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1 Introduction

Douglas Wiedemann's (1986) algorithm for computing the N -dimensional solu-

tion vector of a system of N linear equations over a �nite �eld K is e�cient

for sparse unstructured inputs because its running time is bounded by 3N mul-

tiplications of the coe�cient matrix B by vectors and O(N

2

logN ) additional

arithmetic operations in the coe�cient �eld. It only needs O(N ) additional stor-

age for �eld elements. Wiedemann's algorithm can be generalized to arbitrary

�elds, p-adic lifting, and to the problem of computing the rank of a sparse matrix

(Kaltofen and Saunders 1991). The method is randomized and computes �rst

the sequence of �eld elements

a

(i)

= u

tr

B

i

v 2 K for 0 � i � 2N � 1;

where u and possibly v are vectors with random entries fromK. The key property

is that this sequence is generated by a linear recursion that with high probability

corresponds to the minimum polynomial of B.

There are several implementations of Wiedemann's algorithm. We have

observed that for large systems such as the ones arising in the sieve-based integer

factoring algorithms (A. K. Lenstra et al. 1990), where N can be as large as

100,000 and B can have as many as 5 million non-zero entries, the running

time is dominated by the 3N multiplications of B by vectors. In order to speed

this bottleneck by use of parallelism, Don Coppersmith (1991) has proposed to

use simultaneously m random vectors for u and n random vectors for v. The

sequence now is a sequence of m� n matrices

a

(i)

= x

tr

B

i

y 2 K

m�n

where x

tr

2 K

m�N

and y 2 K

N�n

:

Clearly, the individual entries in a

(i)

can be computed independently and in

parallel. Coppersmith then has cleverly generalized the Berlekamp/Massey al-

gorithm needed to compute a linear recurrence that generates this sequence and
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observed experimentally that over the Galois �eld with 2 elements K = F

2

that

linear recurrence is determined by the �rst

N

m

+

N

n

+ O(1)

matrices a

(i)

. Thus the algorithm, when executed in a parallel/distributed set-

ting performs much faster.

Unfortunately, the blocking of the projections introduces substantial di�-

culties in the analysis of the method. Aside from the experimental evidence,

Coppersmith gives a heuristic mathematical argument on the expected running

time of the algorithm. It is these di�culties that this paper further clari�es. We

can prove that a certain variant of the block algorithm with high probability

runs as conjectured provided that the �nite �eld K is of su�cient cardinality.

Our results also impact the sequential complexity of sparse linear system

solving. Suppose, e.g., that B is non-singular, and that � > 0. Using blocking,

one can �nd a solution vector x = B

�1

b, where b 2 K

N

, by

(1 + �)N +O(1) multiplications of B times vectors,

and O(N

2

logN loglogN ) arithmetic operations in K, needing O(N ) additional

storage for �eld elements. The algorithm chooses O(N ) random �eld elements

and is successful with probability 1 � (N + 2)

2

=card(K). Here the constants

implied by the big-O notation grow with 1=�.

Our analysis is based on the observation that generically, i.e., when the

projection blocks x and y are symbolic, the block method can be specialized

to the original Wiedemann algorithm. From that specialization one then can

prove that certain necessary rank conditions must hold generically. By the com-

monly used Zippel/Schwarz lemma those rank conditions will thus hold with

high probability for random blocks. A further problem is the generalization of

the Berlekamp/Massey algorithm to sequences of matrices. Instead, we use the

equivalent problem of solving a block Toeplitz homogeneous linear system, which

we can accomplish e�ciently by the standard Wiedemann method.

Notation: We write K

N

for the set of column vectors over K, and 0

N

for

the N -dimensional zero vector; 0

N�M

is the N �M zero matrix. Vector and

matrix transposition is indicated by superscript

tr

. We indicate a block matrix

whose entries are matrices or vectors by vertical and horizontal strokes, such

as

�

a a

00

a

0

a

000

�

: Note that lower case symbols, such as x and y, may also denote

matrices.

2 Linearly generated sequences

We now discuss some basic facts about linearly generated sequences of elements

in a vector space V over the �eld K. The sequence

fa

i

g

1

i=0

; where a

i

2 V;



is linearly generated over K if there exist c

0

; c

1

; : : : ; c

N

2 K, N � 0, c

L

6= 0 for

some L with 0 � L � N , such that

8j � 0: c

0

a

j

+ � � �+ c

N

a

j+N

= 0:

The polynomial c

0

+ c

1

� + � � � + c

N

�

N

is called a generating polynomial for

fa

i

g

1

i=0

. The set of all generating polynomials for fa

i

g

1

i=0

together with the zero

polynomial forms an ideal in K[�]. The unique polynomial generating that ideal,

normalized to have leading coe�cient 1, is called the minimum polynomial of a

linearly generated sequence fa

i

g

1

i=0

. Every generating polynomial is a multiple

of the minimum polynomial.

