
A DISTRIBUTED APPROACH TO

PROBLEM SOLVING IN MAPLE

K. C. Chan, A. D��az, and E. Kaltofen

Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY

Abstract

A system is described whereby a Maple computa-

tion can be distributed across a network of com-

puters running Unix. The distribution is based on

the DSC system, which can ship source code and

input data to carefully selected computers for ex-

ecution and which can retrieve the produced out-

put data. Our code is fully portable and requires

no changes of the underlying Maple or Unix sys-

tems. Speedup over Maple's built-in sequential

procedure is demonstrated when computing deter-

minants of integer matrices.

1. Introduction

The paradigm of distributing a compute-intensive

program over a network of computers is becoming

commonplace in today's problem solving by com-

puter. Several systems are available for support of

distributed computation, among them Gelernter's

Piranha Linda, PVM (Parallel Virtual Machine)

by Geist et al., and the Unix system's remote

shell command. In 1991, we announced a plat-

form for distributing symbolic code, called the Dis-

tributed Symbolic Computation tool|DSC (D��az

et al. 1991). The DSC system has been signi�-

cantly improved over the past three years (D��az et

al. 1993). This paper describes our new interface

to Maple, which permits the automatic distribu-

tion of a Maple computation over a network of

computers.

The following important DSC features are avail-

able to Maple users through the new interface.

| The distribution of so-called parallel subtasks

Appears in Maple V: Mathematics and Applica-

tion, Proc. Maple Summer Workshop and Symp.

'94, R. Lopez (ed.), pp. 13{21, Birkh�auser Verlag,

Boston, 1994.

is performed from the Maple environment by

a system call to a DSC program which com-

municates with the concurrent server daemon

process. That process, which has established

IP/TCP/UDP connections to equivalent dae-

mon processes on the participating compute

nodes, handles the call and sends the subtask

to one of them. Similarly, the control ow of

the application program is synchronized by li-

brary calls that wait for the completion of one

or all subtasks. Participating compute nodes

can be anywhere on the Internet.

| DSC can distribute a Maple source �le and

the corresponding input data �le. The re-

mote computer starts a Maple shell and exe-

cutes the source �le, which is assumed to read

from the input data �le and produce an output

data �le, which is returned to the parent pro-

cess. Note that the distribution of source code,

which is not restricted to Maple but can be in

C or Lisp instead, allows the parent process to

dynamically construct programs for distribu-

tion thus permitting the use of so-called \black

box" data types. Furthermore, on a shared �le

system �le transfer can be performed by path

name and no physical �le movement needs to

take place.

| The master-slave paradigm for distribution can

be relaxed by making use of a co-routine-like

distribution mechanism. In that case, the par-

allel subtask can exchange information with

the parent task in the middle of a computa-

tion.

| The interface from Maple to DSC consists of

10 library functions. Processor allocation and

interprocess communication is completely hid-

den from the Maple programmer. Indeed, DSC

has a fairly sophisticated scheduler that tries to

match the subtask's resource demands, which

are given in rough estimates as (optional) ar-

guments to the DSC call, with a suitable com-

13

puter on the network. CPU and memory usage

of participating compute nodes is estimated by

having a resident daemon process probe them

in 10 minute intervals and communicate the

CPU and memory load to the DSC server dae-

mons. If no computer meets certain threshold

requirements, the parallel subtask gets queued

for later distribution under presumably better

load conditions on the network. The scheduler

makes DSC a truly heterogeneous parallel sys-

tem.

| The progress of a distributed computation can

be monitored by an independently run con-

troller program. This controller also initializes

the DSC environment by establishing server

daemons on the participating computers.

| It is possible to run several distributing Maple

programs simultaneously by specifying distinct

UDP port numbers on start-up. DSC and the

Maple interface do not require any changes

to existing Unix or Maple setups. Security

is guaranteed because DSC tags the messages

which it sends through unprotected ports with

a secret key.

