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For given f1, . . . , fm ∈ K[x] that are relatively prime,
where K is a field, Kalkbrener, Sweedler, and Tay-
lor (1993) present degree bounds on the ai needed to
express 1 (and other low degree polynomials) as

∑
aifi.

Their bounds are an improvement on bounds given by
Kakié (1976). This note presents a direct proof of the
following fact.

Theorem: Let f1, . . . , fm be m ≥ 2 polynomials in

K[x] without a common polynomial divisor such that

deg(f1) ≤ deg(fi) for all 2 ≤ i ≤ m. Suppose that ev-

ery subset of T polynomials f1, fi2 , . . . , fiT has a com-

mon polynomial divisor, where 2 ≤ i2 < i3 < · · · <
iT ≤ m. Then there exist polynomials a1, . . . , am ∈
K[x] such that a1f1 + · · · + amf1 = 1 and deg(a1) ≤
max2≤j≤m{deg(fj)} − (T − 1) and deg(ai) ≤ deg(f1)−
(T − 1) for all i ≥ 2.

Note that the above theorem is slightly stronger than
the one presented in Kalkbrener et al., where T is taken
so that no arbitrary subset of {f1, . . . , fm} of cardinality
T is relatively prime. However, the restriction to subsets
containing f1 can also be incorporated in Kalkbrener’s
et al. argument (see the proof of their Theorem 2.5).
My arguments are based on the technique used to

prove the uniqueness of the partial fraction decomposi-
tion of a rational function, whereas Kalkbrener et al. use
isomorphisms on the vectorspaces generated by degree
bounded polynomials and their direct products.

Proof: Without loss of generality one may assume
that for all i ≥ 2 we have

gi = GCD(f1, . . . , fi−1, fi+1, . . . , fm) 6= 1. (1)

Otherwise, pick a relatively prime subset containing f1.
Let G = g2 · · · gm. Therefore

f1 = G · f ′
1, fi = G/gi · f

′
i i ≥ 2.

where GCD(gi, fi) = 1 and GCD(gi, gj) = 1 for i 6= j,
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because the set of all fi is relatively prime. We prove
by induction on m that for a set of polynomials satis-
fying (1) and any polynomial h there exist polynomials
a1, . . . , am such that

a1f1 + · · ·+ amfm = h (2.1)

and

deg(ai) < deg(f1)− (m− 2) for i ≥ 2. (2.2)

Note that deg(gm) ≤ deg(f1)− (m− 2), since the gi are
non-constant. For m = 2, the scheme a′1f1 + a′2f2 = 1
with a′1 and a′2 ∈ K[x] leads to the solution a1 = ha′1 +
q2f2 and a2 = r2 where a′2h = q2f1 + r1 with deg(r1) <
deg(f1). Hence for general m there are polynomials A
and am such that

Agm + amfm = h

where deg(am) < deg(gm). It remains to write

A = a1(f1/gm) + · · ·+ am−1(fm−1/gm)

with deg(ai) < deg(f1/gm)−(m−3) ≤ deg(f1)−(m−2)
for i ≥ 2. Note that the set f1/gm, . . . fm−1/gm satisfies
condition (1) for possibly new non-constant GCDs that
must be divisible by the old gi. This establishes (2.1)
and (2.2). The bound for a1 follows from a1 = (1 −
a2f2 − · · · − amfm)/f1.
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