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Extended Abstract

1. Introduction

Modern techniques for solving structured linear systems
over finite fields, which use the coefficient matrix as a
black box and require an efficient algorithm for mul-
tiplying this matrix by a vector, are applicable to the
classical algorithm for factoring a univariate polynomial
over a finite field by Berlekamp (1967 and 1970). We
report on a computer implementation of this idea that
is based on the parallel block Wiedemann linear system
solver (Coppersmith 1994 and Kaltofen 1993 and 1995).
The program uses randomization and we also study the
expected run time behavior of our method.

The asymptotically fastest known algorithm for fac-
toring a polynomial over a finite field is by von zur Ga-
then and Shoup (1992). Shoup (1993) has subsequently
implemented the equal degree part of that algorithm
making use of FFT-based polynomial arithmetic. We
will show that a sequential version of the black box
Berlekamp algorithm is strongly related to their method
and allows for the same asymptotic speed-ups, at least
within a logarithmic factor.

It is also possible to realize the Niederreiter approach
(Niederreiter and Göttfert 1994) by black box linear al-
gebra (Gao and von zur Gathen 1994). That approach
is similar to Berlekamp’s (Fleischmann 1993) and the
tradeoffs between both methods when using a black box
linear system solver are quite subtle. We have not imple-
mented the black box Niederreiter algorithm and there-
fore have no comparative data. It is now known that
a method by Cantor and Zassenhaus (1981, §3) is com-
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petitive only if implemented with von zur Gathen’s and
Shoup’s improvements (see Shoup 1993).

Our program is geared towards factoring high degree
polynomials over moderately sized fields. Polynomi-
als of degree 250 or less are factored most quickly by
the standard Berlekamp algorithm. So far, we have
factored polynomials of degree 10 001 modulo 127, in
about 102.5 hours. Clearly, for such large degrees, FFT-
based polynomial arithmetic becomes much more ef-
ficient than standard or Karatsuba-based polynomial
arithmetic. We use a polynomial arithmetic package
designed by Shoup (1993) in C++. His underlying inte-
ger arithmetic, by A. K. Lenstra, is geared towards long
integers and thus slows the runs on our small residues
somewhat.

We have converted our parallel block Wiedemann lin-
ear system solver (Dı́az et al. 1993) into C++. The
program now works with a generic black box matrix
by accepting a function call for the matrix-times-vector
product. We note that our implementation of Cop-
persmith’s method has been highly successful in solv-
ing linear systems with sparsely populated coefficient
matrices. A bottleneck step there has been the se-
quential Berlekamp/Massey algorithm for finding a re-
currence polynomial. However, the black box matrix-
times-vector products arising in the polynomial factor-
ing algorithm are far more costly. Without blocking
and parallelization our test runs would have been im-
possible. The bottleneck in the polynomial factoring
application is the needed matrix-times-vector product.
Higher speed would still be achievable by using more
computers in parallel, which we do not have available
to us.

Unlike Shoup’s (1993) implementation, our algorithm
computes a complete factorization of the input poly-
nomial. This has necessitated some improvements in
the overall approach. Instead of finding a single split
and proceeding recursively, we “mine” each vector found
in the so-called Butler/Berlekamp subalgebra (we have
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about as many as the blocking factor of the linear solver)
for all splits derivable from that vector. Lastly, we use
factor refinement (Bach et al. 1993) to compute the full
factorization. The problem remains to determine when
all factors are found. Currently, our version of the block
Wiedemann algorithm does not produce the rank of
coefficient matrix as a by-product, which would yield
the number of irreducible factors. However, the rank
is available when the Berlekamp/Massey substep in the
block Wiedemann algorithm is replaced by a Toeplitz-
like linear solver (Kaltofen 1995, Theorem 7), at a neg-
ligible loss in efficiency. We plan to make this change in
the near future.
When analyzing a sequential version of the black box

Berlekamp algorithm, similarities to the distinct-degree
factorization algorithm (Knuth 1981, §4.6.2) and the
equal-degree factorization algorithm (see, e.g., von zur
Gathen and Shoup 1992, Algorithm 3.6) become ap-
parent. The reason for these connections is that an ex-
plicit formula for the minimum polynomial of the arising
coefficient matrix can be derived. Certain substeps of
the black box linear system solvers can then be related
to both algorithms. We believe that these connections
are significant because they explain how the Berlekamp
algorithm in some sense generalizes both the distinct-
degree and the equal-degree factorization algorithms,
which is superior in performance to both methods so
far. Furthermore, the degree of the minimum polyno-
mial can be much smaller than the dimension of the cor-
responding matrix depending on the degree of the fac-
tors. This makes an adaptive version of the black box
algorithm possible which performs many less matrix-
times-vector products e.g., in the case where many fac-
tors share the same degree.