Note that the design of the features discussed

above has been extensively tested in our sym-

bolic applications, which are: the parallel Can-

tor/Zassenhaus polynomial factorization algorithm

(D��az et al. 1991), the Goldwasser-Kilian/Atkin

primality prover for titanic primes, i.e., prime

numbers with more than 1000 decimal digits (Va-

lente 1992), and the block Wiedemann algorithm

for the solution of sparse linear systems over �nite

�elds (D��az et al. 1993).

The main design goal for the DSC/Maple in-

terface was that it had to be completely portable.

Therefore, we chose a mechanism by which the

DSC library functions are called through a system

call. That call executes an interface program that

sends a signal to a concurrent daemon process. It

is that single daemon process which calls the C

language DSC user library function which in turn

communicates with the server process via a user

datagram. Thus we avoid any dependence on calls

to functions written in C from within Maple, a fea-

ture that is lacking in older Maple installations.

We demonstrate the usage of our interface by

a standard example, namely the computation of

the determinant of an integer matrix by homo-

morphic imaging and Chinese remaindering (Mc-

Clellan 1973). We can report that determinants

of 100� 100 integer matrices with single digit en-

tries are computed faster by distribution. We note

that all of the needed computer algebra technol-

ogy, such as �nding prime numbers, computing

matrix determinants modulo prime numbers, and

the Chinese remainder algorithm, is provided by

Maple. There are more sophisticated coarse grain

parallel algorithms, such as root �nding or sparse

interpolation (Char 1990), which would require

more custom-made Maple programming. In our

opinion, an important application of the DSC in-

terface is the parallelization of our Maple code for

the solution of sparse linear systems. This code

was developed as a prototype for our superfast

C

++

implementation (Kaltofen and Lobo 1994).

Nonetheless, the distributed version of our proto-

type code would make parallel sparse linear system

solving available to the entire Maple world.

We hope to add several new features to DSC

and the Maple interface in the future. First, we are

planning to build a graphical user interface to the

control program which monitors all DSC processes

and computers. Second, we are planning to imple-

ment some form of process migration. Although

our scheduler attempts to �nd the best compute

node for a given parallel subtask, often the choice

is not optimal because unexpected load levels ap-

pear later at the selected computer. In that case, it

would be very helpful if a partially completed task

could be moved to another node. And �nally, the

Maple interface could be enhanced by high level

data types that hide the actual explicit DSC calls,

such as the \bags of incomplete futures" that we

have implemented in our Lisp interface (D��az et

al. 1991).

2. System Layers

In D��az et al. 1991 we described how concep-

tually the DSC system itself is organized in a

multi-layered fashion, each layer drawing from

its predecessor. Referring to Figure 1, the bot-

tom layer consists of the interprocess communi-

cation using DARPA Internet standard protocols

IP/TCP/UDP. Built on this layer lies the �rst

DSC level which includes the internal DSC rou-

tines, the daemons, and the C library functions.

The second layer consists of the Lisp/C interface,

the controller program, the new Maple/C inter-

face and C user programs that use only the seven

basic C library functions. The third layer draws

on the Lisp/C interface and the Maple/C inter-

face. This layer contains the Lisp library, basic

Lisp functions and basic Maple functions. At the

topmost layer lies the implementation of high level

14

Controller/Setup
Utilities Lisp/C library

Lisp library

1

2

3

4

Maple/C libraryBasic C usr pgm

Internal DSC routines, daemons, and library functions

DARPA IP/TCP/UDP Protocol Functions

Basic Lisp User pgmBasic Maple User pgm

High level
Lisp user pgm

Figure 1: System Layers

Lisp functions which utilize the support routines

contained in the Lisp library. Such a Library is

being developed for Maple.

3. Maple Interface

The Maple User Interface Library contains ten

functions that can be invoked from a user's Maple

program or session. The standard example of com-

puting the determinant of an integer matrix in

parallel (by homomorphic imaging and Chinese

remaindering) illustrates the interaction between

DSC and Maple.