LetW be also a vector space over K, and let L:V�!W be a linear map from

V to W. Then the sequence fL(a

i

)g

1

i=0

is also linearly generated by a minimum

polynomial that divides the minimum generating polynomial of fa

i

g

1

i=0

. Let

B 2 K

N�N

be a square matrix over a �eld. The sequence of N � N matrices

fB

i

g

1

i=0

is linearly generated, and its minimum polynomial is the minimum

polynomial ofB, which will be denoted by f

B

. For any column vector b 2 K

N

the

sequence fB

i

bg

1

i=0

, where B

i

b 2 K

N

, is also linearly generated by f

B

. However,

its minimum polynomial, denoted by f

B;b

, can be a proper divisor of f

B

. For

any row vector u

tr

2 K

1�N

the sequence fu

tr

B

i

bg

1

i=0

, where u

tr

B

i

b 2 K, is

linearly generated as well, and its minimum polynomial, denoted by f

B;b

u

, is

again a divisor of f

B;b

. Wiedemann's method is based on the fact that for

random vectors u and b with high probability f

B;b

u

= f

B

(c.f. Proposition 1 in

x4).

The minimum generator for a sequence fa

i

g

1

i=0

of �eld elements a

i

2 K

can be computed by the Berlekamp/Massey algorithm (Massey 1969). This

algorithm will determine the minimum polynomial f

(min)

of such a sequence

from the �rst 2M elements, where M = deg(f

(min)

). If more elements are

given, the computed minimum polynomial cannot change. Therefore, we have

the following lemma.

Lemma 1. Suppose fa

i

g

1

i=0

, where a

i

2 K, is linearly generated by the min-

imum polynomial f

(min)

. Let M = deg(f

(min)

) and let M

0

� M . Suppose a

polynomial g with deg(g) �M

0

linearly generates a sequence

fa

0

; a

1

; : : : ; a

2M

0

�1

; a

0

2M

0
; a

0

2M

0

+1

; : : :g

whose �rst 2M

0

elements agree with fa

i

g

1

i=0

. Then a

0

i

= a

i

for all i � 2M

0

and

g is a polynomial multiple of f

(min)

.

3 Coppersmith's block Wiedemann algorithm

In order to prepare for later discussion, we �rst give a particular variant ofWiede-

mann's (1986, xIII, �rst paragraph) coordinate recurrence method for solving a

homogeneous linear system. This variant already accounts for some changes

necessitated by the later block version. Let B 2 K

N�N

be a singular matrix,

where K is a �nite �eld; we seek a non-zero vector w 2 K

N

such that Bw = 0.



Step W1: Pick random vectors u

tr

2 K

N

and v 2 K

N

. For any integers

M

0

�M � N , compute

b = Bv; a

(i)

= u

tr

B

i

b; 0 � i � M +M

0

� 1:

(The letters u and b now agree with the ones in Wiedemann's paper.) This

requires at least 2M + 1 multiplications of B by vectors.

StepW2: Compute a non-zero solution to the linear homogeneousM

0

�(M+1)

Toeplitz system

2

6

6

4

a

(M)

: : : a

(1)

a

(0)

a

(M+1)

a

(M)

a

(2)

a

(1)

.

.

.

.

.

.

.

.

.

a

(M+M

0

�1)

: : : a

(M

0

�1)

3

7

7

5

2

6

6

4

c

(M)

c

(M�1)

.

.

.

c

(0)

3

7

7

5

= 0

M

0

;

De�ne the generating polynomial

f(�) = c

(L)

�

L

+ c

(L+1)

�

L+1

+ � � �+ c

(M)

�

(M)

; c

(`)

= 0 for 0 � ` < L, c

(L)

6= 0.

Such a polynomial can be determined, e.g., by the Berlekamp/Massey algorithm,

which then requires, for M

0

= M = N , O(N

2

) arithmetic operations in K.

Here we introduce unnecessary generality for the later analysis of the block

Wiedemann method. Note that

u

tr

B

j

f(B)b = 0 for all 0 � j � M � 1,

which implies that f(�) is a polynomial multiple of f

B;b

u

(�). With probability

no less than 1 � N=card(K), f(�) is a polynomial multiple of the polynomial

f

B;b

(�), i.e.,

c

(L)

B

L

b+ c

(L+1)

B

L+1

b+ � � �+ c

(M)

B

M

b = 0: (1)

Step W3: Compute

bw = c

(L)

v + c

(L+1)

Bv + � � �+ c

(M)

B

M�L

v:

This requires at most M � L additional multiplications of B times a vector.

One may argue as follows that bw 6= 0

N

with probability at least 1� 1=card(K)

(Coppersmith 1992): for v

0

= v +w

0

, where w

0

2 kernel(B), the vector b = Bv

0

and hence the sequence a

(i)

does not change. However,

bw

0

= c

(L)

v

0

+ c

(L+1)

Bv

0

+ � � �+ c

(M)

B

M�L

v

0

= bw + c

(L)

w

0

:

Therefore in the set of vectors v+kernel(B), at most one vector can produce bw

0

=

0. Note that the solution c

(0)

; : : : ; c

(M)

is computed without any information on

w

0

.



