel algorithm will not work in the case that m < n. However, it is easy to

modify the theory such that we always have m = n by padding the polynomial g with zero

monomials of degree larger then m. Considering the formal de�nition of the subresultant (1)

not assuming that b

m

6= 0, we have

S

j

(f; 0 � x

n

+ � � �+ 0 � x

m+1

+ g(x)) = a

n�m

n

S

j

(f; g): (3)
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3. Parallel Characteristic Polynomial Computation

In this section we inspect Chistov's (1985) method of solving linear systems in parallel.

We have the following parallel construction, which we formulate in the model of uniform

algebraic circuits (von zur Gathen 1986).

Theorem 1. There exists a uniform family of algebraic division-free circuits over an arbi-

trary integral domain D that computes, for an n � n matrix A := (a

i;j

)

1�i;j�n

over D, the

coe�cients of the characteristic polynomials of all principal submatrices A

k

:= (a

i;j

)

1�i;j�k

,

1 � k � n, and whose circuit size is of order O(n

!+1

log(n)) and whose circuit depth is of

order O(log(n)

2

).

The improvement in size, which was pointed out to me by von zur Gathen, hinges on

the following lemma (Keller-Gehrig 1985).

Lemma 1. There exists a uniform family of algebraic circuits over an arbitrary integral

domain D that computes, for an n�n matrix A := (a

i;j

)

1�i;j�n

over D and an n-dimensional

column vector b, all vectors

Ab;A

2

b; : : : A

n

b;

and whose circuit size is of order O(n

!

log(n)) and whose circuit depth is of order O(log(n)

2

).

�

It is important to notice that in terms of sequential circuit complexity the construction

is optimal, i.e., we do not know any circuit|even with divisions|that can compute the

characteristic polynomials of all A

k

and whose size is o(n

!+1

). In terms of division-free

sequential computation the circuits are optimal for positive characteristic even if one only

requires the computation of the characteristic polynomial of A, or for that matter its constant

coe�cient, namely the Det(A). For �elds of characteristic zero the algorithm by Galil and

Pan (1989) improves the size of a circuit for the characteristic polynomial by a factor of

a bit more than

p

n. However, we do not know if the same improvement can be obtained

for computing the characteristic polynomials of all principal submatrices, with or without

poly-log circuit depth.

Sketch of Proof of Theorem 1. If we denote by I

n

an n-dimensional identity matrix, and if

(B)

i;j

denotes the element in row i and column j in the matrix B, then Chistov's algorithm

is based on the identities

1

Det(I

k

� �A

k

)

=

k

Y

l=1

�

(I

l

� �A

l

)

�1

�

l;l

=

k

Y

l=1

 

1

X

m=0

�

m

A

m

l

!

l;l

�

k

Y

l=1

n

X

m=0

(A

m

l

)

l;l

�

m

(mod �

n+1

)

=: '

k

(�):
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One computes the coe�cients (A

m

l

)

l;l

of the polynomials of the right-hand-side product by

lemma 1, namely one �nds

A

l

e

(l)

l

; A

2

l

e

(l)

l

; : : : ; A

n

l

e

(l)

l

;

where e

(l)

l

is the l-dimensional unit vector with identity in the l-dimension. Then the elements

(A

m

l

)

l;l

are the last entries in the vectors A

m

l

e

(l)

l

. Thus we obtain in O(n

!+1

log(n)) size and

O(log(n)

2

) depth polynomials

 

l

(�) :=

n

X

m=0

(A

m

l

)

l;l

�

m

:

By parallel pre�x, we then obtain

'

k

(�) =

 

k

Y

l=1

 

l

(�)

!

mod �

n+1

in O(nM(n)) size and O(log(n)

2

) depth, where M(n) is the asymptotic complexity of n-

degree polynomial multiplication over D (currently the best being n log(n) log(log n) (Can-

tor and Kaltofen 1987)). The characteristic polynomial �

k

(�) := Det(�I

k

� A

k

) is now the

truncated power series inverse of '

k

, '

k

(�)

�1

mod �

k+1

with the order of the coe�cients re-

versed. Using Newton iteration, all n power series inversions can be carried out in O(nM(n))

size and O(log(n)

2

) depth. �

We remark that theorem 1 also can proven using Berkowitz's (1984) approach to com-

puting the determinant of a matrix in parallel.

