
1. Statement of Problem

One generic parallel evaluation scheme for algebraic objects, that of evaluating algebraic

computation trees or formulas, is presented by Miller in a preceding chapter of this book.

However, there are basic algebraic functions for which the tree model of computation seems

not su�cient to allow an e�cient|even sequential|decision-free algebraic computation.

The formula model essentially restricts the use of an intermediate result to a single place,

because the parse tree nodes have fan-out one. If an intermediate result participates in the

computation of several further nodes, in the tree model it must be recomputed anew for each

of these nodes. It is a small formal change to allow node values to propagate to more than

one node at a deeper level of the computation. Thus we obtain the algebraic circuit model,

which is equivalent to the straight-line program model. Figure 1 exhibits a small example

of such an algebraic computation. Note that the node v

1

propagates its value into the nodes

v

3

and v

4

. This distinguishes the algebraic circuit from an expression tree (formula), where

each node would be restricted to fan-out 1.

v

1

 x

2

+ x

3

v

2

 x

4

+ x

5

v

3

 x

1

� v

1

v

4

 v

1

� x

4

v

5

 v

3

+ v

4

v

6

 v

5

� v

2

Figure 1: Sample algebraic circuit and corresponding straight-line program.

We shall formally de�ne this model in x1.2. Before discussing the parallelization results

that are known in this context, we present algebraic circuits for several well-known algebraic

objects. Since the size of the circuit corresponds to the length of the program that computes

the object, it is important to keep the size as small as possible. For sake of the discussion

we take the parallel time of an algebraic circuit to be the depth of that circuit, that is, the

longest path in the corresponding directed acyclic graph (DAG).

1.1. Algebraic Circuit Examples

Symmetric Functions: The n elementary symmetric functions �

i

, 1 � i � n in n indeter-

minates x

1

; : : : ; x

n

can be de�ned by the coe�cients of a polynomial of degree n whose roots

are the (negated) indeterminates as follows:

(z + x

1

)(z + x

2

) � � � (z + x

n

) = z

n

+ �

1

(x

1

; : : : ; x

n

)z

n�1

+

�

2

(x

1

; : : : ; x

n

)z

n�2

+ � � � + �

n

(x

1

; : : : ; x

n

):

�

(1)

1

Another way of computing �

i

is as the sum of the products of all combinations of i of the n

indeterminates,

�

i

(x

1

; : : : ; x

n

) =

X

1�j

1

<j

2

<���<j

i

�n

x

j

1

� � � x

j

i

: (2)

One important property is that these functions generate the algebra of symmetric polyno-

mials in x

1

; : : : ; x

n

, where a symmetric polynomial f is one that remains invariant under

permutation of the subscripts of the indeterminates, i.e., f(x

1

; : : : ; x

n

) = f(x

�(1)

; : : : ; x

�(n)

)

for all permutations � on the n subscripts 1; : : : ; n. The task is to compute the �

i

's from

the x

j

's. Clearly, by multiplying out the linear terms in (1) we can determine all �

i

's in

O(n

2

) additions and multiplications. Let us assume here that the values for the x

j

's come

from a ring. The computation will be by an algebraic circuit, and the parallel time will be

O(log(n)

2

) if we perform the polynomial multiplications in a tree-like fashion.

The question arises how to compute the middle �

bn=2c

by an algebraic computation tree

with polynomially (in n) many nodes. Clearly, the formula (2) for i = bn=2c contains

exponentially many terms under the sum, approximately 2

n

=

p

�n=2. Our question is actu-

ally equivalent to the question of computing �

bn=2c

by an algebraic circuit of parallel time

O(log n). This is, in fact, possible by using an evaluation/interpolation approach (see Ex-

ercise 3), but that method leads to a fairly large polynomial-sized formula for �

bn=2c

. In

general, the algebraic circuit model appears superior to the expression tree model. It is hard

to imagine how one would devise a computation tree for �

bn=2c

with O(n log(n)

2

log(log n))

nodes, which is the node count of the asymptotically smallest known algebraic circuit that

computes this function (see (Aho et al. 1974)).

Determinants: The basic invariant for linear system solving is the determinant of an n�n

matrix. Treating the entries as indeterminates x

j;k

, we can de�ne it as a polynomial in these

n

2

variables, namely,

�

n

= Det

�

[x

j;k

]

1�j;k�n

�

=

X

� a permutation on 1; : : : ; n

sign(�)x

1;�(1)

� � �x

n;�(n)

; (3)

where sign(�) is +1 or �1, depending whether � is generated by an even or odd number

of transpositions (i.e., permutations that switch two indices but leave the rest the same),

respectively. Considering this sum of n! terms alone, it is not obvious at all how to con-

struct an algebraic circuit of polynomial size in n that computes this determinant. The

solution hinges on the Gaussian elimination algorithm for solving linear systems. Consider

the matrix A

(0)

of elements a

(0)

j;k

= x

j;k

. If we triangularize this matrix by elementary row

operations, the determinant does not change. From (3) we conclude that the determinant

of the resulting triangular matrix is the product of the elements on the diagonal. Let us

assume for a moment that the elements come from a �eld. We have

for i 1; : : : ; n� 1 do

for j i+ 1; : : : ; n do

for k i+ 1; : : : ; n do

a

(i)

j;k

 a

(i�1)

j;k

�

a

(i�1)

j;i

a

(i�1)

i;k

a

(i�1)

i;i

�

n

 a

(0)

1;1

a

(1)

2;2

� � � a

(n�1)

n;n

(4)

2

where the a

(i)

j;k

denote distinct circuit nodes.

Clearly, the obtained algebraic circuit has O(n

3

) nodes and requires �(n) parallel time.

Since it contains divisions, it does not allow the evaluation of the determinant for any

matrix of �eld elements. At this point, numerical procedures introduce decision statements

that select proper non-zero elements before dividing. In general, the introduction of control

of
ow elements into a model of computation makes it di�cult to parallelize sequential

algorithms in that model. Furthermore, it is desirable to obtain division-free circuits for

polynomial functions. We shall mention in x2.8 a method by Strassen that generically allows

the removal of divisions in such a situation. For the determinant example here we shall now

give a somewhat simpler solution.

First we observe that for the variables in the above program we have

a

(i)

j;k

=

Det(A

(0)

(1; : : : ; i; j; 1; : : : ; i; k))

Det(A

(0)

(1; : : : ; i; 1; : : : ; i))

; (5)

where A

(0)

(j

1

; j

2

; : : : ; k

1

; k

2

; : : :) denotes the submatrix obtained from A

(0)

(the original in-

put) by selecting the rows j

1

; j

2

; : : : and the columns k

1

; k

2

; : : : only. This fact is easy to

prove, see for example Gantmacher (1960, Chapter II). If the entries in the input matrix

come from an integral domain

1

D such as the integers or univariate polynomials over a �eld,

we can simulate the arithmetic in the �eld of quotients by recording the numerator and

denominator of a rational element separately. De�ning the numerators and denominators of

the right-hand side of (5),

Num(a

(i)

j;k

) = Det(A

(0)

(1; : : : ; i; j; 1; : : : ; i; k)); Den(a

(i)

j;k

) = Det(A

(0)

(1; : : : ; i; 1; : : : ; i));

we get

Num(a

(i)

j;k

)

Den(a

(i)

j;k

)

= a

(i)

j;k

=

Num(a

(i�1)

j;k

)Num(a

(i�1)

i;i

) �Num(a

(i�1)

j;i

)Num(a

(i�1)

i;k

)

Den(a

(i�1)

i;i

)Num(a

(i�1)

i;i

)

:

We conclude that Den(a

(i�1)

i;i

) can be divided out from the numerator of the right-hand-side

expression. This observation leads to an algorithm for computing the determinant that uses

subtractions, multiplications, and divisions by known factors. The following assumes that

B

(0)

is initialized to the integral entries of the input matrix, and that b

(�1)

0;0

= 1. Here the

variables b

(i)

j;k

correspond to Num(a

(i)

j;k

).

for i 1; : : : ; n� 1 do

for j i+ 1; : : : ; n do

for k i+ 1; : : : ; n do

b

(i)

j;k

�

b

(i�1)

j;k

b

(i�1)

i;i

� b

(i�1)

j;i

b

(i�1)

i;k

�.

b

(i�2)

i�1;i�1

�

n

 b

(n�1)

n;n

.

1

i.e., a commutative ring D with the property that

8b; p; q 2 D: bp = bq and b 6= 0 =) p = q;

that is if an element a = bq is divisible by b 6= 0, then there exists a unique quotient q.

3

We still have the problem of how to guarantee that the now exact division is not by zero.