DSC Controller

Maple

DSC ENVDSC ENVDSC ENV

dscpr_sub dscpr_sub

Maple

det1.mpl

det1.i
det1.d

Maple

det2

distdet.mpl
distdet.i

Comp. Node 1

Comp. Node 1

Comp. Node 2Comp. Node 3

Figure 2: Simple Distribution Scenario

Before a Maple application can distribute par-

allel subtasks over the network, the database of

available compute nodes needs to be initialized

and DSC server daemons have to be started. The

DSC Controller program supports the user in con-

�guring the network and in the monitoring of com-

putational tasks (D��az et al. 1991).

Figure 2 portrays the Scenario of a distributed

Maple determinant computation. After starting

the controller program on compute node 1, and

DSC servers on compute nodes 1, 2, and 3, the

main Maple task distdet.mpl is initiated. It

�rst reads in an integer matrix from distdet.i

and selects appropriate moduli. For each modu-

lar image, distdet.mpl calls the DSC Maple li-

brary function dscpr_sub, passing Maple code in

a �le det1.mpl and the residue matrix in det1.i

to DSC for distribution. The function dscpr_sub

communicates the distribution request to the lo-

cal server running on compute node 1. The lo-

cal server locates a suitable processor, in this case

compute node 3, and sends both �les to the cor-

responding remote server. The server on com-

pute node 3 starts a Maple session for det1.mpl.

That program then reads its data from the remote

copy of det1.i and writes its output to the re-

mote �le det1.d. When the parallel subtask com-

pletes the �le, det1.d is copied back to compute

node 1. In the meantime, the application pro-

gram has initiated distribution of another parallel

subtask, det2, for which the local server selected

compute node 2. A call to the DSC Maple library

function dscpr_wait or dscpr_next can be used

to block the main task distdet.mpl on the com-

pletion of its children.

The source code of distdet.mpl found in Fig-

ures 3 through 9 illustrates the usage of the DSC

Maple library functions.

15

with(linalg);

###

distdet(subprobsf,solfile,A,iprod)

input -

subprobsf - source file (without path information)

of the subproblems

solfile - the file name that will contain the determinant

of the matrix A

A - square matrix

iprob - starting point for prime moduli

description -

compute the determinant of the integer matrix A by

homomorphic imaging and Chinese remaindering

distdet := proc(subprobsf,solfile,A,iprod)

local LOW_CPU, MEM, PWD, SOURCE_FILE,INDEX,fid,build,exec,y,

NUMPROBS,moduli,residue,tmod,ubound,prod,inc,u;

LOW_CPU - estimated CPU usage

MEM - estimated memory usage in megabytes

PWD - real path

SOURCE_FILE - source file with real path information

INDEX - subproblem index file

NUMPROBS - the number of primes needed given the initial value

fid - temporary file id

build - Maple build command

exec - Maple execute command

y - loop counter

moduli - the array of moduli

residue - the array of determinant residues

tmod - moduli for each subroblem (save can only save names)

ubound - the upper bound for the product of the moduli

prod - the product of the moduli

inc - the next starting point for the moduli search

u - determinant

Read in DSC Maple User Functions

read(`dsc_maple.mpl`);

Set problem parameters

subprobsf:= subprobsf;

LOW_CPU:= 240;

MEM:= 5;

Start dsc_maple daemon

system(`dsc_maple commandfile messagepid dscmaplepid &`);

Wait a while for startup

system(`sleep 2`);

Get real path information

PWD := dscpr_pwd(`commandfile`,`messagepid`,`dscmaplepid`,`answerfile`);

SOURCE_FILE:= cat(PWD,`/`,subprobsf);

Log problem in local server problem database

INDEX := dscdbg_start(`commandfile`,`messagepid`,`dscmaplepid`,PWD,

`answerfile`);

Figure 3: Interface Start-Up

Figure 3 displays the initialization steps that

are needed when distributing Maple code. Once

the dsc_maple.mpl interface library has been load-

ed, a dsc_maple daemon can be started via a

16

system call to the host operating system from

the Maple environment. After startup of the

dsc_maple daemon, calls to the functions in the

Maple User Interface Library can be made. In or-

der to assure distinct �le names when running mul-

tiple distributed Maple applications, the dsc_maple

daemon program must receive three command line

arguments, which are �le names representing a

dsc_maple command �le, a dsc_maple_message

temporary daemon process id �le, and a dsc_maple

daemon process id �le. These �les, along with a

fourth string denoting the dsc_maple_message an-

swer �le, are passed as parameters to all of the sub-

sequent Maple User Interface Library functions.