4. Parallel Polynomial Subresultant Computation

We now present our algorithm that for two polynomials f(x); g(x) 2 D[x], D an integral

domain, m := deg(g) � deg(f) =: n, computes all subresultants S

d

i

(f; g), where d

i

ranges

over the all degrees of remainders in the polynomial remainder sequence of f and g. If m < n

and the leading coe�cient a

n

of f is not a unit, the algorithm will perform exact divisions

by a

n

. The algorithm is realized by uniform circuits over D of

size = O(n

!+1

log(n)) and depth = O(log(n)

2

): (4)

Let f(x) =: a

n

x

n

+ � � �+ a

0

and let g(x) =: b

n

x

n

+ � � �+ b

0

; note that b

n

= � � � = b

m+1

= 0.

We �rst consider the (2n)� (2n) Sylvester matrix of f and g:

R =

0

B

B

B

B

B

B

B

@

a

n

a

n�1

: : : : : a

0

b

n

b

n�1

: : : : : b

0

a

n

: : : : : a

1

a

0

b

n

: : : : : b

1

b

0

.

.

.

.

.

.

.

.

.

a

n

: : : : : : : : : a

0

b

n

: : : : : : : : : b

0

1

C

C

C

C

C

C

C

A

: (5)

By the algorithm discussed in theorem 1 we can compute the characteristic polynomials

�

k

(�) of all k � k principal submatrices R

k

of (5) within the complexity of (4). Comparing
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R

2j

with (1) and (3) we observe that by the adjoint formula for the matrix inverse, the �rst

row of

Adj(R

2j

) := Det(R

2j

)R

�1

2j

constitutes the coe�cients of the polynomial multipliers u

j

; v

j

2 D[x] in the scheme

u

j

f + v

j

g = a

n�m

n

S

j

(f; g): (6)

Notice, that v

j

formally has n� j coe�cients, but its degree is only m� j.

By using lemma 1 (again), one can now compute from �

2j

(�) the entries in the �rst rows

of all Adj(R

2j

), 0 � j � m, within the complexity (4); note that we know no way to compute

all R

�1

2j

within the same complexity, but luckily we only need the �rst rows. The argument

is as follows: let

�

2j

(�) =: �

2j

+ c

2j;2j�1

�

2j�1

+ � � �+ c

2j;0

;

then by the Cayley-Hamilton theorem

Adj(R

2j

) = �R

2j�1

2j

� c

2j;2j�1

R

2j�2

2j

� � � � � c

2j;2

R

2j

� c

2j;1

I

2j

:

Thus the �rst row of Adj(R

2j

) is obtained by multiplying the right-hand side by a unit row

vector with the identity element in the �rst column, (e

(2j)

1

)

tr

. Lemma 1 now shows how to

compute all

(e

(2j)

1

)

tr

R

m

2j

; 2 � m � 2j � 1;

in O(j

!

log(j)) size and O(log(j)

2

) depth.

We now have the coe�cients of all polynomial multipliers in (6). By parallel polynomial

multiplications and a scalar exact division we get all S

j

(f; g). The fundamental theorem of

subresultants (2) now comes into play, because it accounts for all S

j

(f; g). Testing which of

the S

j

(f; g) vanish (hence the change to the network model (von zur Gathen 1985) below),

we can decide exactly which j is a degree d

i

of a polynomial remainder, and what is its

corresponding subresultant. We have the following theorem:

Theorem 2. There exists a uniform family of algebraic networks over the integral domain

D (with exact division) that is of size O(n

!+1

log(n)) and simultaneously of depth O(log(n)

2

)

and that for two polynomials f; g 2 D[x] of degree n and m, respectively, m � n, computes

all \extended subresultant schemes" in the polynomial remainder sequence of f and g,

u

d

i

f + v

d

i

g = S

d

i

(f; g); u

d

i

; v

d

i

2 D[x];

where d

i

is the degree of the i-th remainder in the sequence, and deg(u

d

i

) < m�d

i

, deg(v

d

i

) <

n� d

i

. �

This theorem implies the most processor-e�cient poly-log time solution for the polyno-

mial greatest common divisor problem that is currently known. For simplicity, we formulate

the following theorem for polynomials over a �eld and for the computation taking place on

an algebraic PRAM, which also saves (trivially) the log(n) factor in the size.