2. The Berlekamp Algorithm

The Berlekamp (1967, 1970) algorithm for factoring
a monic squarefree polynomial f ∈ Fq[x] of degree
deg(f) = n into its monic irreducible factors f1, . . . , fr
is based on considering a subalgebra of Fq[x]/(f(x)). In
the following theorem we use a polynomial v ∈ Fq[x]
with deg(v) < n as the canonical representative of an
element in the quotient algebra Fq[x]/(f(x)). Vectors
are distinguished from polynomials by the vector math-
ematical accent ~ , which we also use as the coefficient
vector constructor: if u(x) = c0 + c1x+ · · ·+ cn−1x

n−1

then ~u = [ c0, c1, . . . , cn−1 ].

Theorem 1. For v ∈ Fp[x] with deg(v) < n the follow-
ing conditions are equivalent:

∀i: v(x) mod fi(x) ∈ Fq, (1)

m

v(x)q = v(xq) ≡ v(x) (mod f(x)), (2)

m

~v ·Q = ~v where Q =




...
−−−−−−−−−→
xiq mod f(x)

...




i=0,...,n−1

∈ F
n×n
q . (3)

If the characteristic of Fq is not equal to 2, then (1), (2),
and (3) are also equivalent to

m

∀i: v(x)(q−1)/2 mod fi(x) ∈ {−1, 0, 1}. (4)

The classical Berlekamp algorithm (1967) finds a
non-constant polynomial v with the above properties
by solving the linear system (3) and then computes
the polynomial greatest common divisor GCD(v(x) −
t, f) for all t ∈ Fq[x]. If the vectors ~v participat-
ing in this process span the left null space of Q − I,
the polynomial f is completely factored. For large
fields of characteristic > 2, a modification by Can-
tor/Zassenhaus (1981, §4) and Camion (1981) based on
(4) computes GCD(v(q−1)/2 mod f − 1, f) in order to
split f . Large fields of characteristic 2 permit special
tricks, but we shall not consider this situation here.
Historically, the above theorem dates back to before

Berlekamp. The matrix Q was used for an irreducibility
test by Petr in 1937 (see Schwarz 1956). Butler (1954)
established parts (1)–(3) of Theorem 1, which Berle-
kamp used so cleverly for his now famous method. Our
modification also uses a property of Petr’s matrix.

Theorem 2. Let f ∈ Fq[x] be monic and square-
free with monic irreducible factors f1, . . . , fr of degree
mi = deg(fi). Let µQ(λ) ∈ Fq[λ] be the minimum
polynomial of the matrix Q as defined in (3). Then
µQ(λ) = LCM1≤i≤r(λ

mi − 1), where LCM denotes the
polynomial least common multiple.

Proof. For any w ∈ Fq[x] with deg(w) < n we have

u = wq mod f ⇐⇒ ~u = ~w ·Q. (5)

Now consider the algebra isomorphism

Φ: Fq[x]/(f(x))−−→Fqm1 ⊕ · · · ⊕ Fqmr

w 7−−−−−−−−−→[ ŵ1, . . . , ŵr ]

derived from the Chinese remainder theorem and the
field isomorphisms

ψi:Fq[x]/(fi(x)) −→ Fqmi ,

where element multiplication in the direct sum of fields
Fqm1 ⊕ · · · ⊕ Fqmr is defined componentwise. We shall
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suppose, as we may, that Fq ⊂ Fqmi for all i and that
each ψi restricted to Fq is the identity function. The
operator

L: Fq[x]/(f(x))−−→Fq[x]/(f(x))
w 7−−−−−−−−−→wq mod f

is by (5) linear and has by virtue of the isomorphism
Φ the corresponding operator L′ on the direct sum,
namely,