However, zero division can be avoided by considering a `characteristic' matrixB

(0)

= z I

n

+A

in place of A. Here z is a new indeterminate, and I

n

is the n�n identity matrix. Essentially,

we have switched from the integral domain D of entries to the domain D[z] of entries. The

exact divisions necessary in the second version of the algorithm now become polynomial

divisions by the polynomials

b

(i�1)

i;i

= Det(z I

i

+A(1; : : : ; i; 1; : : : ; i)) = z

i

+ lower order terms:

We can now record the coe�cients of z of the intermediate polynomial numerators explicitly

(and drop the usage of z altogether from the computation). The exact divisions will be

computations of polynomial quotients using polynomial divisors whose lead term is always 1.

Since in the polynomial division process (Knuth 1981, x4.6.1, AlgorithmD) the only divisions

are by the lead term of the divisor, the operations on the arising coe�cient vector elements

will not necessitate a division by a domain element. Hence these polynomial divisions can

be carried out no matter what the entries of the original matrix A are. By (5) it is also

easy to see that the b

(i)

j;k

's have degree in z no more than i+ 1, so the polynomial arithmetic

for each individual assignment can be accomplished in O(n

2

) additions, subtractions, and

multiplications in the domain D itself. The determinant of A �nally is the constant coe�cient

of b

(n�1)

n;n

. In summary, we have described a division-free algebraic circuit with O(n

5

) nodes

that can �nd the determinant of a matrix over an integral domain, in fact over any ring, in

parallel time of order no more than O(n

2

).

Optimal Matrix Chain Multiplication: In the previous two examples, the arithmetic

was carried out over a ring. However, for certain optimization problems it is sometimes

necessary to work over an even weaker algebraic structure, for example that of a commutative

semiring. In a commutative semiring we have an associative and commutative addition �

and multiplication
, such that the multiplication distributes over addition, i.e., a
(b�c) =

(a
 b)� (a
 c) for all semiring elements a; b, and c. The dynamic programming algorithm

presented here supplies an example for an algebraic circuit over the semiring of nonnegative

integers with the formal addition a�b = minfa; bg and the formal multiplication a
b = a+b.

The problem is the following: We are given m matrices A

1

; : : : ; A

m

with entries from a

ring, such that A

i

is of dimension n

i

� n

i+1

for all 1 � i � m. We want to compute the

product A

1

A

2

� � �A

m

using standard matrix multiplication, but we wish to pick the order of

multiplications in such a way that the total number of ring multiplications is minimized. For

example, if m = 4, n

1

= n

4

= 1, and n

2

= n

3

, then an optimal order is (A

1

A

2

)(A

3

A

4

) costing

O(n

2

2

) operations, while the order A

1

(A

2

A

3

)A

4

requires the full n

2

�n

2

matrix product A

2

A

3

.

An optimal order for the general problem is found by dynamic programming as follows (see

also Aho et al. (1974), x1, for a more detailed discussion of this technique): let c

i;j

denote

the optimal number of operations to compute A

i

A

i+1

� � �A

j

for 1 � i � j � m with the

initial values c

i;i

= 0. For all 1 � i < j � m we have

c

i;j

= minfc

i;k�1

+ c

k;j

+ n

i

n

k

n

j

j for all k with i < k � jg; (6)

the interpretation being that we try all possible splits (A

i

� � �A

k�1

)(A

k

� � �A

j

). One can

now evaluate c

1;m

by employing the recursive de�nition (6) together with memoization (see

4

Abelson and Sussman (1985) for the usage of this notion) that is one computes an individual

c

i;j

only once and looks up its value if it is needed again. Usually, the resulting algebraic

circuit is presented bottom-up:

for l 1; : : : ;m� 1 do

for i 1; : : : ;m� l do

c

i;i+l

i+l

M

k=i+1

c

i;k�1

 c

k;i+l

 (n

i

n

k

n

i+l

):

Notice that the integer n

i

n

k

n

j

corresponds to a circuit node containing a constant, so the

algebraic circuit is actually over the semiring (Z

�0

;�;
). In fact, it is memoization that

reduces the number of trial combinations from exponentially many to O(n

3

), corresponding

exactly to reducing the exponential sized computation tree to a polynomial sized computation

DAG. The bottom-up realization of this technique is referred to as dynamic programming

1.2. Definitions and Main Results

The three examples given above all exhibit algebraic circuits for important multivariate

polynomials. Circuits for the determinant and the optimal matrix product seemingly require

fan-out higher than one in order to have only polynomially many nodes. Only the circuit

for the symmetric functions has parallel time O(log(n)

2

). The goal of this article is to

give a transformation for any algebraic computation DAG with a certain (necessary) degree

restriction that results in a DAG computing the same functions, but in log-squared depth.

We now de�ne the model of an algebraic circuit and its formal degree precisely, and state

the main result.

De�nition 1. An algebraic circuit C over a semiring R is an edge-weighted directed acyclic

graph with node set V and (directed) edges E satisfying the following conditions:

� Each edge has either an element from R as its weight, or the special symbol \unit-

weight." For a (directed) edge (v;w) 2 E; where v and w are nodes, we denote its

weight by W (v;w).

� Each node is labeled as one of three types: a leaf, an addition node, or a multiplication

node.

� Any leaf has in-degree (fan-in) zero, i.e., there is no edge leading into the corresponding

node, any addition node has in-degree no less than one, and any multiplication node has

in-degree exactly two.

� Every leaf v is also assigned an element in R, denoted by value(v).

A formula or expression tree is an algebraic circuit in which each node has at most one edge

directed out of it. �

This de�nition is more general than what we have used so far in two ways: �rst, there

are weights on the edges with the interpretation that a semiring value is multiplied with

the weight on an edge before being fed to the target node along that edge. These edge-

weights are merely a conceptual tool for the transformations presented later. Clearly, one

can realize the multiplication by a weight as an additional multiplication node. The reason

why we also need the special weight \unit-weight" is that in R we are not guaranteed to

have a multiplicative unit. The second di�erence is that we allow arbitrarily many edges

5

leading into an addition node. Such \super-nodes" must be ultimately realized by a balanced

binary tree of addition nodes of fan-in two. Otherwise, one could compute an n-dimensional

determinant in parallel-time O(log n) by employing a tree for (3) with exponentially many

nodes, which is clearly unrealistic.

The set of children of a node v in the circuit C are all those nodes u 2 V such that there

is an edge (u; v) 2 E from u to v. With this notion we can recursively de�ne the value of

each node:

De�nition 2. The value of a leaf w is the associated value(w). Now let v be a non-leaf

node of the circuit C, and let U be the set of all its children. We de�ne value(v) in terms

of the value(u) and the edge weights W (u; v) for u 2 U . Assume �rst that v is an addition

node. Then we de�ne

value(v) =

X

u2U

propagate(u; v);

where

propagate(u; v) =

�

value(u) if W (u; v) = \unit-weight",

value(u)�W (u; v) if W (u; v) is a semiring element.

If v is a multiplication node we have

value(v) =

Y

u2U

propagate(u; v):

Notice that in this case we have precisely two factors under the product. �

There is an almost 1-1 correspondence between algebraic circuits and straight-line pro-

grams (refer back to Figure 1). We shall not give a precise de�nition for the latter (see, e.g.,

Strassen (1972)), but we wish to point to some minor di�erences. In a straight-line program

there exists a (somewhat arti�cial) total order of the intermediate variables that is not ap-

parent in an algebraic circuit. Furthermore, in a straight-line program we are allowed to issue

assignments of the form v u� u, which are somewhat excluded in a circuit (there cannot

be more than one edge from u to v). However, we clearly can simulate such an assignment

by the pair of assignments w u; v u�w, where w can be chosen to be an addition node

with fan-in one in the corresponding algebraic circuit. This trick will be needed anyway in

our results, since the transformation algorithm will be restricted to circuits that do not have

any edges from a multiplication node to another multiplication node.

The size of an algebraic circuit is simply the number of its nodes, excluding the leaf

nodes. The depth of a circuit is the longest path in its de�ning DAG. We observe that for

an algebraic circuit of fan-in not higher than two, the size corresponds to the number of

arithmetic operations in a straight-line program that computes the node values, and that

the depth corresponds to the parallel time. The goal of our parallelizing transformations

is to construct a new algebraic circuit that computes all values of a given circuit but that

has much smaller depth. For instance, we will construct a fan-in bounded circuit for the

determinant of an n� n matrix that has depth O(log(n)

2

). However, it is easily shown that

not all algebraic circuits can be parallelized with such a dramatic gain in depth. Consider

the straight-line program

v

1

 x� x; v

2

 v

1

� v

1

; : : : ; v

n

 v

n�1

� v

n�1

;

6

the variable v

n

computes the value x

2

n

. Now the optimal algebraic circuit with respect to

depth that computes the same function x

2

n

must have depth
(n). For we can partition the

nodes of that circuit into levels, where the ith level contains the nodes for which the maximum

length path originating in any leaf node is of length exactly i. It follows by induction on i that

the degrees of the values computed by the nodes on level i as polynomials in indeterminates

replacing the leaf values is not higher than 2

i

. Thus any algebraic circuit computing x

2

n

must have depth at least n. Note that this argument is only properly valid for semirings

in which the function x

2

n

cannot be realized by a lower degree polynomial function in x.