These four �les are only used by the di�erent lay-

ers of the Maple Interface and are never accessed

directly from the user's Maple application. The

function dscpr_pwd is used to determine the cur-

rent path of the local Maple session. This informa-

tion is used later as a parameter to all remaining

Maple User Interface Library functions. The func-

tion dscdbg_start in Figure 3 is the �rst maple

interface call that communicates a request to the

local DSC server. This function can be used to

track a problem and is useful when one wishes to

debug distributed tasks using Maple interactively.

Arguments to this function include the four inter-

face speci�c �le names and the current path of the

local Maple session.

ubound := evalf(2*hadamard(A));

Compute the Moduli

print('Compute_the_Moduli');

prod := 1; NUMPROBS:= 0;

inc :=iprod;

while prod < ubound do

NUMPROBS := NUMPROBS+1;

moduli[NUMPROBS] := nextprime(inc);

inc := moduli[NUMPROBS]+1;

prod := prod * moduli[NUMPROBS];

od;

Figure 4: Compute Necessary Moduli

One way of computing the determinant of a

matrix in a distributed fashion is to �rst com-

pute the determinant of the input matrix modulo

n relatively prime numbers in parallel and then to

construct the corresponding true integer value by

Chinese remaindering. Figure 4 shows the com-

putation of the moduli by using the Hadamard

inequality to get an upper bound for the determi-

nant.

Prepare corresponding input files

for y from 1 to NUMPROBS do

fid:=cat(SOURCE_FILE,y,`.`,`i`);

tmod := moduli[y];

save A , tmod, fid;

od;

Make copies of the subproblem

copyfiles(NUMPROBS,SOURCE_FILE,`mpl`);

Figure 5: Prepare Parallel Subtasks

After the moduli have been computed, the par-

allel subtasks can be prepared for distribution.

Figure 5 details how the parallel subtask input

�les and copies of the parallel subtasks are created.

The copyfiles function is provided in the Maple

User Functions Library. Eventually, we hope to

provide additional high level library functions.

Figure 6 demonstrates the use of the function

dscpr_sub to start a parallel subtask within the

DSC environment. Additional arguments to this

function are four strings denoting, respectively,

the path to the local �les, the types of the local

�les to be sent, the build (compile, for instance)

command, and the exec (load and run) command

required for the parallel subtasks; two additional

integer arguments represent the CPU and memory

requirements of the parallel subtasks. It is possible

to use default build/exec commands by supplying

null strings for the corresponding arguments. It is

also possible to bypass C and Lisp compilation by

supplying dsc_c.build or dsc_lisp.build as the

build command. The shell script dsc_maple.int

applies the source and input �les to a Maple ses-

sion.

After the determinant parallel subtasks have

been spawned Figure 7, shows the Maple code

necessary for blocking the execution of the main

task and after synchonization the code required for

performing the shutdown of the DSC Maple inter-

face. The functions dscpr_wait and dscpr_kill

are used, respectively, to wait on and to kill spe-

ci�c subtasks. In both cases, the additional ar-

gument is the index of the subtask in question.

The dscpr_wait function is also used to wait on

the completion of all outstanding subtasks when a

value of �1 is supplied for the index. The function

dscpr_next is used to wait for the completion of

the next parallel subtask. Its additional argument

is �lled with the name of the solution �le corre-

sponding to the completed subtask. The function

dscpr_maple_kill, will terminate the dsc_maple

daemon in an orderly fashion.