L′: Fqm1 ⊕ · · · ⊕ Fqmr−−→Fqm1 ⊕ · · · ⊕ Fqmr .
[ ŵ1, . . . , ŵr ] 7−−→[ ŵq

1, . . . , ŵq
r ]

Clearly, the minimum polynomials of Q, L, and L′ are
all the same. Furthermore, the minimum polynomial of
L′ is the LCM of the minimum polynomials of L′

i, the
restrictions of L′ to the ith direct summand Fqmi .
We derive the minimum polynomial of the restricted

linear operator L′
i by observing that that polynomial

must linearly generate the infinite sequence of elements
in Fqmi

a0, a
q
0, a

q2

0 , . . . , aj = aq
j

0 , . . . , (6)

for any a0 ∈ Fqmi . However, since aq
mi

j = aj , the se-
quence is linearly generated over Fq by λmi − 1 ∈ Fq[λ].
Finally, if a0 generates a normal basis for Fqmi over
Fq (see von zur Gathen and Giesbrecht 1990), then no
proper divisor of λmi−1 over Fq[λ] can linearly generate
(6) over Fq. ⊠

3. The Black Box Algorithm

The theory and practice of “black box” linear algebra
is based on the fact that a linear system can be solved
efficiently when a fast algorithm for multiplying the co-
efficient matrix by a vector is known. Thus, these linear
system solvers (Wiedemann 1986, Kaltofen and Saun-
ders 1991, Coppersmith 1994, Kaltofen 1993 and 1995)
are applicable not only to sparse systems but also to
systems such as the one arising in the Berlekamp algo-
rithm. For later reference, we now describe this method
in some detail, supposing that q is not a power of 2.
The strange grouping of the individual steps will make
sense later.

Step BW1: This step and Step BW2 computes a vec-
tor ~v that satisfies Theorem 1. The algorithm used is
Wiedemann’s for finding a non-zero solution to ~v · (Q−
I) = 0. In this step we compute µQ(λ) = µQ−I(λ− 1).

Step BW1a: Pick random projection row vectors ~u,~b ∈
F
n
q and compute the sequence of field elements

ai = ~u ·Qi ·~b tr for all 0 ≤ i < 2n. (7)

Let u be the polynomial corresponding to the coefficient
vector ~u. Then by Theorem 1 we have

~u ·Qi =
−−−−−−−→
uq

i

mod f, (8)

which allows for fast computation of the ai.

Step BW1b: By any version of the Berlekamp/Massey
algorithm (Massey 1969, Brent et al. 1980, Dornstetter
1987) compute a linear recurrence of degree no more
than n which generates (7). The polynomial corre-
sponding to the linear recurrence is with high proba-
bility equal to µQ. If the recurrence polynomial is equal
to λn − 1, then f is definitely irreducible.

Step BW2: Let µQ−I
0 (λ) = µQ−I(λ)/λk, where λk is

the highest power of λ dividing µQ−I(λ). For the ran-
dom row vector ~u we have with high probability for some
l ≥ 0 that

~u · µQ−I
0 (Q− I) · (Q− I)l︸ ︷︷ ︸

~v 6= 0

·(Q− I) = 0. (9)

Therefore, compute ~w = ~u · µQ
−1(Q), where µQ

−1(λ) =
µQ(λ)/(λ − 1)k with (λ − 1)k being the highest power
of λ − 1 dividing µQ(λ). If ~w = 0, our randomizations
have been unlucky. If not, compute

~w · (Q− I), ~w · (Q− I)2, . . .

until a zero vector appears or the degree of µQ−I is
reached; in the latter case the randomizations were un-
lucky. If the zero vector is reached, the previously com-
puted vector ~v is a non-zero solution to ~v · (Q− I) = 0.
If ~v = [a, 0, . . . , 0] for some a ∈ Fq, the randomizations
have again been unlucky.

Step BW3: Let v be the polynomial corresponding
to the vector ~v computed in Step BW2. For random
t ∈ Fq, compute GCD((v − t)(q−1)/2 − 1 mod f, f) until
f is split.