It is thus certainly true for any in�nite integral domain. With this simple lower bound in

mind, we will restrict our transformation to circuits that compute functions of polynomially

bounded degree.

We now de�ne the formal degree of a node in an algebraic circuit:

De�nition 3. The formal degree of a leaf node in an algebraic circuit is de�ned as the

integer 1. The formal degree of an interior node v is de�ned recursively from the formal

degrees of its children:

degree(v) =

�

maxfdegree(u) j u a child of vg if v is an addition node,

P

u a child of v

degree(u) if v is a multiplication node.

Finally, the formal degree of the entire circuit is the maximum of the formal degree of any

node. �

Essentially, the degree of a node is the value that the node has if we replace all leaf values

in the circuit by 1, and convert all additions to taking the maximum and all multiplications

to integer addition. As in the matrix chain product example above, we still have a circuit

over a semiring at hand. It should be realized that the formal degree of a node might be

higher than the degree of its algebraic value as a polynomial in the leaf values; this is because

leading terms of the children of an addition node can cancel one another: if u

1

has value

x

2

and u

2

has value x� x

2

, then v u

1

+ u

2

has formal degree 2, but actually its value is

x. Note that over an arbitrary ring such \loss of leading terms" (to paraphrase the loss of

signi�cant digits in numerical computing) can also occur for multiplication nodes.

We now can formulate the main result of this article. Given is the description of an

algebraic circuit in which no addition node has fan-in higher than two. All leaf values and

edge weights are represented as distinct symbols. The circuit has size n and formal degree d.

We shall use the function M(n) that denotes the asymptotic circuit size for n � n matrix

multiplication over the semiring that is simultaneously of depth O(log n). The standard

algorithm gives M(n) = O(n

3

) for any semiring, and the best fast method over a ring has

M(n) = O(n

2:3755

) (Coppersmith and Winograd 1990). The result is the following: One

can compute, on a parallel random access machine with M(n) processors running in time

O(log(n) log(dn)) the description of a circuit of

depth = O(log(n) log(dn)) and size = O(M(n) log(dn));

a subset of whose nodes attain all values of the input circuit. A similar result can be

obtained for other models of parallel algebraic complexity, e.g., the parallel algebraic PRAM

or arithmetic Boolean circuits discussed in von zur Gathen's chapter. However, since we do

not formally introduce these models, we have con�ned our discussion to the standard PRAM

and circuit models.

7

1.3. Exercises

Exercise 1. Determine the formal degree of the algebraic circuit over the semiring (Z

�0

;

min;+) for computing the optimal matrix chain product, which is discussed in x1.1.

Exercise 2. Show that the formal degree of the division-free algebraic circuit for computing

the determinant of an n � n matrix over a ring described in x1.1 is of order O(n). [Hint:

the exact division circuit over D[z] computes polynomials that are homogeneous in x

j;k

, the

entries of A, and in z, the new indeterminate. Hence the coe�cients of z

m

have lower degree

as polynomials in x

j;k

if m is larger.]

Exercise 3*.

2

Construct a circuit of depth O(log n) that computes �

bn=2c

(x

1

; : : : ; x

n

) over

any ring. [Hint (see (Eberly 1989)): if the ring is the complex numbers, and ! is a primitive

2

k

-th root of unity, 2

k�1

< n+1 � 2

k

, one can interpolate the polynomial (z+x

1

) � � � (z+x

n

)

at the points 1; !; !

2

; : : : ; !

2

k

�1

in O(log n) time by the discrete fast Fourier transform.]

Exercise 4. Given is an algebraic circuit over a semiring with n nodes and with depth

O(log n). Show that there exists a formula with n

O(1)

nodes that computes the values of

each node of the circuit.

1.4. History of Solutions

The theory on parallelizing transformations of algebraic programs starts with Brent's (1974)

seminal paper on parallelizing the parse tree of an expression. A polynomial-sized, poly-

logarithmic depth circuit for the determinant and inverse of an n� n matrix over a �eld of

characteristic 0 goes back to Csanky (1976). Hya�l (1979) obtained poly-logarithmic depth

circuits for the general problem, but his construction needed super-polynomially many nodes.

Valiant and Skyum (1981) made the construction also work simultaneously in polynomial

size (see also (Valiant et al. 1983)). With the recasting of Brent's problem as a dynamic

question, i.e., by requiring the transformation itself to be a parallel algorithm, the techniques

discussed in this chapter were introduced. Miller and Reif's (1989) tree contraction process

of 1985 solved the dynamic formula evaluation problem, and the dynamic circuit evaluation

algorithm followed (Miller, Ramachandran, and Kaltofen 1988). Both algorithms have found

their way into the textbooks (Gibbons and Rytter 1988), (Leighton 1991). Follow-up papers

containing additional results with respect to the circuit compression algorithm are (Miller

and Teng 1987) and (Mayr 1987).

Circuits or straight-line programs have been used for a long time as a structured model

of algebraic computation. We refer to Strassen's (1984) article for an excellent survey of the

known results and open problems, as well as to Karp and Ramachandran's (1990) excellent

survey on parallel algorithms in general. The problem of dealing with divisions will be

discussed in detail in x3.1, and we delay the citation of work to that sub-section. We will

also introduce other related results in x3. The application of circuit compression to dynamic

programming goes back to Valiant et al. (1983), where the context free language recognition

problem is solved in poly-logarithmic time using that technique. We consider the application

of this algorithm to the optimal matrix chain product circuit presented here as part of the

folklore of that method.

2

Starred exercises are di�cult, and may contain/constitute publishable research results.

8

2. Algebraic Circuit Compression

We now describe the algorithm by Miller et al. (1988) and present its complexity analysis.

This algorithm was developed by attempting to combine the ideas of Miller and Reif (1985)

for tree compression (see also the chapter by Miller in this book) with the ideas by Valiant

et al. (1983) for straight-line code evaluation. However, in its �nal form it appears quite dis-

tinctive and even introduces a graph transformation (called the \shunt operation") that has

found its way back into the simple and elegant solution to tree compression by Abrahamson

et al. (1989) and by Kosaraju and Delcher (1988).

2.1. The Compression Algorithm

We assume that the input circuit has no edges from multiplication nodes to multiplication

nodes. As pointed out in x1.2, if this is not the case, then we add unary addition nodes along

those edges that connect multiplication nodes. The algorithm will apply transformations to

the DAG. These transformations can a�ect the circuit in the following ways: they may

add a new edge with a certain weight between nodes previously unconnected, they may

remove an edge, they may change an addition or multiplication node into a leaf node with a

certain value, or they may change the weight on an existing edge. There are three types of

transformations, the so-called Matrix-Multiply transformation, the Rakes, and the Shunts.

A combination of these three transformations applied in that order is called a Phase. The

algorithm repeats Phases until every interior node is turned into a leaf. The crucial theorem

in its analysis is that this takes no more than O(log(nd)) Phases, where n is the number

of nodes and d is the formal degree of the input circuit. Let us now de�ne the individual

transformations. For this it is useful to label the circuit nodes in order as v

1

; : : : ; v

n

.

Procedure Matrix-Multiply: Consider the following n� n matrices derived from the edge-

weights W (v

i

; v

j

) on the nodes v

1

; : : : ; v

n

of the circuit.

W [[+;+]]

i;j

=

�

W (v

i

; v

j

) if v

i

and v

j

are addition nodes,

0 otherwise;

W [[. ;+]]

i;j

=

�

W (v

i

; v

j

) if v

j

is an addition node,

0 otherwise;

W [[. ; .]]

i;j

=

n

W (v

i

; v

j

) if not both v

i

and v

j

are addition nodes,

0 otherwise.

For simplicity, we shall assume that the semiring associated with the circuit has an additive

zero, denoted by 0, and furthermore, that it also has a multiplicative unit, denoted by 1. We

thus need no symbolic edge-weights \unit-weight" (see Exercise 5 below for removing these

restrictions). Now, we compute the matrix product and sum

W

0

 W [[. ;+]] �W [[+;+]]+W [[. ; .]] (7)

and replace all edge-weights W (v

i

; v

j

) by W

0

i;j

. Notice, that this action not only replaces

weights on edges, but it may introduce a new edge (in case W

0

i;j

6= 0 but (v

i

; v

j

) is not an

edge in the original circuit) or remove an old edge (in case W

0

i;j

= 0 but (v

i

; v

j

) is an edge).

Furthermore, in case all edges into an addition node are removed, that node is converted

into a leaf of value 0. The mechanics of this procedure are illustrated in Figure 2.