17

for y from 1 to NUMPROBS do

Prepare arguments

fid:= cat(SOURCE_FILE,y);

build:= cat(`dsc_maple.build`);

exec:= cat(`dsc_maple.int `,subprobsf,y,`.mpl `,subprobsf,y,`.d`,

` `,subprobsf,y,`.i`);

print(`one_level_driver: fid = `.fid);

print(`one_level_driver: build = `.build);

print(`one_level_driver: exec = `.exec);

print(`one_level_driver: cpu requirement = `.LOW_CPU);

print(`one_level_driver: mem requirement = `.MEM);

Spawn subproblems

rval:= dscpr_sub(`commandfile`,`messagepid`,`dscmaplepid`,

PWD,fid,`pi`,build,exec,LOW_CPU,MEM,

`answerfile`);

od;

Figure 6: Distribute Parallel Subtasks

Wait on all subproblems

rval := dscpr_wait(`commandfile`,`messagepid`,`dscmaplepid`,

PWD,-1,`answerfile`);

dscpr_maple_kill(`commandfile`,`messagepid`,`dscmaplepid`,PWD);

Figure 7: Wait On All Parallel Subtasks

get residues from .d files

for y from 1 to NUMPROBS do

fid:= cat(SOURCE_FILE,y,`.d`);

read(fid);

residue[y] := ddet;

od;

u := chrem(convert(residue,list),

convert(moduli,list));

save u , prod ,solfile;

RETURN(u);

end;

Figure 8: Compute Determinant

The code in Figure 8 computes the integer de-

terminant of A from the n residues of the deter-

minants by Chinese remaindering.

read(`IM_10_10_1`);

answer := distdet(`det`,`distdet.d`,

A,10000000);

quit;

Figure 9: Initial Startup Mechanism

Since the �le is executed in a interpreted man-

ner the call to distdet is made after the function

de�nition and the reading of the matrix. Finally

the session is terminated via a quit command as

seen in Figure 9.

Figure 10 is the subproblem �le copied and dis-

tributed by distdet.mpl which computes the de-

terminant of the integer matrix by homomorphic

imaging.

The input �le and output �le speci�ed by the

call to dscpr_sub in the main task are put in

the variables DSC_IFILE and DSC_OFILE by the

Maple interface.

The control program allows the user to inspect

the progress of an application program and its par-

allel subtasks. This will include the main applica-

tion program and the parallel subtasks that have

been spawned in the current DSC environment.

Figure 11 is an example of the parallel sub-

task database. The main Maple program pre�xed

as distdet (running on troi.cs.rpi.edu) reg-

istered with the DSC server via dscdbg_start,

was given the task name DSC40e0_1. This task

distributed Maple code (and an input �le) to

pleiades.cs.rpi.edu. This is indicated by both

maple: 1 and input: 1 being set. The shell

script dsc_maple.int is in the exec argument of

the call to dscpr_sub. The parallel subtask has

not spawned children. All processes run on Sun

compute nodes, as CPU 3 indicates.

For 100�100 integer matrices with single digit

entries the computation of the the distributed

version of the determinant computation program

on 22 processors was 1.5 times faster than the

standard Maple determinant function (det). For

200� 200 matrices on 18 processors the speed up

was a factor of 1.9. The speed up becomes more

18

with(linalg);

###

ddet(one_input,one_output)

input -

one_input - input file for subproblem

one_output - output file for subproblem

ddet := proc(one_input,one_output)

local commandfile,messagepid,dscmaplepid,answerfile,msgstr,PWD;

commandfile - dsc_maple DSC command file

messagepid - dsc_maple_message process id file

dscmaplepid - dsc_maple process id file

answerfile - subtask solution file

msgstr - temporary string

PWD - real path

Read in DSC Maple User Functions

read(`dsc_maple.mpl`);

Start dsc_maple daemon

commandfile := cat(one_input,`.cmd`);

messagepid := cat(one_input,`.mpid`);

dscmaplepid := cat(one_input,`.ppid`);

answerfile := cat(one_input,`.ans`);

msgstr := cat(`dsc_maple `,commandfile,` `,messagepid,` `,dscmaplepid,` &`);

print(msgstr);

system(msgstr);