For very large q, the use of (8) for computing ~u ·
Q, which costs with FFT-based polynomial arithmetic
O(log q · n log n loglog n) field arithmetic operations in
Fq, is inefficient. A possible alternative is to compute
g(x) = (xq mod f(x)) and u(x)q ≡ u(g(x)) (mod f(x)),
the latter with precomputed g in O(n2 log n loglog n)
arithmetic steps. Indeed, the entire sequence can be
computed in

O( (log q + n log n) · n log n loglog n ) (10)

arithmetic operations using Algorithm 3.1 from von zur
Gathen and Shoup (1992). We shall return to this last
remark later.
The probabilistic analysis of the above algorithm

poses several theoretical problems. For one, we must
guarantee that a usable polynomial v in the subalgebra
is found with probability bounded away from zero. Sec-
ondly, it is desired that the splits are in some sense
even, so that a complete factorization can be found
within a O(log r) time factor rather than a Ω(r) factor.
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This is a problem similar to the expected versus the
worst case running time of the quicksort algorithm. A
straight-forward solution to these problems is the use of
algorithms proposed in Kaltofen and Saunders (1991).
The expected number of arithmetic steps in Fq is then
asymptotically related to the function

(min{n2, n log q}+ log q) · n(log n)2 loglog n

·max{1, logq n} (11)

Here the term n ·min{n, log q} ·n log n loglog n accounts
for the computation of the 3n qth-powers in the sequence
(7) by the two methods described above. Note that
the preconditioning of Q − I introduced in (Kaltofen
and Saunders 1991) only adds an extra O(n2 log n×
loglog n) field operations in the computation of the
entire sequence. The term log q · n log n loglog n ac-
counts for the computation of xq mod f(x) and (v(x)−
t)(q−1)/2 mod f(x). The extra factor log n is derived
from the cost of recursively splitting the factors. Fi-
nally, the factor max{1, logq n} arises from the required
field extensions in the linear system solver (not the fac-
torizer), because the random elements needed by Kalt-
ofen and Saunders (1991) must be sampled from a field
of cardinality Ω(n).
The running time measure (11) only has historic

value. The first author invented that variant of the
black box algorithm as a more space efficient version
of the Berlekamp algorithm: it requires only O(n) stor-
age for field elements; and it has served as a starting
point for von zur Gathen’s and Shoup’s break-through
algorithm of

O((n+ log q) · n(log n)2 loglog n)

expected field operations. However, Steps BW1–BW3
as described here constitute an interesting variant of
Berlekamp algorithm. Its merits over other algorithms
from an implementation point of view will be discussed
in Section 4. In the remainder of this section we shall ex-
plore surprising connections to the distinct-degree and
the Cantor/Zassenhaus polynomial factorization algo-
rithms, thereby justifying good probabilistic behavior
of our algorithm.
As stated above, Steps BW1a and BW2 can be re-

alized more efficiently by use of von zur Gathen’s and
Shoup’s Algorithm 3.1. They use their algorithm for
computing a distinct-degree factorization of f . The re-
lation is not coincidental, as we shall explain now. Con-
sider the algebra isomorphism Φ of the proof of Theo-
rem 2. The component corresponding to the factor fi

in the sequence uk = uq
k

0 ∈ Fq[x]/(f(x)), k ≥ 0 has the
minimum polynomial λmi − 1, which implies that

fi divides GCD(uq
mi

0 − u0, f).

In fact, all factors of f whose degrees divide mi are fac-
tors of the right side GCD. If the components of Φ(u0)
corresponding to the other factors are normal elements,
those factors cannot divide uq

mi

0 − u0. A suitable inter-
pretation of the distinct-degree factorization algorithm
(Knuth 1981, §4.6.2) is now possible: it sequentially fil-
ters the factors of degree m = 1, 2, . . . by use of their
minimum polynomials λm−1 and the sequence starting
at u0 = x mod f(x). Note that our Step BW1 does not
perform this sequential filter but computes a common
minimum polynomial for all components of Φ(u0), thus
saving potentially Ω(n) costly GCD computations.
If the degrees of the factors are known in advance, the

polynomial µQ can be computed via Theorem 2 and
Step BW1 can be omitted. This is true, e.g., for the
equal degree factorization problem, where all mi = m =
n/r. Then µQ(λ) = λm − 1 and