9

0

B

@

0 a b c

0 0
 �

0 0 0 �

0 0 0 0

1

C

A

0

B

@

0 0 0 0

0 0
 �

0 0 0 �

0 0 0 0

1

C

A

+

0

B

@

0 a b c

0 0 0 0

0 0 0 0

0 0 0 0

1

C

A

=

0

B

@

0 a a
 + b a�+ b� + c

0 0 0 �

0 0 0 0

0 0 0 0

1

C

A

:

Figure 2: Matrix-Multiply example.

Essentially, the matrix multiplication in (7) collects the combined weights from any node

to a second level addition node through intermediate addition nodes. We add to that weight

the weight that already is on the edge between those nodes. However, if those two nodes

are addition nodes, no weight must be added, since that weight will be moved upward to

a connection from an earlier node to the target node, explaining the de�nition of W [[. ; .]].

Note that this procedure does not alter the fan-in into a multiplication node, and the formal

De�nition 1 for an algebraic circuit remains valid for the resulting circuit.

Procedure Rake: Whenever all children of an interior node have become leaves, we can

compute the value of that interior node. This is done as follows:

for all addition nodes v all of whose children are leaves do

f set v to a leaf node;

value(v)

P

u a child of v

W (u; v) � value(u);

remove the edges (u; v) for all children u of v; g

for all multiplication nodes v all of whose children are leaves do

f set v to a leaf node;

value(v)

Q

u a child of v

W (u; v) � value(u);

remove the edges (u; v) for all children u of v. g

The procedure essentially removes leaves from active participation in the computation, hence

the name `rake.'

Procedure Shunt: This procedure processes those multiplication nodes one of whose chil-

dren is a leaf. Then one can pass those leaf values together with the edge weights through

to the edge between the non-leaf child and the parents of the multiplication node under con-

sideration. Figure 3 exhibits this action on a small circuit, while the following code de�nes

10

this procedure formally:

for all multiplication nodes v

j

that have exactly one leaf child v

l

and one

child v

i

that is an interior node do

for all parents v

k

of v

j

do

P

i;j;k

 W (v

i

; v

j

) �W (v

j

; v

k

) �W (v

l

; v

j

) � value(v

l

);

for all pairs (i; k) considered previously do

f W

0

i;k

P

all considered intermediate j

P

i;j;k

; and

W (v

i

; v

k

) W (v

i

; v

k

) +W

0

i;k

;

set the weight of the edge (v

i

; v

k

) to W (v

i

; v

k

), unless W (v

i

; v

k

) = 0,

in which case the edge is removed; g

for all (j; k) considered previously do

remove the edge (v

j

; v

k

).

Figure 3: Shunt example.

The procedure Phase is the consecutive execution of these three procedures in the

order with which we presented them. The algorithm Circuit Compression now performs a

sequence of phases until every node in the circuit has been converted into a leaf.

We �rst observe that the value of each node in the input circuit (see De�nition 2) is

not changed by any of our circuit transformation procedures. The formal proof is done by

induction on the nodes v

1

; : : : ; v

n

going from lowest level (the leaves) to the highest level. It

is in this argument that we appeal to the axioms of a commutative semiring. Especially, the

commutativity of multiplication plays a signi�cant role; in fact, it is an open problem how to

do without commutativity while remaining equally e�cient (see the conclusion). Second, we

note that the algorithm eventually obtains the value of every node. In fact, it will complete

this quite quickly. We will prove next that after O(log(nd)) phases all nodes are leaves, but

it should be clear that the algorithm makes some progress towards completion in every one

of the phases.

We have given a high level formulation of our algorithm as it would run on an algebraic

random access machine (RAM) with the capability of performing semiring arithmetic. How-

ever, in the introduction we have emphasized the circuit transformation aspect of our result.

11

Hence, one has to visualize an algorithm that does not actually perform the semiring arith-

metic stated in our procedures, but that hardwires the corresponding algebraic subcircuits

together for the new compressed circuit.

2.2. Analysis of the Compression Algorithm

We will carry out the run-time analysis in two steps. First, we are going to show that each

individual procedure in a phase can be carried out e�ciently on a PRAM. Second, we will

show that the algorithm needs no more than O(log(nd)) phases to complete, where n is the

number of nodes and d is the formal degree of the circuit.

Our �rst goal is quite straightforward. The reader may consider a PRAM that has

the circuit by means of a vector of leaf values and the matrix of weights W symbolically

represented in its shared memory. In carrying out the Matrix Multiplication procedure

using M(n) processors, it stores the necessary circuit fragments in a place of shared memory

that builds the compressed new circuit. The time needed is O(log n), as is in the matrix

multiplication algorithm used. The details are somewhat technically involved, and we will

not expand on them here. Exercise 7 below deals with the precise argument, and a reference

to the solution of a very similar problem can be found there. The Rakes can be encoded

by no more than n balanced binary addition or multiplication trees of no more than n

leaves, which can be done by an n

2

-processor PRAM in O(log n) time. A similar processor

count/time measure yields the Shunts: The key observation is that every P

i;j;k

corresponds

to exactly one edge (v

j

; v

k

), because the multiplication node v

j

has fan-in two. Thus, there

are O(n

2

) elements P

i;j;k

to be considered for the summations to obtain W

0

i;k

. One uses a

PRAM sorting procedure (say the one by Cole (1988), also in the chapter on sorting in this

book) with the pairs of subscripts (i; k) as the keys. Then one sums up all P

i;j;k

with the

same key, which are now located in adjacent memory locations. In summary, we can carry

out procedure Shunt on a PRAM with n

2

processors in O(log n) parallel time.

We now estimate the number of phases necessary to evaluate every node in the input

circuit. In order to obtain a su�ciently precise count, we measure the progress made in each

such phase. A �rst idea is to express this progress in terms of the formal degrees of the circuits

before and after each phase. Clearly, the procedures Shunt and Rake on multiplication nodes

a�ect the formal degree of some nodes. But the procedure Rake on addition nodes and, more

importantly, the procedure Matrix Multiply may not, especially along long chains of addition

nodes. For this reason, we introduce an arti�cial new formal degree, which we will name

the height and which is similar to the formal degree (see De�nition 2), but which also grows

along paths containing only addition nodes.

De�nition 4. The height of a leaf is de�ned as the integer 1. The height of an interior

node v is de�ned recursively from the heights of all its children: if v is an addition node we

de�ne

height(v) = max

�

a+

1

2

;m

	

where

�

a = maxfheight(u) j u an addition child of vg;

m = maxfheight(u) j u a multiplication child or

a leaf child of vg;

and if v is a multiplication node we de�ne

height(v) =

X

u a child of v

height(u):

12

Finally, we de�ne the height of the entire circuit as the maximum of the heights of any node.

�

The following two lemmas are the key to the analysis of the algorithm. The proofs for

the lemmas, which are based on induction on the structure of the circuit, are given at the

end of this subsection. The �rst lemma estimates the progress made in each phase with

respect to the height measure.

Lemma 1. Consider a node v in an algebraic circuit C. We apply a single Phase to the

circuit, obtaining a compressed circuit C

0

with the node v

0

corresponding to v. Now assume

that the node v

0

in the circuit C

0

is not a leaf node or a node with fan-out zero, a so-called

output node. Then the heights of the node before and after the single Phase compression

are related by

height(v

0

) �

1

2

height(v):

The second lemma relates the height of a circuit to its formal degree:

Lemma 2. Consider an algebraic circuit: Let d be its formal degree, h its height, and

E[[+;+]] the subset of its edges that go from an addition to an addition node. Then

h �

1

2

d e+ d where e is the cardinality of E[[+;+]].

From these lemmas we can easily deduce an upper bound for the running time of our

algorithm.

Theorem 1. The Circuit Compression algorithm completes in no more than

O(log(n) + log(d))

consecutive applications of the procedure Phase, where n is the number of nodes and d is

the formal degree of the input circuit.

Proof. The number e of addition-to-addition edges is O(n

2

), hence the height of the input

circuit (and by its de�nition the height of any of its nodes) is by Lemma 2 of order O(n

2

d).

Now, by Lemma 1 each Phase reduces the height of an interior node that does not become

an output node by a divisor of at least 2. Hence after O(log

2

(n

2

d)) Phases there can be

only leaves and output nodes left in the circuit. An additional Phase will by virtue of

the procedure Rake evaluate all output nodes. The number of Phases necessary in the

Compression algorithm is therefore bounded by c log

2

(n

2

d) + 1 = O(log(nd)), where c is

constant. �

There are several corollaries that immediately follow from this theorem and the processor

count given at the beginning of this subsection. The �rst corollary shows that all polynomials

of polynomial formal degree|even quasi-polynomial, as we will state it|can be computed

in poly-logarithmic depth.

13

Corollary 1. Given is a multivariate polynomial f(x

1

; : : : ; x

m

) with coe�cients from a

commutative semiring. Suppose that f is the value of an n-node algebraic circuit with leaf

values x

1

; : : : ; x

m

, whose formal degree is

n

O(log(n)

c

)

for a constant c � 0,

i.e., quasi-polynomial in n. Then f is the value of an algebraic circuit with leaf values

x

1

; : : : ; x

m

that has bounded fan-in and

n

O(1)

many nodes and O(log(n)

c+2

) depth. �

The second corollary addresses the problem of computing all values of an algebraic circuit

in parallel. Since we have not formally introduced the notion of an algebraic PRAM here,

we shall formulate the corollary for integers as our semiring.