Suppose now that bw 6= 0

N

. Finally, determine the �rst integer i such that

B

i

bw = 0

N

and return w = B

i�1

bw. By (1), this should happen, with high

probability, for an integer i � L + 1. At most L + 1 more multiplications of B

by a vector are required.

Let m;n < N . Coppersmith's (1991) block version essentially uses

x

tr

2 K

m�N

in place of u

tr

;

z 2 K

N�n

in place of v; and

y = Bz 2 K

N�n

in place of b = Bv:

(The letters B, x, y, and z, agree with the ones in Coppersmith's paper.) Thus

the sequence is one of the m� n matrices

a

(i)

= x

tr

B

i

y 2 K

m�n

; 0 � i:

(Coppersmith further transposes these matrices.) The main point is that a non-

trivial linear dependence of the type (1) can be found from roughly N=m+N=n

sequence elements a

(i)

. A brief description of a variant of the block Wiedemann

algorithm follows:

Step C1: Pick random vectors x

1

; : : : ; x

m

, z

1

; : : : ; z

n

2 K

N

. Let

x

tr

=

2

6

6

4

x

tr

1

.

.

.

x

tr

m

3

7

7

5

; y = B � [ z

1

: : : z

n

] :

Compute

a

(i)

= x

tr

B

i

y; for all 0 � i <

N

m

+

N

n

+

2n

m

+ 1:

This requires less than

�

1 +

n

m

�

N +

2n

2

m

+ 2n (2)

multiplications of B times a vector. However, for every y

�

, the �

th

columns of

the sequence matrices a

(i)

, namely x

tr

B

i

y

�

, can be computed simultaneously,

yielding a coarse-grain parallelization. Alternately, one may for each i perform

the products B � B

i�1

y

�

in parallel, as Coppersmith does, which is �ner grain

and requires synchronization for each i. Note that the products x

tr

� (B

i

y

�

)

additionally require for all � some

O( (m+ n)N

2

)

arithmetic operations in K, if done sequentially.



Step C2: Let D = dN=ne, S = n(D + 1), which is bounded as N + n � S <

N + 2n, and let E = dS=me, R = mE, which are bounded as S � R and

E < N=m+ 2n=m+ 1. Compute a non-zero solution to the linear homogeneous

R� S linear system (of block Toeplitz structure)

2

6

6

6

6

6

4

a

(D)

: : : a

(1)

a

(0)

a

(D+1)

a

(D)

a

(2)

a

(1)

.

.

.

.

.

.

.

.

.

a

(D+E�1)

: : : a

(E�1)

3

7

7

7

7

7

5

2

6

6

6

6

6

4

c

(D)

c

(D�1)

.

.

.

c

(0)

3

7

7

7

7

7

5

= 0

R

; c

(i)

=

2

6

4

c

(i)

1

.

.

.

c

(i)

n

3

7

5

2 K

n

:

(3)

Note that

D +E <

N

n

+ 1 +

N

m

+

2n

m

+ 1;

which bounds the length of the sequence a

(i)

. De�ne the generating polynomial

with (right-hand-side) vector coe�cients

f(�) = �

L

yc

(L)

+�

L+1

yc

(L+1)

+� � �+�

D

yc

(D)

; c

(`)

= 0

n

for 0 � ` < L, c

(L)

6= 0

n

.

Coppersmith in his paper computes such a non-zero vector polynomial by his

generalization of the Berlekamp/Massey algorithm to polynomials with matrix

coe�cients. In any case, we need to have

x

tr

B

j

f(B) = 0

m

for all 0 � j � E � 1.

As we will argue later, with high probability the projections by x

tr

do not intro-

duce any additional linear dependence, so that

f(B) = B

L

yc

(L)

+B

L+1

yc

(L+1)

+ � � �+B

D

yc

(D)

= 0

N

: (4)

Step C3: Compute

bw = zc

(L)

+Bzc

(L+1)

+ � � �+ B

D�L

zc

(D)

:

This requires at most D � L additional multiplications of B times a vector

(using a Horner evaluation scheme). One may argue as above that bw 6= 0

N

with

probability at least 1� 1=card(K) (see also proof of Theorem 1 in x4). Suppose

now that bw 6= 0

N

. Finally, determine the �rst integer i such that B

i

bw = 0

N

and return w = B

i�1

bw. By (4), this should happen, with high probability, for

an integer i � L + 1. At most L + 1 more multiplications of B by a vector are

required. Altogether, this step performs

D + 1 <

N

n

+ 2 (5)

multiplications of B by a vector, and additionally O(N

2

) arithmetic operations

in K are required to compute zc

(i)

for L � i � D and add the D�L+1 vectors

in the Horner scheme.