µQ
−1(λ) = 1 + λ+ λ2 + · · ·+ λm−1,

provided that m is not divisible by the characteristic of
Fq. The polynomial w corresponding to ~w computed in
Step BW2 is by (8) equal to

w = u+ uq + uq
2

+ · · ·+ uq
m−1

mod f,

the well-known trace of u in Fqm over Fq in a variant of
the Cantor/Zassenhaus algorithm (Ben-Or 1981). In-
deed, w is polynomial in the subalgebra of Theorem 1
with w mod fi being random elements in Fq. Our gen-
eral algorithm also maps the ith component of Φ(u) into
v mod fi ∈ Fq, but the argument is a bit more involved.
Let us suppose that the algorithm has correctly com-

puted µQ in Step BW1. With a sufficient probability
this is true (see Wiedemann 1986). Let p be the char-
acteristic of Fq, and let pk be that highest power of p
that divides at least one of the factor degrees mj , where
1 ≤ j ≤ r. Furthermore, let mi be one of the factor
degrees that is divisible by pk. We will establish the
following claim: with probability no less than 1 − 1/q
we have in (9) that l = pk−1 and v mod fi is a random
non-zero element in Fq, and that v mod fj = 0 for all j
where mj is not divisible by pk. We begin the proof of
the claim by observing that since k is maximal and

λmi − 1 = (λmi/p
k

− 1)p
k

= (1 + λ+ · · ·+ λmi/p
k−1)p

k

(λ− 1)p
k

, (12)

we must have by Theorem 2

µQ
−1(λ) · (λ− 1)p

k−1 = µQ(λ)/(λ− 1).

Next, we define the co-factor of the trace polynomial:

µQ
−1(λ) · (λ− 1)p

k−1 = (1 + λ+ · · ·+ λmi−1)

·
(∑

j
hi,jλ

j

︸ ︷︷ ︸
h∗i (λ) ∈ Fq[λ]

)
. (13)
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From (12) and (13) it follows that λ−1 cannot be a root
of h∗i (λ); that is,

∑
j hi,j 6= 0. Now, let τi = u + uq +

· · · + uq
mi−1

mod f and τ̂i = τi mod fi. For a random
vector ~u the element τ̂i, as the trace in Fqmi over Fq of
the corresponding random ith component of the image
Φ(u) (see Proof of Theorem 2), is a random element in
Fq. Then

v′ mod fi =
∑

k
hi,k τ̂

qk

i = τ̂i ·
∑

k
hi,k.

is also a random element in Fq, where

~v ′ = ~u · µQ
−1(Q) · (Q− I)p

k−1.

Thus, with probability 1−1/q the random field element
v′ mod fi 6= 0, in particular ~v ′ 6= 0. Under those cir-
cumstances the zero vector will be reached in Step BW2
after exactly pk multiplications with Q − I; that is,
l = pk − 1 in (9). For if l < pk − 1 then we would
have

0 6= ~v ′ = ~v · (Q− I)p
k−1−l = 0,

a contradiction. The claim that in the case where l =
pk − 1 we have v mod fj = 0 when pk does not divide
mj follows similarly from the fact that then (1 + λ +
· · ·+ λmj−1) · (λ− 1) is a factor of (13).
In conclusion of the just established claim, we are

guaranteed that with probability no less than 1− 1/q−
1/(q − 1) there are 2 indices i 6= j with v mod fi 6=
v mod fj . Again there are two cases to consider. If not
all mj are divisible by pk, then we may choose i such
that pk divides mi and j such that pk does not divide
mj . Note that in this case with probability 1− 1/q the
GCD(v, f) is non-trivial. On the other hand, if all mi

have the same maximal power divisor pk, one concludes
that with probability no less than 1−1/q a random non-
zero component is computed, which is distinct from any
other component with probability 1− 1/(q− 1). Let us
assume now that v mod fi 6= v mod fj . In Step BW3
the field elements v−t mod fi and v−t mod fj then have
opposite quadratic residuosity with probability 1/2 −
1/(2q) (Rabin 1980) and f is split.
In order to compute the full factorization of f , the al-