Corollary 2. Consider an exclusive-read/exclusive-write PRAM that has the description

of an n-node algebraic circuit over the integers stored in its shared memory. Let d be the

formal degree of the circuit, and assume that the PRAM has M(n) many processors. Than

the values of all nodes of the circuit can be computed in O(log(n) log(nd)) arithmetic parallel

PRAM steps, where arithmetic refers to the fact that we will count an integer arithmetic

operation as a single step independently of how many bits the individual integer operands

have. �

Notice that this corollary shows how to �nd the formal degree of an algebraic circuit

dynamically. One replaces the leaf values by the integer 1, addition nodes by the maximum

function, and multiplication nodes by integer addition. The Circuit Compression algorithm

executed on a PRAM will complete in O(log(n) log(dn)) time, where d is the wanted formal

degree. Note that d appears in the run-time estimate, but nothing needs to be known for it

(cf. Theorems 2 and 3 below).

We conclude this subsection with the proofs of the Lemmas 1 and 2. Both proofs will

be by induction on the size of the circuit. We will consider the subcircuit C

v

for a circuit

C and one of its nodes v, that we de�ne as the circuit of all those nodes and edges of C

that participate in the determination of the value of v (see De�nition 4). We will also use

the notion of a dominant child of an addition node v. If among the children of v there is

a multiplication or leaf node u with height(u) = height(v), we call u a dominant child. If

there is no such node, we call a child u with height(v) = height(u) +

1

2

a dominant child.

Essentially, a dominant child determines the height of v.

Proof of Lemma 1. We consider the node v

0

in the circuitC

0

. The proof proceeds by induction

on the depth of the subcircuit C

0

v

0

. The basis case is where all children of v

0

are leaves. We

argue this case �rst for v

0

being an addition node. We must show that the height of v is

no less than 2, where v is the node corresponding to v

0

before the application of a Phase.

Assume to the contrary that height(v) � 3=2. By the de�nition of height, the depth of C

v

can be no more than 2 and cannot contain a multiplication node. Clearly the procedures

Matrix-Multiply and Rake would convert v into a leaf node in C

0

, in contradiction to our

assumption that v

0

is not a leaf.

The second part of the basis case is when v

0

is a multiplication node. It su�ces to show

that both children of v have height at least 2. Suppose to the contrary that a child u has

14

height(u) < 2. After raking addition nodes, this child will be a leaf. If the second child is

also a leaf at that point, raking the multiplication nodes will turn v

0

into a leaf. Otherwise,

the procedure Shunt will disconnect v

0

from the rest of C

0

, thus making v

0

an output node.

Both are in contradiction to our assumption that v

0

is not a leaf or an output node.

We now present the inductive argument. The easier case here is when v

0

is a multiplica-

tion node. If none of its children u

0

1

and u

0

2

are leaves, we have by the induction hypothesis

height(v

0

) = height(u

0

1

) + height(u

0

2

) �

1

2

(height(u

1

) + height(u

2

)) =

1

2

height(v):

If one of its children u

0

i

is a leaf, we note that height(u

i

) � 2, for otherwise the node v would

have participated in a Shunt and been turned into an output node, as was argued in the

basis case. Thus the same inequality holds, leaving only the case where v

0

is an addition

node.

Let u

0

be a dominant child of the addition node v

0

. If u

0

is a multiplication node, then

height(v

0

) = height(u

0

) �

1

2

height(u) �

1

2

height(v)

by the induction hypothesis and the fact that the height function does not decrease along

paths. The node u

0

cannot be a leaf, because otherwise that case would be the basis case.

Thus we are left with the possibility that u

0

is an addition node. It su�ces to establish in

this last case that

height(u) � height(v)� 1; (8)

for then we have by induction hypothesis

height(v

0

) = height(u

0

) +

1

2

�

1

2

height(u) +

1

2

�

1

2

height(v):

It remains to show (8). Note that both u and v are addition nodes. If there is a path from u

to v containing an additional node, (8) follows from De�nition 2. Finally, suppose that the

only path from u to v in C is a single edge. This con�guration is impossible, however, since

the procedure Matrix-Multiply will remove that edge, and no edge (u

0

; v

0

) can be introduced

because there is no other path from u to v. �

Proof of Lemma 2. The proof is by induction on the number of nodes in C. Clearly, for a

single node circuit, which must be a single leaf, the estimate is true with e = 0 and h = d = 1.

Suppose now that the theorem is true for all circuits with less than n nodes, and let C be a

circuit with n nodes. For every non-output node u we have by induction hypothesis

height(u) � degree(u)

�

e

u

2

+ 1

�

� d

�

e

2

+ 1

�

; (9)

where e

u

is the number of addition to addition edges in C

u

, which satis�es e

u

� e, because

the circuit C

u

is a subcircuit of C. It thus remains to prove the estimate for every output

node v in C. First let v be a multiplication node, and let u

1

and u

2

be its children. Then

by (9) we have

height(v) = height(u

1

) + height(u

2

) � (degree(u

1

) + degree(u

2

))

�

e

2

+ 1

�

� d

�

e

2

+ 1

�

:

15

Second, assume that v is an addition node. If the dominant child is a multiplication or

leaf child, height(v) will be equal to the height of that child, which by (9) already satis�es

the estimate. So we are �nally left with the situation that the dominant child u of v is an

addition child. We then have

height(v) = height(u) +

1

2

� degree(u)

�

e

u

2

+ 1

�

+

1

2

� d

�

e� 1

2

+ 1

�

+

1

2

; (10)

because d � degree(v) � degree(u) and e

u

+ 1 � e, the latter since the subcircuit C

u

does

not contain the edge (u; v). Expanding out the right-hand side of (10) and observing that

d � 1 completes the proof. �

2.3 Exercises

Exercise 5. Modify the description of the Circuit Compression algorithm so that it is valid

over a semiring without a multiplicative unit. [Hint: the problem is that the Matrix-Multiply

procedure may generate the addition 1 + 1 for the formal unit edge weight; introduce an

additional integer weight on each edge with the interpretation that 2 � a = a + a for any

semiring element a.]

Exercise 6. Show how to accomplish circuit compression over a �xed �nite non-commutative

ring. [See Miller and Teng (1987) for a solution.]

Exercise 7. This exercise relates the problem of building description of circuits on a stan-

dard PRAM to evaluating circuits on an algebraic PRAM. Given is a P (n)-processor al-

gebraic PRAM that evaluates an algebraic circuit in O(T (n)) steps without testing an el-

ement of the semiring for zero. Show that there exists a standard P (n)-processor PRAM

that on the same input constructs in O(T (n)) time the formal description of a circuit of size

O(P (n)T (n)) and depth O(T (n)) that computes all values of the input circuit. [The solution

to the sequential counterpart of this problem can be found in (Kaltofen 1988, Theorem 4.1);

the notion of an algebraic RAM is also de�ned there.]

Exercise 8. Consider an n � n matrix with polynomial entries of degree no more than n

and coe�cients from a ring. Construct a circuit of size n

O(1)

and depth O(log(n)

2

) that

computes the coe�cients of the determinant polynomial of the matrix.

Exercise 9. Exhibit an n-node circuit of formal degree polynomially bounded in n, such

that the Circuit Compression algorithm requires
(log(n)

2

) parallel steps.

Exercise 10*. Given are n � n matrices A

1

; A

2

: : : and an n-dimensional column vector b

over a ring. Consider the sequential circuit of size O(n

2

m) for computing A

1

� � �A

m

b by

multiplication from right to left. Give a sharper than O(M(n

2

m)) estimate for the number

of nodes in the circuit produced by the Circuit Compression algorithm. [Open problem: Is

there a circuit of depth O(log(n) log(m)) and size O(n

2

m) that computes that matrix chain

product?]

Exercise 11*. Given is a non-singular n � n matrix over a �eld. Find a circuit for the

Gram-Schmidt orthogonalization of that matrix that has n

O(1)

nodes and O(log(n)

2

) depth

(Kozen 1987).

The following exercises are taken from (Leighton et al. 1988, Problem Set 1).

16

Exercise 12. Show that for a ring, the Compression Algorithm can produce a parallel

circuit of depth O(log(n) log(d)), where n is the number of nodes of the input circuit and d

is the formal degree. [Hint: eliminate all plus-plus edges in the input circuit by applying the

procedure Matrix Multiply repeatedly before performing the full compression.]