Coppersmith's paper raises two distinct problems:

1. The e�cient computation of a non-trivial solution to (3). He proposes a

clever generalization of the Berlekamp/Massey algorithm to linearly gener-

ated sequences of matrices. Although one can de�ne the notion of a mini-

mum generator, a proof that the algorithm produces it has so far eluded us.

However, we may proceed directly by computing a non-trivial solution of

our system by either a method for Toeplitz-like matrices or by the Wiede-

mann algorithm itself and by using a fast polynomial (over K) multiplication

algorithm (see x5 and x6).

2. The probabilistic analysis, in particular the fact that with high probability

the found polynomial f(�) satis�es (4). We will show this to be true at least

in the case that the minimumpolynomial f

B

of the coe�cient matrixB has

degree deg(f

B

) = rank(B)+ 1. Fortunately, by certain randomizations this

condition can be enforced for any matrix B (Kaltofen and Saunders 1991;

see also the proof of Theorem 2 in x5). Let us consider, e.g., solving a non-

singular system x = A

�1

b. We then can randomize

e

A = AV G where V is

random unit triangular Toeplitz matrix and G is random diagonal matrix,

and execute the block Wiedemann method on the (N +1)� (N +1) matrix

B =

"

e

A b

0

1�N

0

#

:

Note that

e

A has with high probability n distinct eigenvalues.

4 Probabilistic analysis

We now justify Coppersmith's block version of the Wiedemann We will prove

the following theorem.

Theorem 1. Let K be a �nite �eld, and let B 2 K

N�N

be a singular matrix

whose minimal polynomial f

B

has degree

deg(f

B

) = rank(B) + 1:

Suppose the vector blocks x

tr

2 K

m�N

and z 2 K

N�n

are chosen at random.

Suppose bw 2 K

N

is computed by steps (C1){(C3) of x3. Then with probability

no less than

1�

2 rank(B) + 1

card(K)

� 1�

2N � 1

card(K)

we have

bw 6= 0

N

; B

L+1

bw = 0

N

for some integer L � dN=ne.



The key property for the algorithm to succeed is equation (4). We will

prove (4) �rst if the entries in x and z are indeterminates �

�;�

and �

�;�

, where

1 � � � m, 1 � � � n, and 1 � � � N . In this case, the algorithm is performed

over the multivariate rational function �eld over K,

L = K(�

1;1

; : : : ; �

N;m

; �

1;1

; : : : ; �

N;n

):

In order to distinguish when the algorithm is performed over K and when over

L, we will write X and Z for the undetermined x and z and

Y = BZ 2 L

N�n

; A

(i)

= X

tr

B

i

Y 2 L

m�n

:

The equation (4) is equivalent to the solution vector c of (3) satisfying the

following block Krylov system:

[B

D+1

z : : : B

2

z Bz ]

2

6

6

6

6

6

4

c

(D)

c

(D�1)

.

.

.

c

(0)

3

7

7

7

7

7

5

= 0: (6)

Clearly, any solution of (6) also solves (3). We �rst state that generically, i.e.,

over L, no other solutions to (3) exists. We will prove this fact later using

Proposition 1 stated below.

Proposition 2. Suppose that the minimumpolynomial f

B

of B has the degree

deg(f

B

) = minfN; rank(B) + 1g:

Then for D = dN=ne and E = dn(D + 1)=me we have the rank equalities

rank(

2

6

6

6

6

6

4

A

(D)

: : : A

(1)

A

(0)

A

(D+1)

A

(D)

A

(2)

A

(1)

.

.

.

.

.

.

.

.

.

A

(D+E�1)

: : : A

(E�1)

3

7

7

7

7

7

5

)

= rank([B

D

Y B

D�1

Y : : : BY Y ])

= rank(B) =

�

N if B is non-singular,

deg(f

B

)� 1 if B is singular.

The proof of this proposition is based on its validity for m = n = 1, which

we shall formulate as our �rst proposition. We will denote our generic sequence

by

�

(i)

= A

(i)

1;1

= X

tr

1

B

i+1

Z

1

2 L; for i � 0:



Proposition 1. Let M

0

�M � N . De�ne

T =

2

6

6

4

�

(M)

: : : �

(1)

�

(0)

�

(M+1)

�

(M)

�

(2)

�

(1)

.

.

.

.

.

.

.

.

.

�

(M+M

0

�1)

: : : �

(M

0

�1)

3

7

7

5

2 L

M

0

�(M+1)

and

K = [B

M

Z

1

: : : B

2

Z

1

BZ

1

] 2 L

N�M

:

Then

rank(T ) = rank(K) =

�

deg(f

B

) if B is non-singular,

deg(f

B

)� 1 if B is singular.