gorithm must continue after having determined the first
split. There are several tricks on how to use the poly-
nomial v of the Butler subalgebra (Theorem 1) to gen-
erate more than one split, one of which we have utilized
in our implementation. However, from an asymptotic
and worst case expected time point of view it is suffi-
cient to just call the algorithm recursively on the factors
discovered in Step BW3, because the splits in the algo-
rithm are sufficiently random as proven above. Let us
assume that the sequence (7) is computed in the fastest
known time (10). We wish to argue that the complete

factorization of f can be computed within at most a
O(log r) factor of (10). For that we must show that
the recursion tree has expected depth O(log r). How-
ever, this is easily established from the above claims if
we make a modification in Step BW3 and first compute
g = GCD(v, f) and h = f/GCD(v, f) before splitting h
by GCD((h − t)(q−1)/2 − 1 mod f, f). In summary, we
have the following theorem.

Theorem 3. We have a probabilistic algorithm that
factors a polynomial of degree n over Fq using an ex-
pected number of

O( (n log n+ log q) · n(log n)2 loglog n )

operations in Fq.

Note that the complexity accomplished in Theorem 3
is within at most a O(log n) factor of the algorithm by
von zur Gathen and Shoup. Of course, we must make
use of one of their subalgorithms. We remark that the
logq n factor of (11) is saved by the analysis of Wiede-
mann (1986, §VI), while we do not know how to fully
amortize the recursive descent by von zur Gathen’s and
Shoup’s (1992, §4) game of “balls and bins.”

4. Implementation

We have implemented the black box Berlekamp algo-
rithm using the blocked version of Wiedemann’s algo-
rithm for a linear system solver. The blocked solver is
run in a distributed computing environment, providing
the speedup over the sequential algorithm of §3 which
is necessary for inputs of the size that we consider. We
make no assumptions about the number of irreducible
factors or about their multiplicities and their degrees.
Thus we have constructed a general-purpose factor-
izer which performs the complete factorization of high-
degree polynomials modulo primes of moderate size.
In our linear system solver, the matrix-times-vector

product is computed by a call to a generic black box
(see Figure 1). This black box accepts a vector ~uin and
generates the vector ~uout, where uout = upin−uin mod f .
Note that we do not use the simplified black box calls of
Steps BW1a and BW2 in §3 because our implementation
employs our general purpose black box linear system
package. In that package, the black box call is treated
as a function argument mapping a vector into a vector.
Static data for p and f are supplied by an initialization
function.
The linear solver is an implementation of the block

Wiedemann algorithm (see Coppersmith 1994, Kalt-
ofen 1993 and 1995, Dı́az et al. 1993). Its purpose is to
generate upon demand vectors ~v in the left null space of
Q− I. There are four distinct parts to the linear solver
(see Figure 1). In the first part, m pairs of random row
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MINPOLY

EXTRACTION
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LINEAR SYSTEM SOLVER
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FACTOR BASE

SPLITTER

POLYNOMIAL

Figure 1: Software architecture of the black box
factorizer.

vectors ~u1, ~u2, . . . , ~um and ~b1,~b2, . . . ,~bm all in F
n
p are

selected subject to the criterion that a (0) = ~u · (Q− I) ·
~btr ∈ F

m×m
p is nonsingular.

In the second part, the sequence a
(i) = ~u · (Q −

I)i+1 · ~btr for i = 1, 2, . . . , L = ⌊2N/m⌋ + 3 is com-
puted (cf. (7)). This step can be speeded to L par-
allel calls of the matrix-times-vector black box func-
tion by computing the m rows of a

(i) in parallel as

a
(i)
j,∗ = ~uj · (Q − I)i+1 · ~btr and then merging the re-

sults. Parts 1 and 2 are the counterpart of Step BW1a
in §3.
In the third part, a block version of the Berlekamp/

Massey algorithm (Coppersmith 1994) computes a gen-
erator matrix polynomial Λ for the sequence a

(i). This
part corresponds to Step BW1b. The fourth and final
part extracts as many as m vectors ~v by a Horner-type
evaluation at Q−I of a polynomial derived from Λ with
coefficients that are m-dimensional vectors. This part
corresponds to Step BW2 of §3.
By the theory developed in §3, we know that the ma-

trix Q − I does not satisfy the conditions required in

Kaltofen’s (1993 and 1995) analysis of the block Wiede-
mann algorithm. Despite this property, the algorithm
seems to produce correct solution vectors ~v. It appears
to us that the rank estimates made in (Kaltofen 1993
and 1995) can be relaxed to account for the observed
phenomenon, but we have not yet been able to prove
this. Furthermore, unlike in the sequential case, we do
not know how the degree of Λ is related to the degrees
of the irreducible factors.