Exercise 13*. Consider an algebraic circuit C with n nodes and formal degree d over

the integers. Construct a Boolean circuit that evaluates C for l-bit integers, and that has

(dnl)

O(1)

many gates and O(log(dnl) log(dn)) delay. [Hint: one can add N L-bit integers

in O(log(LN)) delay (Muller and Preparata 1975). The value of each node v, value(v) 2

Z[x

1

; : : : ; x

m

], where the x

i

are indeterminates for the leaf values. Since kvalue(v)k

1

� 2

d+n

(cf. Lemma 2), where kvalue(v)k

1

denotes the sum of the absolute values of the integral

coe�cients of value(v) as a polynomial in x

1

; : : : ; x

m

, all node values are bounded absolutely

by 2

dl+d+n

. It therefore su�ces to compute the node values modulo 2

L

with L = dl + d +

n+1. Now the procedures Matrix Multiply, Rake, and Shunt add up at most O(n

2

) integers

with L bits, which by the above reference is doable in O(log(dln)) delay. The remaining

multiplications modulo 2

L

are doable in O(log L) delay (Wallace 1964), hence each Phase

can be done in delay O(log(dnl).] Note that this exercise shows that one can compute the

determinant of an n� n matrix with the entries being n-bit integers on a Boolean circuit of

depth O(log(n)

2

); this speci�c result was proven in (Borodin et al. 1983).

17

3. Related Questions

In this section we survey results and problems that are related to the Circuit Compression

algorithm. We shall not give complete proofs for the theorems stated here, but we con�ne

ourselves to sketching the ideas and/or giving the reference to the literature.

3.1. Circuits with Division

In this subsection we only consider circuits over a �eld K. It is natural to permit division

nodes in such circuits. Note that a division node has fan-in two, and that the in-edge for the

dividend is distinguished from the in-edge for the divisor. The Gaussian elimination circuit

for computing the determinant described in x1.1 is an example of a circuit with divisions.

There is the possibility of introducing a division by zero into such circuits. By de�nition, we

exclude circuits that always divide by zero, no matter what input values the leaves assume.

For example, the circuit corresponding to the program

v

1

 x; v

2

 v

1

� x; v

3

 1� v

2

;

is excluded from consideration, since v

2

always assumes the value 0. As values for leaves we

consider elements from the algebraic closure of K.

3

Thus, any such circuit must not divide

by zero when retaining the leaf values as indeterminates x

1

; : : : ; x

m

, i.e., when evaluating

over the �eld of rational functions K(x

1

; : : : ; x

m

). Note that for �nite �elds K the problem

of deciding whether a circuit divides by zero for all leaf values from K is co-NP-complete

(Ibarra and Moran 1983).

The �rst problem concerns circuits with divisions that are used to compute selected

outputs f

i

(x

1

; : : : ; x

m

), 1 � i � k, that are polynomials in K[x

1

; : : : ; x

m

]. Again, the Gaus-

sian elimination determinant circuit falls into this category. A fundamental result, due to

Strassen (1973), shows how to avoid the use of divisions for computing all f

i

. We �rst state

the theorem and then give an idea for its proof.

Theorem 2. Let f

i

(x

1

; : : : ; x

m

) 2 K[x

1

; : : : ; x

m

], n � k < i � n, be k selected polynomial

values of an n-node circuit with divisions and that has as leaf values the indeterminates

x

1

; : : : ; x

m

. Suppose we are given a bound � for the algebraic degrees of all f

i

, and the values

of all nodes for a speci�c input x

1

 a

1

2 K; : : : x

m

 a

m

2 K. Note that the occuring

divisors must not evaluate to zero at those input points a

1

; : : : ; a

m

. Then we can (on a

PRAM) construct the description of a circuit without divisions that also computes all f

i

,

n� k < i � n, that has

O(n � log(�) log(log �)) nodes,

and that is of formal degree no more than �. �

The idea behind this construction is similar to our characteristic matrix trick for elim-

inating divisions from the Gaussian elimination circuit. For 1 � i � n let f

i

(x

1

; : : : ; x

m

) 2

K(x

1

; : : : ; x

m

) be the rational function values of all nodes. We consider the auxiliary functions

g

i

(y

1

; : : : ; y

m

; z) = f

i

(y

1

z + a

1

; : : : ; y

m

z + a

m

): (11)

3

If K is the �eld of rational numbers, the algebraic closure of K is contained in the �eld of complex

numbers.

18

Since g

i

(0; : : : ; 0; z) = f

i

(a

1

; : : : ; a

m

) 2 K, the coe�cient c

i;0

of the constant term of g

i

as an

extended power series in z over K(y

1

; : : : ; y

m

),

g

i

(y

1

; : : : ; y

m

; z) =

+1

X

j=�l

i

c

i;j

(y

1

; : : : ; y

m

)z

j

; l

i

� 0; (12)

is an element in K and is given as input. Furthermore, if the i-th node is the divisor of

another node, then c

i;j

6= 0, for otherwise the circuit evaluated at a

1

; : : : ; a

m

would divide

by zero. We also remark that for n � k < i � n the coe�cients c

i;j

are equal 0 for all j < 0

or j > �, because the corresponding f

i

are polynomials of degree no more than � and the

extended power series representation (12) is a canonical, thus unique, form.

It now follows easily by induction on the depth of the input circuit that no g

i

has terms

in z of negative order. That is, for all j < 0 we have c

i;j

= 0; and it follows that for all

j > 0 the c

i;j

(y

1

; : : : ; y

m

) are polynomials in K[y

1

; : : : ; y

m

]. The division-free output circuit

of the above theorem computes the c

i;j

(y

1

; : : : ; y

m

) for 1 � j � � by truncated power series

arithmetic. Finally, the original output polynomials f

i

, n � k < i � n, are computed as

f

i

(x

1

; : : : ; x

m

) = f

i

(a

1

; : : : ; a

m

) +

�

X

j=1

c

i;j

(x

1

� a

1

; : : : ; x

m

� a

m

);

which undoes the translations in (11) by setting z = 1 and y

i

= x

i

� a

i

. The exact circuit

transformation operations are descibed in (Kaltofen 1988, x7).

Strassen used this result to prove that divisions do not aid in the construction of asymp-

totically fast n�n matrix multiplication circuits. In that setting the f

i

are the n

2

row-column

inner products, whose algebraic degree is two. In light of the Circuit Compression algorithm,

which excludes division nodes, the method has been scrutinized again. Take the Gaussian

elimination circuit (4), for instance. A point at which the circuit avoids zero-division is

the identity matrix I

n

. We certainly know the values of all a

(i)

j;k

for that matrix. Thus, by

combining Theorem 2 and Corollary 1 we have found a division-free circuit for the n � n

determinant that has depth O(log(n)

2

) and n

O(1)

many nodes.

4

Note that the method gen-

erates a circuit of formal degree no more than � (cf. Exercise 2). This transformation also

shows that if one is given a bound for the algebraic degree of a polynomial computed by a

circuit of much higher formal degree, that circuit can be transformed into one whose formal

degree is no more than the actual degree bound of the polynomial.

There are two obvious questions that one may ask at this point: How does one �nd, in

general, a degree bound � or an appropriate point set a

1

: : : ; a

m

and the corresponding node

values? And, what if the circuit computes a rational function in K(x

1

; : : : ; x

m

) rather than a

polynomial? The problem of �nding a point that avoids zero-division in a circuit is intimately

related to the problem of avoiding the zeros of a multivariate polynomial. A sequential

Monte-Carlo randomized polynomial-time algorithm, based on a lemma by Schwartz (1980),

(see also (Zippel 1979)) is described in detail in (Kaltofen 1988, Lemma 4.2). We note that

4

n exponent `big-oh' of 1 indeed! Plugging in the upper bounds from both constructions we get

O(M (n

4

log(n) log(logn))) many nodes in the circuit. This ring-independent construction is due to Borodin

et al. (1982).

19

for �nite �elds K of small cardinality one can simulate evaluation of the input circuit at

values from a su�ciently large algebraic extension by arithmetic in K itself (Kaltofen 1987,

Lemma 1) thus keeping the methods of Theorem 2 valid for circuits over any �eld K. The

maximumdegree of all output polynomials f

i

can be determined by a sequential Monte-Carlo

polynomial-time algorithm as well (see Kaltofen (1988, x5), Kaltofen and Trager (1990, x2,

Footnote)). However, all known solutions to the �rst question are sequential, as they require

the evaluation of the input circuit at random leaf values.

The second question concerns the division free computation of the polynomial numerator

and denominator of the rational function value of a circuit. It is assumed the the numerators

and denominators are reduced, i.e., that they do not share a polynomial common factor. This

problem was �rst posed by Strassen in 1973, and was settled by the author of this article

in 1985. Note that the solution is needed if the Circuit Compression algorithm were to be

applied to circuits computing rational functions rather than polynomials. Using power series

expansions in an auxiliary indeterminate, as we did above for polynomial outputs, and Pad�e

approximations to such series, one can obtain the following theorem (see Kaltofen (1988, x8)

and Kaltofen and Trager (1990, x3)).