Proof. The argument can be deduced from the probabilistic analysis of Wiede-

mann (1986, xV and xVI). Since f

B

(�) linearly generates the sequence

fB

i

Z

1

g

1

i=0

; where B

i

Z

1

2 L

N

;

we must have the rank inequality

rank([B

M

Z

1

: : : BZ

1

Z

1

]) � deg(f

B

)

for any vector Z

1

and any integer M � N . Moreover, there exists a specializa-

tion of Z

1

to a vector z

1

2 K

N

such f

B

(�) is the minimum linear generating

polynomial of the sequence

fB

i

z

1

g

1

i=0

; where B

i

z

1

2 K

N

;

hence

rank([B

N

z

1

: : : Bz

1

z

1

]) = deg(f

B

);

and therefore generically the rank cannot be lower. The existence of such a

vector z

1

follows, e.g., by considering the rational canonical form (Frobenius

form) of B. Certainly, for B in companion form

B =

2

6

6

6

6

4

0 1 0 : : : 0

0 0 1 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

0 0 : : : 1

b

N;1

b

N;2

: : : b

N;N

3

7

7

7

7

5

we may choose z

1

=

2

6

6

6

6

4

0

0

.

.

.

0

1

3

7

7

7

7

5

;

and this argument extends to the block diagonal shape with companion blocks

of the rational canonical form. If B is non-singular, the minimum generating

polynomial of

fB

i

Y

1

g

1

i=0

= fB

i+1

Z

1

g

1

i=0



does not change, while for singular B the minimum generating polynomial is

f

B

(�)=�, thus the rank drops by 1. We de�ne this polynomial as

f

B

�

(�) =

�

f

B

(�) if B is non-singular,

f

B

(�)=� if B is singular.

So far, we have shown that rank(K) = deg(f

B

�

).

Second, we need to prove that rank(T ) = rank(K). The proof of this is

very similar. It follows from Wiedemann (1986, xVI) that there exists a vector

x

1

2 K

N

such that the sequence

fx

tr

1

B

i+1

z

1

g

1

i=0

has the same minimum generator as

fB

i+1

z

1

g

1

i=0

;

which is f

B

�

(�). Furthermore, f

B

�

(�) is already a generating polynomial of the

generic sequence

f�

(i)

g

1

i=0

; (7)

and must therefore also be minimal for that sequence, because a specialization

is.

We �nally argue that the rank of T is the degree of the minimum generator

of (7), namely that rank(T ) = deg(f

B

�

). Consider any non-zero solution in L

M+1

of

T 
 =

2

6

6

4

�

(M)

: : : �

(1)

�

(0)

�

(M+1)

�

(M)

�

(2)

�

(1)

.

.

.

.

.

.

.

.

.

�

(M+M

0

�1)

: : : �

(M

0

�1)

3

7

7

5

2

6

6

4




(M)




(M�1)

.

.

.




(0)

3

7

7

5

= 0

M

0

: (8)

Then for all j = 0; : : : ;M � 1 � M

0

� 1

�

(M+j)




(M)

+ � � �+ �

(j)




(0)

= 0;

hence the polynomial

'(�) = 


(M)

�

M

+ � � �+ 


(1)

�+ 


(0)

2 L[�]

generates the entire sequence (7) (Lemma 1 in x2). This implies that f

B

�

divides

', so ' is in the linear span over L of

f

B

�

(�); �f

B

�

(�); �

2

f

B

�

(�); : : : ; �

�

f

B

�

(�); where � = M � deg(f

B

�

):

Also, any coe�cient vector of a polynomial in that linear span generates the

sequence, thus solves (8). Therefore the rank of T ,

M + 1� the dimension of kernel(T ),

is equal to deg(f

B

�

). �



Proof of Proposition 2. Consider the specialization

Z

0

= [Z

1

B

D+1

Z

1

| {z }

Z

0

2

B

2(D+1)

Z

1

| {z }

Z

0

3

: : : B

(n�1)(D+1)

Z

1

| {z }

Z

0

n

] :

Then the set of columns in

[B

D

Z

0

B

D�1

Z

0

: : : Z

0

]

is equal to

fZ

1

; BZ

1

; B

2

Z

1

; : : : ; B

n(D+1)�1

Z

1

g:

Since n(D + 1) > N , this set has rank equal deg(f

B

), as is argued in the proof

of Propostition 1. Therefore the \more generic" matrix

[B

D

Z B

D�1

Z : : : Z ]

also has rank greater equal deg(f

B

). Now de�ne

K

�

= [B

D

Y B

D�1

Y : : : Y ] = B � [B

D

Z B

D�1

Z : : : Z ] ;

which thus satis�es rank(K

�

) � rank(B). If B is non-singular, the matrix K

�

actually has full rank N , since by assumption deg(f

B

) = N . From Proposition 1

we further get for a singular B that

deg(f

B

)� 1 = rank([B

D+1

Z

0

B

D

Z

0

: : : BZ

0

]) � rank(K

�

);

hence

deg(f

B

)� 1 � rank(K

�

) � rank(B);

which implies by the assumption of the theorem that rank(K

�

) = rank(B).