Theorem 3. Let f; g 2 K[x] have degree n � m, respectively. Then one can compute the

greatest common divisor of f and g in time O(log(n)

2

) on an algebraic PRAM with n

!+1

processors. �
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In x5 we give further applications of theorem 2. It has also remarkable implications

to the sequential complexity of the subresultant chain problem. Consider the problem of

computing all S

d

i

(f; g). The optimal sequential solutions requires O(n

2

) arithmetic steps

including exact divisions in D. By Strassen's (1973) elimination of divisions one can get

all S

d

i

(f; g) in O(n

2

M(n)) additions, subtractions, and multiplications in D. The solution

of theorem 2 only needs to divide by the leading coe�cient of f . Hence, for monic f and

classical polynomial and matrix arithmetic (M(n) = n

2

, ! = 3), our parallel solution misses

in size the best known sequential method by only a log(n) factor. Furthermore, one can

realize our approach sequentially also in O(n

2

M(n)) by observing that a vR

k

row vector v

times matrix R

k

product can be can be computed by a polynomial product-sum.

5. Applications

Theorem 2 computes more information than the GCD of the input polynomials alone. There

are several applications of this \extended Euclidean remainder sequence," and we shall give

two of them. The �rst makes use of all remainders computed.

Theorem 4. Let f(x) 2 Q [x] be a squarefree polynomial with rational coe�cients, and let

a < b be two rational numbers. Then one can compute the number of real roots of f in

the interval f� j a < � � bg in time O(log(n)

2

) on an algebraic PRAM over Q with n

!+1

processors and the additional comparison operation \greater than".

Sketch of Proof. The argument is by classical Sturm sequences (see (Jacobson 1974, x5.3)).

Let f

0

:= f , f

1

:= f

0

, and consider the polynomial remainder sequence

f

i�2

(x) = q

i

(x)f

i�1

(x)�

�

i

�

i

f

i

(x); 2 � i � k + 1; f

k+1

= 0;

�

i

�

i

> 0: (7)

Then one counts the number of sign variations V [[f ]](a) and V [[f ]](b) in the sequences

f

1

(a); f

2

(a); : : : ; f

k

(a) and f

1

(b); f

2

(b); : : : ; f

k

(b);

respectively. The number of real zeros in the given interval is

V [[f ]](a) � V [[f ]](b):

The crucial observation is that by (2) we can from the subresultants set up a Sturm sequence

(7), that is we can choose the correct sign of the leading coe�cient in each of the f

i

. �

Our second application comes from coding theory, but it has direct relevance to algebraic

problems such as sparse multivariate polynomial interpolation (Ben-Or and Tiwari 1988).

Consider an in�nite sequence a

0

; a

1

; a

2

; : : : of elements in a �eld K, a

0

6= 0. Assume the

elements are generated by a linear recurrence, that is there exists a polynomial �(�) =

�

n

� c

n�1

�

n�1

� � � � � c

0

2 K[�] such that

a

i

= c

n�1

a

i�1

+ � � �+ c

0

a

i�n

for all i � n:

The Berlekamp-Massey problem can now be stated as the problem to �nd a minimal degree

linear recurrence that generates the sequence. It is not di�cult to prove that such a minimal

recurrence is unique, and that it is determined by only the �rst 2n elements in the sequence.

We have the following processor-e�cient parallel solution:

7



Theorem 5. Given a

0

; : : : ; a

2n�1

2 K one can compute the minimal linear generating

recurrence in time O(log(n)

2

) on an algebraic PRAM over K with n

!+1

processors.

Sketch of Proof. Consider the Euclidean scheme

U(x) x

2n

|{z}

f

0

(x)

+�(x) (a

0

x

2n�1

+ � � �+ a

2n�1

)

| {z }

f

1

(x)

= 
(x)

|{z}

f

i

(x)

:

If 
(x) corresponds to the �rst remainder of degree no more than n, it is easy to see that the

normalized multipier polynomial �(x) is the minimal generating polynomial of the sequence.

�

Theorem 5 essentially shows that the processor complexity of the Berlekamp-Massey

problem is bounded by that of a determinant computation. We like to point out that|in

a certain sense|the reverse can also be establish. From lemma 1 and the approach by

Wiedemann (1986) we can deduce the following reduction:

Theorem 6. Given a poly-log time algebraic PRAM over an in�nite �eld K with n

!

proces-

sors that can compute the minimal recurrence polynomial of a sequence of 2n elements, then

one can construct a poly-log time randomized algebraic PRAM over K with n

!

processors

that can compute in a Las Vegas fashion the determinant of an n-dimensional matrix over

K. �

It should be noted that both the premise and the consequence statements in this theorem

are at this time open problems. Nonetheless, it is the �rst-known parallel reduction from

solving linear systems to computing polynomial GCDs.
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