Wait a while for startup

system(`sleep 2`);

Get real path information

PWD := dscpr_pwd(commandfile,messagepid,dscmaplepid,answerfile);

Kill dsc_maple_daemon

dscpr_maple_kill(commandfile,messagepid,dscmaplepid,PWD);

Wait a while for shut down

system(`sleep 2`);

Remove files

msgstr := `rm -f `; msgstr := cat(msgstr,commandfile); system(msgstr);

msgstr := `rm -f `; msgstr := cat(msgstr,messagepid); system(msgstr);

msgstr := `rm -f `; msgstr := cat(msgstr,dscmaplepid); system(msgstr);

msgstr := `rm -f `; msgstr := cat(msgstr,answerfile); system(msgstr);

Read in matrix and modulo

msgstr := PWD;

msgstr := cat(msgstr,`/`,one_input);

read(msgstr);

compute the determinant of A modulo tmod

ddet := Det(A) mod tmod;

save ddet , one_output;

end;

ddet(DSC_IFILE,DSC_OFILE);

quit;

Figure 10: Parallel Subtask

signi�cant with larger problems.

The Maple interface library also allows the user

to implement co-routines. To distribute Maple co-

routine applications, the function dscpr_cosetup

must be called at the beginning of any parallel

subtask that is to be treated as a co-routine. Its

only arguments are the four interface speci�c �le

names and the current path of the local Maple ses-

19

P R O B L E M D A T A B A S E

problem name: distdet

problem PID: 16596 node: troi.cs.rpi.edu index 0 CPU 3

parent PID: 16477 naddr: 128.213.2.43 index -1

source name: /fs5/misc1/ugrads/chank/dsc/source/distdet

c: 0 lisp: 0 math: 0 maple: 1 obj: 0 input:0

build command: dsc_maple.build

exec command: dsc_maple.int /fs5/misc1/ugrads/chank/dsc/source/distdet.mpl

/fs5/misc1/ugrads/chank/dsc/source/distdet.d

blocked sock: -1 block condition -1

completion : 0 status: 00000000 build: 1

peer link : -1 child list: -1 # subprob: 0

state : 0

estimated cpu use : LOW_CPU estimated mem need (megs) : 5

MORE

problem name: DSC40e0_1

problem PID: 16608 node: troi.cs.rpi.edu index 1 CPU 3

parent PID: -1 naddr: 128.213.2.43 index -1

source name: dsc_prob_debug

c: 0 lisp: 0 math: 0 maple: 0 obj: 0 input:0

build command:

exec command:

blocked sock: 6 block condition -1

completion : 0 status: 00000000 build: 1

peer link : -1 child list: 2 # subprob: 2

state : 0

estimated cpu use : -1 (UNKOWN VALUE)

estimated mem need (megs) : -1

MORE

problem name: DSC40e02

problem PID: -1 node: pleiades.cs.rpi.edu index 2 CPU 3

parent PID: 16608 naddr: 128.213.2.43 index 1

source name: /fs5/misc1/ugrads/chank/dsc/source/det1

c: 0 lisp: 0 math: 0 maple: 1 obj: 0 input:1

build command: dsc_maple.build

exec command: dsc_maple.int det1.mpl det1.d det1.i

blocked sock: -1 block condition -1

completion : 1 status: 00000000 build: 0

peer link : 3 child list: -1 # subprob: 0

state : 0

estimated cpu use : HIGH_CPU estimated mem need (megs) : 5

MORE

Figure 11: Problem Data Base

sion. When the Maple parallel subtask calls the

dscpr_cowait function with an additional integer

argument, it enters a sleep state and optionally

transmits a data �le back to its parent. A parent

task can send a wake up call to a sleeping parallel

subtask via the dscpr_coresume function. Addi-

tional arguments to this function are an integer

which uniquely identi�es a parallel subtask (re-

turned from the spawning call to dscpr_sub) and

a string identifying which input �le, if any, should

be sent to the co-routine before the parallel sub-

task is to be resumed.