Furthermore, ifB is singular and deg(f

B

) = N it follows that rank(B) = N�1 =

deg(f

B

)� 1.

We will use a similar specialization for the columns of X to establish that

the rank of

T

�

=

2

6

6

6

6

6

4

A

(D)

: : : A

(1)

A

(0)

A

(D+1)

A

(D)

A

(2)

A

(1)

.

.

.

.

.

.

.

.

.

A

(D+E�1)

: : : A

(E�1)

3

7

7

7

7

7

5

(9)

agrees with the rank of T 2 L

M

0

�(M+1)

of Proposition 1 with the dimensions

M = n(D + 1)� 1 = S � 1 � N



and

M

0

= mE = R > S � 1:

Consider the specialization Z

0

given above, and

X

0

= [X

1

B

E

X

1

| {z }

X

0

2

B

2E

X

1

| {z }

X

0

3

: : : B

(m�1)E

X

1

| {z }

X

0

n

] :

Then with

A

0

(i)

= X

0

tr

B

i+1

Z

0

there exist permutation matrices P 2 f0; 1g

R�R

and Q 2 f0; 1g

S�S

such that

P T Q =

2

6

6

6

6

6

6

4

A

0

(D)

: : : A

0

(1)

A

0

(0)

A

0

(D+1)

A

0

(D)

A

0

(2)

A

0

(1)

.

.

.

.

.

.

.

.

.

A

0

(D+E�1)

: : : A

0

(E�1)

3

7

7

7

7

7

7

5

:

The row and column permutations move the entry

A

0 (D+I�J)

i;j

= X

0

i

tr

B

D+I�J

BZ

0

j

= X

tr

1

B

(i�1)E

B

D+1+I�J

B

(j�1)(D+1)

Z

1

in the right hand side block Toeplitz matrix, which is in row mI + i, where

0 � I < E and 1 � i � m, and column nJ + j, where 0 � J < D + 1 and

1 � j � n, to row E(i � 1) + I + 1 and column (D + 1)(n � j) + J + 1 in T ,

namely

T

E(i�1)+I+1;(D+1)(n�j)+J+1

= �

(M + E(i�1)+I+1 � ((D+1)(n�j)+J+1) )

= X

tr

1

B

n(D+1)+E(i�1)+I+(D+1)(j�n)�J

Z

1

:

Therefore, the rank of T

�

is no less than the rank of T with the given dimensions,

which by Proposition 1 and the assumptions is equal to deg(f

B

) = N for non-

singular B, and deg(f

B

)� 1 for singular B. Since the kernel of K

�

is contained

in the kernel of T

�

, the rank cannot be more. �

Proof of Theorem 1. Let

�(�

1;1

; : : : ; �

N;m

; �

1;1

; : : : ; �

N;n

)

be a non-zero maximal minor of T

�

in (9). Then for all matrices x and z with

�(x

1;1

; : : : ; x

N;m

; z

1;1

; : : : ; z

N;n

) 6= 0



any solution to (3) must also solve (6), because the ranks of both coe�cient

matrices will be deg(f

B

) � 1. Hence

Bzc

(0)

+ B

2

zc

(1)

+ � � �+B

D+1

zc

(D)

= B

L+1

bw = 0

N

for 0 � L � D such that c

(L)

6= 0 and c

(`)

= 0 for 0 � ` < L. By a lemma of

Zippel (1979)/Schwartz (1980) the probability of hitting a zero of � is no more

than deg(�)=card(K) � 2 rank(B)=card(K).

It remains to estimate the probability that bw 6= 0. The argument, by

Coppersmith, is as that for step W3. For a matrix y = Bz 2 K

N�n

consider the

equivalence class

fz

0

2 K

N�n

j y = Bz

0

= Bzg (10)

of K

N�n

. Then for each member in that class

bw

0

= z

0

c

(L)

+ Bz

0

c

(L+1)

+ � � �+B

(D�L)

z

0

c

(D)

= zc

(L)

+Bzc

(L+1)

+ � � �+ B

(D�L)

zc

(D)

| {z }

bw

+ (z

0

� z)c

(L)

;

where

z

0

� z = [w

1

w

2

: : : w

n

] with w

�

2 kernel(B) for all 1 � � � n.

Since, given c

(L)

2 K

n

n f0

n

g, the linear span

c

(L)

1

w

1

+ � � �+ c

(L)

n

w

n

uniformly samples kernel(B) for randomly chosen w

�

2 kernel(B), at most a

fraction of 1=card(K) matrices in the set (10) can give � bw as that linear com-

bination and thus lead to bw

0

= 0. Therefore, the probability that bw = 0 is no

more than 1=card(K).

Summing both estimates bounds the probability of failure. �

5 Algorithms and their running times

The block Wiedemann method of x3 is used to solve both non-singular and sin-

gular sparse linear systems, i.e., linear systems with an e�cient way to multiply

the coe�cient matrix by any vector. The method is randomized and can be

executed sequentially or in parallel. Especially in the latter form the method

becomes very e�cient. We now present several algorithms that are based on the

block Wiedemann algorithm of x3. One main point is that we are able to give

both explicit expected running times and estimates on the success probability

of the randomizations. We have the following theorem, which focuses on the se-

quential performance of the blocking. A corollary considering the parallel costs

is given below.