Candidates ~vj from the solver go to the splitter where

GCD(v
(q−1)/2
j − 1 mod f, f) is computed and hopefully

f is split. After this the splits are refined and put into a
factor base. Factor refinement will yield all r factors of f
with high probability provided at least 2 log2 r random
splits are available. One approach to obtaining so many
splits is to increase the blocking factor m or, alterna-
tively, to call the linear solver again. A far cheaper ap-
proach is to compute GCD((vj − t)(q−1)/2− 1 mod f, f)
for several random t ∈ Fp. This “mining” of a sin-
gle vector for additional splits can be done at very low
cost, and is easily implemented in a distributed comput-
ing environment. For small p sufficiently many distinct
splits might not be obtained by this technique alone,
in which case the randomized linear system solver will
have to be called again. For factor refinement we use
the simple algorithm in (Kaltofen 1985), which also runs
in quadratic time like the more complex algorithm by
(Bach et al. 1993).

If the number of factors r is small, all tk ∈ Fq that re-
sult in splits GCD(vj − tk mod f, f) can be determined
efficiently by finding a linear dependence of vkj mod f for
0 ≤ k ≤ r (see Knuth 1981, §4.6.2, Exercise 14). How-
ever, the splitting and factor refinement phase of our
implementation costs only a small fraction of the total
time (see Figure 2 below) and it is therefore not crucial
to speed it in that way. A more important question is
how to verify the irreducibility of all produced factors
quickly. However, this problem is solved if a solution to
the block Berlekamp/Massey problem is computed by
the generalized Levinson/Durbin method (see Kaltofen
1995, §6). Then we obtain a value s that with high
probability is equal to the rank of Q − I. Note that
r = n− rank(Q− I) and, as can be shown (ibid., Proof
of Theorem 7), we always have s ≤ rank(Q− I). There-
fore, once we find n − s different factors, they all must
be irreducible. We plan to add this modification to our
algorithm.

The black box and assorted functions are built with
member functions from C++ classes ZZ_pX for polyno-
mials, ZZ_p for elements in Fq, and ZZ for integers of
arbitrary length. Vectors of field elements are defined
and instantiated by means of macros. A class Block

was designed for the sequence elements a (i). The classes
ZZ_pX and ZZ_p are from Shoup’s (1993) implementa-
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Degree Prime Task Blocking Factor Factor
n p 8 16 32 degrees

1025 32749 sequence 0h58′ 0h34′ 0h25′ 1, 1, 1, 1,
minpoly 0h04′ 0h09′ 0h24′ 1, 2, 2, 5,

evaluation 0h28′ 0h14′ 0h07′ 6, 11, 30,
split/refine 0h12′ 0h14′ 0h11′ 153, 161,
total time 1h42′ 1h12′ 1h07′ 180, 470

work 955# 1000# 1165#

2049 127 sequence 1h30′ 0h49′ 0h32′ 1, 1, 1, 1,
minpoly 0h06′ 0h15′ 1h02′ 6, 6, 7,

evaluation 0h43′ 0h22′ 0h12′ 63, 66, 74,
split/refine 0h14′ 0h13′ 0h13′ 83, 371,
total time 2h32′ 1h39′ 1h59′ 418, 951

work 1530# 1585# 1824#

4097 127 sequence 7h19′ 3h49′ 1, 1, 4, 5, 9,
minpoly 1h10′ 1h57′ 21, 31, 42,

evaluation 3h32′ 1h49′ 43, 85, 88,
split/refine 0h44′ 0h32′ 139, 633, 863,
total time 12h45′ 8h11′ 897, 1235

work 7613# 7821#

10001 127 sequence 50h52′ 1, 1, 1, 2, 3, 4,
minpoly 5h45′ 7, 30, 35, 77,

evaluation 25h04′ 121, 161, 621,
split/refine 1h32′ 749, 1374,
total time 83h14′ 2682, 4132

work 52858#

Figure 2: Parallel CPU time (hourshminutes′) for factoring

(x⌈n/2⌉ + x+ 1) · (x⌊n/2⌋ + x+ 1) (mod p)

on 86.1 MIPS computers. Work is measured in units of MIPS-hours#.