Theorem 3. Let f; g 2 K[x

1

; : : : ; x

m

] be two relatively prime polynomials over the in�nite

�eld K. Given is an n-node algebraic circuit that computes from leaf values x

1

; : : : ; x

m

the

rational function f=g, and given is an upper bound � for the degrees of f and g. Then there

exists a circuit with

O(n � + � log(�)

2

log(log �))

many nodes that computes the polynomials cf and g=c where c is a non-zero element of

K. �

As for the �rst set of problems, this construction of the circuit for f and g can again be

realized by a sequential polynomial-time Monte-Carlo randomized algorithm, and remains

valid for small �nite �elds but with a worse asymptotic node count. Moreover, one can also

determine the degrees of f and g by a sequential Monte-Carlo polynomial-time algorithm

(see the references to the theorem). Now, we can use the methods in Theorem 2 to remove

the divisions in the circuit constructed in Theorem 3, and then use the Circuit Compression

algorithm to obtain the following far-reaching corollary.

Corollary 3. Let f; g 2 K[x

1

; : : : ; x

m

] be two relatively prime polynomials of degree no

more than d with coe�cients from the �eld K such that f=g is computed by an algebraic

circuit with n nodes. Then f=g can be also computed by an algebraic circuit with (nd)

O(1)

many nodes and with depth O(log(nd)

2

). �

3.2. Reducing the Fan-Out

In x2.1 we constructed algebraic circuits of bounded fan-in and shallow depth. There are

situations where one wishes to control the maximum fan-out as well. A simple idea is to

replace a node of high fan-out by a binary tree of duplication nodes, say addition nodes with

fan-in 1 and fan-out 2. As the fan-in is assumed to be bounded, it is easy to see that the

number of nodes in the new circuit stays within a constant factor of the original number of

nodes. Choosing balanced binary trees might, however, increase the depth of the new circuit

asymptotically by a log factor of the maximum original fan-out. Hoover et al. (1984) select

20

non-balanced binary trees for the duplication process in such a way that a distance measure

from the source node to all possibly reachable output nodes is optimized (see Figure 4).

They can then prove the following theorem.

Theorem 4. Given is an algebraic circuit with n nodes and of depth t such that no node

has fan-in higher than 2. Then there is an algebraic circuit with O(n) nodes and depth O(t)

where no node has fan-out higher than 2, and a subset of whose nodes determines the values

of all nodes of the input circuit. �

Unbounded fan-in Bounded fan-in

Figure 4: Fan-out reduction.

3.3. Partial Derivatives

The circuit transformation of the previous subsection preserved size and depth within a

constant factor. We now give an algebraic transformation that also shares this property.

Again, let us consider circuits with divisions over a �eld K. By labeling the input nodes with

the indeterminates x

1

; : : : ; x

n

, a selected output node has a rational function f(x

1

; : : : ; x

m

) 2

K(x

1

; : : : ; x

m

) as its value. At issue is to construct a circuit that has all the �rst order partial

derivatives

@f

@x

1

; : : : ;

@f

@x

m

(13)

as a subset of its values. One certainly can compute the value of a single derivative D

(de�ned on K(x

1

; : : : ; x

m

)) along with the value of each node by inductively applying the

addition, product, and quotient rules for D. For example, for the assignment v u

1

� u

2

we construct the circuit fragment for v

0

 (u

0

1

� v � u

0

2

)=u

2

, where the nodes u

0

1

, u

0

2

, and

21

v

0

attain the values D(value(u)), D(value(v)), and D(value(v)), respectively. The resulting

circuit is of size no more than 4 times the input circuit that also computes D(f). It is

Baur's and Strassen's (1983) accomplishment to establish that all partial derivatives (13) of

f can be computed in essential the same number of operations. Using their construction

in conjunction with Theorem 4, we can actually show that the depth is preserved as well

(Kaltofen and Singer 1990).

Theorem 5. Given be an n node algebraic circuit of depth t over the �eld K that computes

in one of its output nodes the rational function f 2 K(x

1

; : : : ; x

m

), where x

1

; : : : ; x

m

are the

leaf values. Then there is a circuit with no more than 4n nodes and with depth O(t) that

computes in a subset of its output nodes f and all �rst order partial derivatives @f=@x

i

,

1 � i � m. �

Baur's and Strassen's original motivation is still useful in the setting of parallel algebraic

complexity. Consider a circuit that computes the determinant �(x

1;1

; : : : ; x

n;n

) of an n � n

matrix A = [x

i;j

]

1�i;j�n

with leaf values x

i;j

. Then by Theorem 5, the inverse of A can be

computed by a circuit of the same asymptotic size and depth, namely

A

�1

=

�

(�1)

i+j

�

@�

@x

j;i

�

1�i;j�n

:

In fact, one can also establish for Theorem 5 that the circuit for the partial derivatives avoids

any zero-division for all those inputs for which the input circuit for f does not divide by

zero.

3.4. Exercises

Exercise 14*. Show that the construction by Hoover et al. (1984) for Theorem 4 can be

carried out on a PRAM in O(log(n)

2

) time [Hint: see Atallah et al. (1989) for a parallel

construction of the optimal duplication trees.]

Exercise 15. Develop a theorem similar to Theorem 5 for circuits that allow fan-in 1 nodes

of the form v

p

u, or v exp(u), or v log(u) (Morgenstern 1985).

Exercise 16*. Show that if a circuit over the complex numbers of size n with divisions and

nodes of the form v

p

u computes a polynomial f in the leaf values and that has degree

d, then there exists a circuit of size (dn)

O(1)

without divisions and squareroots that also

computes f (Lickteig 1990). An example of such a circuit is the method of computing the

determinant of an n � n real matrix A by orthogonalizing the matrix to U , computing the

squares of the lengths of the basis vectors as D = UU

T

, and then �nding the determinant as

Det(A) =

p

Det(D). Note that the program is valid in an open neighborhood of the identity

matrix in Euclidean n

2

-space.

22

4. Recent Progress

Within the last two years, several problems related to the topic discussed here have been

solved. The �rst is the question on the use of commutativity of the multipicative operation

in the circuit compression algorithm. It turns out that in non-commutative rings, it is not

possible to achieve poly-logarithmic speedup. Nisan (1991) has shown that any circuit C

n

that evaluates the function

f

n

(x

1

; x

2

) =

X

�:f1;:::;ng!f1;2g

x

�(1)

x

�(2)

� � � x

�(n)

x

�(n)

� � � x

�(2)

x

�(1)

= x

1

f

n�1

(x

1

; x

2

)x

1

+ x

2

f

n�1

(x

1

; x

2

)x

2

of formal degree 2n has depth
(n). Kosaraju (1990) gives a similar family of functions over

the semiring L of languages over fa; b; cg with � to be language union and
 to be language

concatenation, i.e.,

L

1

� L

2

:= fw j w 2 L

1

or w 2 L

2

g; L

1

 L

2

:= fw j w = uv with u 2 L

1

and v 2 L

2

g:

Any circuit computing the function

f

n

(x) = fag
 f

n�1

(x)
 fag � fbg
 f

n�1

(x)
 fbg; f

0

(x) = x;

over L must have depth no less than n.

A second problem that has been solved in part is the question of constructing log(n)

O(1)

deep circuits with O(M(n)) many arithmetic nodes that can compute the determinant of

an n� n matrix; by Theorem 4 one then also can compute matrix inverses and solve linear

systems. V. Pan and the author (1991) prove that there exists a randomized algebraic circuit

with n

2

inputs, O(n) nodes that denote random (input) elements, and of

O(n

!

log(n)) size and O(log(n)

2

) depth,

with the following property. If the inputs are the entries of non-singular matrix A 2 K

n�n

,

where K is a �eld of characteristic zero or greater than n, and if the random nodes uniformly

select �eld elements in S � K, then with probability no less than 1�3n

2

=card(S) the circuit

outputs the determinant of A. On the other hand, if the random choices are unlucky or if the

input matrix is singular, the circuit divides by zero. On non-singular inputs zero-divisions

occur with probability no more than 3n

2

=card(S). A similar construction can certify the

matrix to be singular.

A major set of open problems is concerned with the smallest depth possible to compute

selected polynomials. For instance, is it possible to compute the power A

n

of an n�n matrix

A by a circuit of size n

O(1)

and depth o(log(n)

2

), i.e., asymptotically better than log(n)

2

? Or,

can one establish a lower bound
(t(n)), where lim

n!1

log(n)=t(n) = 0, for the minimum

depth of any polynomial sized circuit that computes A

n

? In fact, we know not a single such

family of functions over a ring of polynomially bounded algebraic degree that would not

be computable by formulas of polynomial size, while being computable by polynomial sized

circuits. Some related lower bound references are: (Strassen 1973), (Jerrum and Snir 1982),

(Kalorkoti 1985); see also the chapter by von zur Gathen for log(n)-reductions of related

problems such as the determinant to matrix power.