Theorem 2. Let B 2 K

N�N

be a singular matrix and 1 � m;n � N . Then

one can compute a solution vector w 2 K

N

n f0

N

g with Bw = 0

N

in no more

than

��

1 +

n

m

+

1

n

�

N +

2n

2

m

+ 2n+ 2

�

multiplications of B times a vector in K

N

, and an additional

O((m + n)N

2

logN loglogN )

arithmetic operations in K. The algorithm selects no more than (m + n + 5)N

random elements in K and succeeds to produce a solution with probability no

less than

1�

3=2 (N

2

+N )

card(K)

:

The algorithm requires an additional O((m + n)N ) amount of storage for �eld

elements in K.

Proof. Consider the perturbed matrix

e

B = UB V G

where U 2 K

N�N

is a random unit upper triangular Toeplitz matrix, V 2 K

N�N

is a random unit lower triangular Toeplitz matrix, and G 2 K

N�N

is a random

non-singular diagonal matrix. Then with probability of at least

1�

3(N � 1)N=2

card(K)

for the minimum polynomial f

e

B

of

e

B we have

deg(f

e

B

) = rank(

e

B) + 1

(Kaltofen and Saunders 1991, Theorem 2 and Lemma 2). Also, for a vector

b 2 K

N

the product

e

Bb can be computed by one multiplication of B by a vector,

and an additional O(N logN loglogN ) arithmetic operations in K. We remark

that the use of Bene�s networks (Wiedemann 1986, xV) can reduce the latter

complexity by the loglogN factor at the cost of requiring O(N logN ) random

�eld elements.

Now, the matrix

e

B satis�es the assumptions of Theorem 1, and we can �nd

a non-zero solution ew 2 K

N

n f0

N

g to

e

B ew = 0

N

. Thus w = V G ew 6= 0

N

solves

Bw = 0

N

. By (2) and (5) the method multiplies

e

B by a vector no more than

�

1 +

n

m

+

1

n

�

N +

2n

2

m

+ 2n+ 2



many times. The extra work in terms of arithmetic operations in K is O((m +

n)N

2

) plus the work it takes to solve (3). Suppose then that we compute a non-

zero solution to (3) by the standard Wiedemann method, e.g., by the algorithm

described in x3.

The coe�cient matrix

A =

2

6

6

6

6

6

4

a

(D)

: : : a

(1)

a

(0)

a

(D+1)

a

(D)

a

(2)

a

(1)

.

.

.

.

.

.

.

.

.

a

(D+E�1)

: : : a

(E�1)

3

7

7

7

7

7

5

of (3) is not square, which requires some modi�cation. One could, e.g., pre-

multiply A by a random unit upper triangular S � R Toeplitz matrix, which

is a rank preserving operation with high probability. However, by inspection

of the proof of Propostion 2 we see that we may drop the rows in position R,

R�m; : : : ; R� (R�S �1)m without a�ecting the probabilistic rank estimates.

The Wiedemann algorithm requires �3R multiplications of A times a vector

and O(R

2

) arithmetic operations. We are left with the problem of e�ciently

performing the matrix times vector multiplication

A �

2

6

6

4

b

(0)

.

.

.

b

(D)

3

7

7

5

=

2

6

6

4

b

0(0)

.

.

.

b

0(D)

3

7

7

5

; where b

(i)

; b

0(i)

2 K

n

: (11)

Consider the polynomial multiplication

(a

(0)

+ a

(1)

� + � � �+ a

(D+E�1)

�

D+E�1

) � (b

(0)

+ b

(1)

�+ � � �+ b

(D)

�

D

)

= � � �+ b

0(0)

�

D

+ b

0(1)

�

D+1

+ � � �+ b

0(D)

�

D+E�1

+ � � �

with non-commuting coe�cients in the algebras K

m�n

and K

n

. By the results

in (Kaltofen and Cantor 1991) the product can be found in

O(D

0

logD

0

loglogD

0

); where D

0

= D +E;

algebra operations, i.e., additions and subtractions inK

m�n

and K

n

, andO(D

0

�

logD

0

) multiplications of m � n matrices by vectors in K

n

. These are

O((m + n)N logN loglogN)

arithmetic operations in K for computing Ab. Alternately, we could have re-

arranged the rows and columns of A to obtain an m � n block matrix with

(D + 1)� E Toeplitz blocks. �

Theorem 2 can be employed to solve non-singular systems as outlined in

the last paragraph of x3. We shall formulate the result not in terms of the block

sizes m and n, but in terms of the quantity

� =

n

m

+

1

n

:

For suitable constant block sizes � can be made arbitrarily close to 0. Thus we

have the following sequential complexity result.