tion. The class ZZ was designed by A. K. Lenstra and
in the C++ hierarchy ZZ_pX ⊃ ZZ_p ⊃ ZZ. For find-
ing the linear recurrence, Λ we used a version of the
Berlekamp/Massey module, written in ANSI C, which
was mentioned in Dı́az et al. (1993). This module is
extremely fast and we preferred it to our C++ version
even though p is restricted to a value within 15 bits,
that is, 32749.
Our test cases (see Figure 2) are generated from tri-

nomials of the form xn+x+1 and are the product of two
such trinomials differing in degree by 1. This is partly
in the spirit of the challenge by von zur Gathen (1992);
however, the primes are smaller than proposed there.
Although trinomials and products are quite sparse, we
do not take advantage of this fact in our modulo f com-
putations. In fact, we have factored a random poly-
nomial of degree 10 001 modulo 127 into 14 irreducible
factors on 8 computers in 86.6 hours. The polynomi-
als in Figure 2 are all trinomial products and the de-
grees of the irreducible factors are listed in the last col-
umn. Some jobs were rerun with blocking factors of 8,16

and 32.
In our experiment we chose the blocking factor to be

a multiple of 8 but this is not a requirement of our im-
plementation. We are currently experimenting with un-
equal row and column blocking factors, which result in
a sequence, a (i), of rectangular matrices for the purpose
of reducing the number of matrix-times-vector products
needed in the sequence generation step.
From the first two examples, it appears that 16 is an

optimal value for the blocking factor m. Increasing m
results in shorter times needed per parallel task, for se-
quence generation and evaluation. However, the time
for finding the generator polynomial of the sequence
increases and counters any decrease in the other two
timings.
We did not have enough machines available to us for

the long duration needed to run the large experiments
with blocking factors greater than 8. We note how-
ever, that the memory requirements of the jobs are well
within the capacity of our base machine which is a Sun 4
with 32 Mbytes of memory, rated at 86.1 MIPS.
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We have computed a measure of the total work done
by taking the product of the native MIPS (see Patterson
and Hennessy 1990, pp. 40–42) of our base machine and
the time taken for a task, and summing over all par-
allel and sequential tasks. The result is represented in
the unit “MIPS-hour” which is the number of instruc-
tions executed by a 1-MIPS machine running for one
hour.

5. Future Directions

The investigations described here are far from finished.
There are several theoretical and many implementation
issues that we hope to resolve in the future. In terms
of theory, our understanding of Coppersmith’s block
Wiedemann method—while so essential to the success
of our factoring tasks—is incomplete. We know that
our black box matrices violate the conditions assumed
in the only known mathematically proven analysis of the
algorithm (Kaltofen 1993 and 1995), but the algorithm
produces correct solutions. Moreover, the sequential al-
gorithm of §3 can adapt to savings induced by equal-
degree factors. However in the block version, a degree
reduction of the recurrence equation induced by equal
degree factors, for example, which in the sequential case
is explained by Theorem 2, occurs for certain polynomi-
als such as the Swinnerton-Dyer polynomials (Kaltofen
et al. 1983) while for others (see Figure 2, n = 1025) it
does not. We have no explanation for this phenomenon.
The bottleneck in our implementation is the cost for

performing a matrix-times-vector product. It is that
step which has forced us to use FFT-based arithmetic
and to run our tests modulo small primes. It is possible
to reduce to approximately one-half the total number of
matrix-times-vector products in our approach by using
higher blocking from the left, i.e., by choosing m′ ≫ m
rows in ~u , and by saving intermediate results of the
sequence generation part for the polynomial evaluation
part (see Kaltofen 1995, Appendix B). However, in order
to push the fringe of achievable factorization problems
significantly further the matrix-times-vector step has to
be speeded. Currently known alternatives are to switch
to the Niederreiter approach, or to utilize Algorithm 3.1
of von zur Gathen and Shoup (1992) in the sequence
generation part of the block method, or to parallelize
a version of the distinct-degree factorization algorithm
(Shoup, private communication). However, we are not
entirely sure that either change can substantially help.
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