23

Acknowledgement: I wish to express my gratitude to Je� Ullman and Vijaya Ramachan-

dran for their detailed remarks about this paper, to an anonymous referee and to several of

my students in my Design and Analysis of Algorithms Course in the Fall 1990 for spotting

misprints, and to my wife Hoang for preparing the �gures on MacDraw.

24

Literature Cited

Abelson, H. and Sussman, G. J., Structure and Interpretation of Computer Program; MIT Press, Cambridge,

MA, 1985.

Abrahamson, K., Dadoun, N., Kirkpatrick, D. G., and Przytycka, T., \A simple parallel tree contraction

algorithm," J. Algorithms 10, pp. 287{302 (1989).

Aho, A., Hopcroft, J., and Ullman, J., The Design and Analysis of Algorithms; Addison and Wesley, Reading,

MA, 1974.

Atallah, M. J., Kosaraju, S. R., Larmore, L. L., Miller, G. L., and Teng, S.-H., \Constructing trees in

parallel," Proc. 1989 ACM Symp. Parallel Algorithms and Architectures, pp. 421{431 (1989).

Baur, W. and Strassen, V., \The complexity of partial derivatives," Theoretical Comp. Sci. 22, pp. 317{330

(1983).

Borodin, A., Cook, S. A., and Pippenger, N., \Parallel computations for well-endowed rings and space-

bounded probabilistic machines," Information Control 58/1{3, pp. 113{136 (1983).

Borodin, A., von zur Gathen, J., and Hopcroft, J. E., \Fast parallel matrix and GCD computations," Inf.

Control 52, pp. 241{256 (1982).

Brent, R. P., \The parallel evaluation of general arithmetic expressions," J. ACM 21, pp. 201{208 (1974).

Cole, R., \Parallel merge sort," SIAM J. Comput. 17/4, pp. 770{785 (1988).

Coppersmith, D. and Winograd, S., \Matrix multiplication via arithmetic progressions," J. Symbolic Com-

put. 9/3, pp. 251{280 (1990).

Csanky, L., \Fast parallel matrix inversion algorithms," SIAM J. Comput. 5/4, pp. 618{623 (1976).

Eberly, W., \Very fast parallel polynomial arithmetic," SIAM J. Comput. 18/5, pp. 955{976 (1989).

Gantmacher, F. R., The Theory of Matrices, Vol. 1; Chelsea Publ. Co., New York, N. Y., 1960.

Gibbons, A. and Rytter, W., E�cient Parallel Algorithms; Cambridge Univ. Press, Cambridge, 1988.

Hoover, H. J., Klawe, M. M., and Pippenger, N. J., \Bounding fan-out in logical networks," J. ACM 31/1,

pp. 13{18 (1984).

Hya�l, L., \On the parallel evaluation of multivariate polynomials," SIAM J. Comp. 8, pp. 120{123 (1979).

Ibarra, O. H. and Moran, S., \Probabilistic algorithms for deciding equivalence of straight-line programs,"

J. ACM 30, pp. 217{228 (1983).

Jerrum, M. and Snir, M., \Some exact complexity results for the straight-line computations over semi-rings,"

J. ACM 29/3, pp. 874{897 (1982).

Kalorkoti, K. A., \A lower bound for the formula size of rational functions," SIAM J. Comp. 14, pp. 678{687

(1985).

Kaltofen, E., \Single-factor Hensel lifting and its application to the straight-line complexity of certain poly-

nomials," Proc. 19th Annual ACM Symp. Theory Comp., pp. 443{452 (1987).

Kaltofen, E., \Greatest common divisors of polynomials given by straight-line programs," J. ACM 35/1, pp.

231{264 (1988).

Kaltofen, E. and Pan, V., \Processor e�cient parallel solution of linear systems over an abstract �eld," in

Proc. 3rd Ann. ACM Symp. Parallel Algor. Architecture; ACM Press, pp. 180{191, 1991.

Kaltofen, E. and Singer, M. F., \Size e�cient parallel algebraic circuits for partial derivatives," Tech. Report

90-32, Dept. Comput. Sci., Rensselaer Polytechnic Inst., Troy, N.Y., October 1990.

Kaltofen, E. and Trager, B., \Computing with polynomials given by black boxes for their evaluations:

Greatest common divisors, factorization, separation of numerators and denominators," J. Symbolic

Comput. 9/3, pp. 301{320 (1990).

Karp, R. M. and Ramachandran, V., \Parallel algorithms for shared-memory machines," in Handbook of

Theoretical Computer Science, Algorithms and Complexity (Volume A), edited by J. van Leeuwen;

Elsevier Science Publ., Amsterdam, pp. 869{941, 1990.

Knuth, D. E., The Art of Programming,Vol. 2, Semi-Numerical Algorithms, Ed. 2; Addison Wesley, Reading,

MA, 1981.

25

Kosaraju, S. R., \On the parallel evaluation of classes of circuits," in Foundations of Software Technology

and Theoretical Computer Science, Springer Lect. Notes Comput. Sci. 472, edited by Nori, K. V. and

Veni Madhavan, C. E.; pp. 232{237, 1990.

Kosaraju, S. R. and Delcher, A. L., \Optimal parallel evaluation of tree-structured computations by raking,"

Proc. AWOC 88, Springer Lec. Notes Comp. Sci. 319, pp. 101{110 (1988).

Kozen, D., \Fast parallel orthogonalization," SIGACT News 18/2, p. 47 (1987).

Leighton, F. T., Introduction to Parallel Algorithms and Architectures: Arrays, Trees & Hypercubes; Morgan

Kaufmann Publ., San Mateo, California, 1991.

Leighton, T., Leiserson, C. E., Maggs, B., Plotkin, S., andWein, J.,Advanced parallel and VLSI computation;

Research Seminar Series RSS 1; Lab. Comp. Sci., MIT, March 1988.

Lickteig, T. M., \On semialgebraic decision complexity," Tech. Report TR-90-052, Internat. Computer Sci.

Inst., Berkeley, California, September 1990. Habilitationsschrift.

Mayr, E. W., \The dynamic tree expression problem," in Concurrent Computations Algorithms, Architec-

ture, and Technology, edited by Tewksbury, S. K., Dickinson, B. W., and Schwartz, S. C.; Plenum Press,

New York, pp. 157{179, 1987.

Miller, G. L., Ramachandran, V., and Kaltofen, E., \E�cient parallel evaluation of straight-line code and

arithmetic circuits," SIAM J. Comput. 17/4, pp. 687{695 (1988).

Miller, G. L. and Reif, J. H., \Parallel tree contraction Part 1: Fundamentals," in Randomness in Compu-

tation, Advances in Computing Research 5, edited by S. Micali; JAI Press Inc., Greenwich, CT., pp.

47{72, 1989.

Miller, G. L. and Teng, S.-H., \Dynamic complexity of computational circuits," Proc. 19th Annual ACM

Symp. Theory Comp., pp. 254{263 (1987).

Morgenstern, J., \How to compute fast a function and all its derivations," SIGACT News 16/4, pp. 60{62

(1985).

Muller, D. E. and Preparata, F. P., \Bounds to complexities of networks for sorting and switching," J. ACM

22/2, pp. 195{201 (1975).

Nisan, N., \Lower bounds for non-commutative computation," in Proc. 23rd Ann. ACM Symp. Theory

Comput.; ACM Press, pp. 410{418, 1991.

Schwartz, J. T., \Fast probabilistic algorithms for veri�cation of polynomial identities," J. ACM 27, pp.

701{717 (1980).

Strassen, V., \Berechnung und Programm I," Acta Inf. 1, pp. 320{335 (1972). In German.

Strassen, V., \Vermeidung von Divisionen," J. reine u. angew. Math. 264, pp. 182{202 (1973). In German.

Strassen, V., \Die Berechnungskomplexit�at von elementarsymmetrischen Funktionen und von Interpolation-

skoe�zienten," Numer. Math. 20, pp. 238{251 (1973). In German.

Strassen, V., \Algebraische Berechnungskomplexit�at," in Anniversary of Oberwolfach 1984, Perspectives in

Mathematics; Birkh�auser Verlag, Basel, pp. 509{550, 1984.

Valiant, L., Skyum, S., Berkowitz, S., and Racko�, C., \Fast parallel computation of polynomials using few

processors," SIAM J. Comp. 12, pp. 641{644 (1983).

Valiant, L. G. and Skyum, S., \Fast parallel computation of polynomials using few processors," Proc. ICALP

81, Springer Lect. Notes Comput. Sci. 118, pp. 132{139 (1981).

Wallace, C. S., \A suggestion for a fast multiplier," IEEE Trans. Electronic Comput. EC-13, pp. 14{17

(1964).

Zippel, R. E., \Probabilistic algorithms for sparse polynomials," Proc. EUROSAM '79, Springer Lec. Notes

Comp. Sci. 72, pp. 216{226 (1979).

26