Corollary 1. Let B 2 K

N�N

be a non-singular matrix and let � > 0 be �xed.

Then one can compute the solution vector w = B

�1

b with b 2 K

N

in no more

than

(1 + �)N + O(1)

multiplications of B times a vector in K

N

, and an additional

O(N

2

logN loglogN )

arithmetic operations in K. The algorithm selects O(N ) random elements in K

and succeeds to produce the solution with probability no less than

1�

N

2

+ 4N + 3

card(K)

:

The algorithm requires an additional O(N ) amount of storage for �eld elements

in K. Note that here all big-O estimates depend on �.

Of course, the main application of blocking is to compute the sequence of

matrices a

(i)

in parallel. In order to make the statement of the next corollary

simpler, we suppose that m = n �

p

N and that we have n (loosely linked)

parallel processors.

Corollary 2. On d

p

N e processors one may compute using O(N

p

N ) random

elements in K a solution to the linear system Bw = b, where B 2 K

N�N

and

b 2 K

N

, in O(

p

N ) (parallel) multiplications of B times vectors, O(N

2

) (par-

allel) arithmetic operations in K, and an additional O(N

2

p

N logN loglogN )

sequential arithmetic operations in K.

Note that we may also solve the arising block-Toeplitz system (3) in paral-

lel, which improves on the sequential operation count O(N

2

p

N logN loglogN )

in the above corollary by a factor of

p

N as follows. When using the adaption of

Wiedemann's method proposed in the proof of Theorem 2, we must �rst paral-

lelize the computation of (11). For this we employ a parallel version of the algo-

rithm by Cantor and Kaltofen (1991), which with n = m �

p

N processors can

compute the matrix times vector product (11) in O(N logN loglogN ) arithmetic

operations in K; this is because the Cantor/Kaltofen algorithm for polynomial

multiplication constructs a parallel circuit that is actually of depth O(logN ).

Second, we must also parallelize the Berlekamp/Massey step in Wiedemann's

algorithm (Step W2 in x3). Again, we can appeal to the parallel implementation

of the extended Euclidean algorithm on a systolic array (Brent and Kung 1983),

which with d

p

N e processors �nds the needed linear recurrence in O(N

p

N )

arithmetic steps (see also Dornstetter 1987). The operations necessary for the

evaluation of the generating polynomial at the matrix (see Step W3 in x3)

are again parallelizable by using the parallel method for computing products

such as (11) discussed before. Altogether, we require with d

p

N e processors

O(N

2

logN loglogN ) (parallel) arithmetic operations inK for the solution of (3).

However, all these substeps utilize a much more �ne grain parallelism than does

the parallel computation of the sequence a

(i)

of Step C1 in x2.



6 Conclusion

Our main contribution in this paper is to give a theoretical basis for the block

generalization of the Wiedemann method. We could prove our algorithm for

su�ciently large �elds and by using certain perturbations of the input matrix.

The algorithm may still be valid without the assumptions on the degree of the

minimumpolynomial. However, Coppersmith also notes that for certain \patho-

logical" cases the straight-forward algorithm might fail to compute a solution.

Also, Coppersmith's application to integer factoring has the smallest coe�cient

�eld K = F

2

. However, in that situation, Propostion 2 could be relaxed. If the

rank of (3) were one or two less than the rank of (6), with probability 1/2 or

1/4 we still would �nd a solution to (6). For very large �nite �elds such a rank

de�ciency would make the problem quite infeasible.

Our algorithms are formulated for �nite �elds only, but it is not di�cult to

extend them to �elds such as the rational numbers and functions by the use of

Chinese remaindering, interpolation, and p-adic lifting (McClellan 1973, Moenck

and Carter 1979).

We have used the standard Wiedemann method for analyzing the complex-

ity of computing a solution to (3). There is a slightly faster way of deriving

a solution, based on the theory of Toeplitz-like matrices, i.e., matrices with

small displacement rank (Kailath et al. 1979). Then it is possible to compute

a solution to (3) in O((m + n)N

2

) arithmetic operations in K, thus saving the

logN loglogN factor for Step C2, using the generalized Levinson-Trench algo-

rithm for inverting a matrix of small displacement rank (the condition that all

possible leading principal minors are non-zero can be enforced by multiplying

with random triangular Toeplitz matrices). Incidentally, Coppersmith's gener-

alized Berlekamp/Massey method has the same asymptotic complexity.

Lobo has implemented several versions of the block Wiedemann algorithm

in the programming language C for K = F

p

and executed it using simultaneously

4 Sun Sparc 2 processors, each rated 28.5MIPS. For p = 32749 he can solve a

20K�20K system with 1.32M non-zero entries in about 60 CPU hours. The

details of this experiment will be published in a forthcoming paper.

Acknowledgement: Thanks to Austin Lobo for discussions on the theory and

implementation of the block Wiedemann method, and to the referee for his

comments.
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