This material is based on work supported in

part by the National Science Foundation under

Grant No. CCR-90-06077 and Grant No. CCR-93-

20

19776, Research Experiences for an Undergradu-

ate supplement (�rst author), and by GTE under

a Graduate Computer Science Fellowship (second

author).

The software described in this paper is freely

available by anonymous ftp from ftp.cs.rpi.edu in

directory dsc.

Literature Cited

Char, B. W., \Progress report on a system for general-

purpose parallel symbolic algebraic computation,"

in Proc. 1990 Internat. Symp. Symbolic Algebraic

Comput., edited by S. Watanabe and M. Nagata;

ACM Press, pp. 96{103, 1990.

D��az, A., \DSC Users Manual (2nd ed.)," Tech. Rep.

93-11, Dept. Comput. Sci., Rensselaer Polytech.

Inst., Troy, New York, May 1993. 197 pp.

D��az, A., Hitz, M., Kaltofen, E., Lobo, A., and Va-

lente, T., \Process scheduling in DSC and the

large sparse linear systems challenge," in Proc.

DISCO '93, Springer Lect. Notes Comput. Sci.

722, edited by A. Miola; pp. 66{80, 1993. Avail-

able from anonymous@ftp.cs.rpi.edu in directory

kaltofen.

D��az, A., Kaltofen, E., Schmitz, K., and Valente, T.,

\DSC A System for Distributed Symbolic Compu-

tation," in Proc. 1991 Internat. Symp. Symbolic

Algebraic Comput., edited by S. M. Watt; ACM

Press, pp. 323-332, 1991. Available from anony-

mous@ftp.cs.rpi.edu in directory kaltofen.

Kaltofen, E. and Lobo, A., \Factoring high-degree

polynomials by the black box Berlekamp algo-

rithm," Manuscript, January 1994. Available from

anonymous@ftp.cs.rpi.edu in directory kaltof-

en.

McClellan, M. T., \The exact solution of systems of

linear equations with polynomial coe�cients," J.

ACM 20, pp. 563{588 (1973).

Valente, T., \A distributed approach to proving large

numbers prime," Ph.D. Thesis, Dept. Comput.

Sci., Rensselaer Polytech. Instit., Troy, New York,

December 1992. Available from anonymous@ftp.

cs.rpi.edu in directory valente.

King Choi Chan currently is an undergradu-

ate student in Computer Systems Engineering at

Rensselaer Polytechnic Institute.

Angel D��az received both his B.S. degree in

Computer in 1991 and his M.S. degree in Com-

puter Science in 1993 from Rensselaer Polytechnic

Institute. He is currently pursuing the Ph.D. de-

gree at Rensselaer under the direction of Professor

Erich Kaltofen. His special �elds of interest in-

clude parallel methods in symbolic computation.

He was a Rensselaer Polytechnic Institute Gradu-

ate Fellow from 1991{1992, received support from

the National Science Foundation Fellowship Pro-

gram in 1992, and is currently the recipient of the

GTE Fellowship Program. He is also a member

of Upsilon Pi Epsilon national computer science

honor society.

Erich Kaltofen received both his M.S. degree

in Computer Science in 1979 and his Ph.D. de-

gree in Computer Science in 1982 from Rensse-

laer Polytechnic Institute. He was an Assistant

Professor of Computer Science at the University

of Toronto and an Assistant and Associate Pro-

fessor at Rensselaer Polytechnic Institute, where

he is now a Professor. His current interests are

in computational algebra and number theory, de-

sign and analysis of sequential and parallel algo-

rithms, and symbolic manipulation systems and

languages. Professor Kaltofen currently is the

Chair of ACM's Special Interest Group on Sym-

bolic & Algebraic Manipulation and serves as as-

sociate editor on several journals on symbolic com-

putation. From 1985{87 he held an IBM Faculty

Development Award. From 1990{91 he was an

ACM National Lecturer.

Department of Computer Science

Rensselaer Polytechnic Institute

Troy, New York 12180-3590

Internet: fdiaza;kaltofeng@cs.rpi.edu

21

