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What is a sparse matrix?

e matrices with “few” non-zero entries
o a band matrix from a finite element method
o a matrix over GF(2) from integer factoring by the NFS:
52250 x 50001 with 1095532 entries # 0 (= 21 /row)
e matrices with special structure

o the Sylvester matrix corresponding to a polynomial resultant

An, ... ai agp O \




e a “black box” matrix
an efficient program with the specifications

y € K? AxyeK"?

A E KTLXTL
K an arbitrary field

e.g., for the Sylvester matrix R, R X y costs
O(nlog(n)loglog(n))

arithmetic operations using fast polynomial multiplication



Symbolic objects given by black box representation are known for
many problems:

e symbolic determinants using Gaussian elimination

e the polynomial remainder sequence of fo(x) and fi(x) using
continued fraction approximations

{¢i(®)}i>2 such that  fi(z) = fi—2(z) — q¢i(2) fi-1(2)

o A7 = P7lU-1L~! the L UP factorization of A € K»*x",

e streams for infinite objects, such as a program for the :-th order
coefficient of a power series



Linear system solution with a black box matrix

Given a black box

y € K? AxyeK"?

A € K®*™ non-singular
K an arbitrary field

compute A™1b “efficiently.”

D. WIEDEMANN (1986) constructs a Las Vegas randomized algorithm
that computes A~1b in at most

3n “A X y steps”

and
O(n?) additional arithmetic operations in K.

The algorithm needs O(n) space.



The KRYLOV subspace

Consider the minimum linear dependency of the sequence of vectors

{A"b}i>0,

I+ fP A+ (DA% + (P A4+ (DA =0, 1P 20,

FOO) = £ 4 FON+ -+ O3 € KD

As a consequence of the CAYLEY/HAMILTON Theorem,

FO(N)  divides Det(A — A), thus k < n.

Hence: If féb) = 0, then Det(A) = 0;

1
otherwise A7 = 2 — _W (fl(b)b + fz(b)Ab +--- 4+ f,ib)Ak_lb>.



Idea for finding f(®)(\) given A and b

Let u € K™ and consider the sequence of field elements
ao = uth, a; = uT Ab, as = uT A%b, a3 = uT A%, ...
Since uT A7 f(®)(A)b = 0, we have
. b b b
Viz OIfé )&0+j + f1( )&1+j + o+ f;i )&kﬂ =0
that is {a; };=0,1,... satisfies a linear recurrence.

By the BERLEKAMP/MASSEY (1969) or the extended Euclidean algo-
rithm we can compute in O(nl) steps a minimal recurrence polynomial

f(bvu)()\) — fébvu) _|_f1(b7u))\_|_ f(b u))\l 1 )\l

that generates {a;}i—o01,...

. (b,u b,u) b,u
Vi>0a4; = fl 1)al 1+ -I—fl( 5 Al—2+4j5 T -I—f( )a0+j.

Important fact: For “random” w with high probability
FOI) = FON).



Making leading principal sub-matrices non-singular
a) our method using Toeplitz multipliers

Let A € KP™™,
1 tg t3 RPN tn 1
1 tg tn—l\ l2 1 O \

K O 1 K ln ln—l ce l2 1 )
If t;,1; € S C K are randomly and uniformly selected, the probability

25
card(S)’

Prob(Det(Avlms,lms) #0)>1-— for s < rank(A).

s’th leading principal minor

After an idea by BORODIN, VON ZUR GATHEN, HOPCROFT (1982).



b) WIEDEMANN’s method using BENES networks

The generic row/column exchange matrix

E(t) = G (1)> <é i) <—11—2t (1)>
_<1—t—2t2 y ><r<é (1)> for t = 0

T\ =3t —2t2 1+t —
* <(1) 01> fort = —1
\

2log,(n)—1 2logs(n)—1

A= H Ei(tin,...,tinpm) A H Ej(lj1, -5 ljns2)
i=1 J=1

Use randomized network exchanges

J/

Y \ >

v W
Note that V and W are black box matrices with

V xy and W x y costing O(nlog(n)) field operations.



Computing the rank (without binary search)

Suppose perturbed A has rank < n; then for random d;,
the minimum polynomial of

d

- ds 0
0 |

dp,
has with high probability degree = rank(A) + 1

Also, with high probability, for random vectors u and v,

£ ()\) = minimum polynomial



Picking a random solution of a singular system

Let A € K™*™ be of rank r with the leading principal r x r submatrix
non-singular;
suppose Ax = b is solvable; then for

y/
~1 0 ~
Al . } = b+ Av, v random in K",
: n—r
0
N——
Y

y — v uniformly samples the solution manifold of Az =b.



Our current implementation efforts
AUSIN LOBO has implemented in C

o the general case using BENES networks for K = GF(2"") on
Sun4 /Sparc2’s

o a special method for finding a non-zero solution of homogenous
problems

Comparison with
o LAMAccHIA and ODLYZKO’S conjugate gradient method

o COPPERSMITH’S blocked Wiedemann method



ODLYZKO’S example over GF(2)

Row nr. Columns with non-zero entries
1 1211107 118 158 240 305 761 888 6842 12779 26995 44350 47385
2 12111214 20 22 115 247 249 657 1303 5844 7979 20425 24113
26984

3499 123574253 128 173 202 349 371 406 619 4410 6351 30534 50001

52250 10 13 50 178 480 678 843 1153 3557 3619 8042 8754 14355
16309 25417 28976 29051 33269 35446 37117

We found one non-zero linear dependence in 113.5 hours on a Sun4,
namely the rows

1679121416 1719 20 21 22 24 ... 49995 49996 49997 49999 50000

(23587 rows are chosen).



Open problems

Compute the characteristic polynomial
— multi-polynomial resultant computation

Reduce cardinality of field in probability estimates
Compute entire right null space

Numerical error analysis
— general sparse linear system solver

Implement in distribute fashion
— COPPERSMITH’S blocked Wiedemann method
on our DSC system



