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Wiedmann’s coordinate recurrence method (1986)
For w,v € KY and A € KY¥*¥ consider the sequence of field elements
a; =uTAw, i=0,1,2,...
Let fA(N) =M Mk e K[\ with £ (A) = 0.

Since ut* A7 f(4)(A)v = 0, we have

M
Vi>0: Y fiPaps; =0
k=0

that is, {a;}i=0,1,... satisfies a linear recurrence.

geoe

Randomly precondition A and choose random u and v; then

geoe



The associated Toeplitz system

Coefficients féA), el f](\f,) of a multiple of f(4) can be found by com-
puting a non-zero solution to the Toeplitz system

T an aN_1 . a1 ap 1 I fn ]
AN +1 anN e az ai fN—1
AN+1 s : a2 | vz | 0
a2 N —2 aN—1
LA2N—-1 Q2N-2 . aN AN -—1 - L fo -

Achievable in O(N (log N)?loglog N) arithmetic steps by the Brent-
Gustavson-Yun half-GCD Toeplitz solver (1980).



Coppersmith’s (1992) parallelization (modified)

Use of the block vectors £ € KV*™ in place of u
z € KVX™ in place of v

a; = wtrBH_lZ c Kan

Find a vector polynomial ¢z AY + cp o AL+ + ep AP € K[,
such that

D D
Y52 0:) e =) @B Bae =0 c K
1=L i=L



The associated block-Toeplitz system

Let D = [N/n|, S=n(D+1), E=1[S/m], and let R =mE. Compute
a non-zero solution to the linear homogeneous R x S system

ap ce . ai ao CD
ap4i1 ap az a; CDh-1
=0,
 ADp+E—-1 | --- ap—141 L Co _

where ¢; € K".

Achievable in O((m + n)?N(log N)? loglog N) arithmetic steps by a
generalization /randomization of the Bitmead-Anderson/Morf (1980)
fast inversion algorithm for Toeplitz-like matrices.



Parallel coarse-grain realization

The B processor computes the v/t

h

column of a;, ¢

<

Y
~Y

3=

S|=



Implementation: sparse random matrices over GF(32 749)

Task Blocking Factor
N 2 4 8
10,000t | (1) (a(®) 7729/ 3h54/ 209/
(2) b-massey 2125/ 4"08’ 800
(3) evaluation 3h47! 1759/ 1705
total 13741 10706 11714’
20,000f | (1) (a®) 57017 28743 1521’
(2) b-massey 948 16”36 33139’
(3) evaluation 297142 1444/ 7753’
total 9647’ 6002/ 5653

Distributed on our DSC system
Each processor rated at 28.5 MIPS

T ~ 350000 non-zero entries
I ~ 1300000 non-zero entries




Example: Euclidean scheme
Given L < min{M, N} and
foi(x) = apr™M +apy Ml 44 qp € K[x]

and
fo(z) = bnz™ +by_1z™ T+ by € K[x]

compute the remainder f; in the Euclidean chain with

deg(f;) < L < deg(fi—1)

and the multipliers s; and ¢; with

sif-1+tifo=fi.



Solve for the coefficients of S(x), T'(x), and F(x):

deg(F) < L,
Sf—1+TfO:F7 deg<S)SN_L_]—7
deg(T) <M —L —1.
<= compute right null space of dimension M + N — (L — deg f;
a9 0 % 0 -1 0
al agp bl
aq : bo O —1
anr ao
0 anr bN
0 0 0
apns bN
0 o 0 0 |
N —-L M- L L+1



Toeplitz-like matrices

Kailath et al. 1979 consider the matrix displacement operators

B (4) = A= |(PA) =

[ a1.1 a2 ... Q1 N () 0 0 ]
a2, 1 a2 2 ce a2 N 0 ai,1 ce a1,N—1
LanN;1 an2 ... OGN N - L0 aN—-1,1 --- GOGN—-1,N-—1-

and ¢_(A) = A— 1(14).

A matrix is Toeplitz-like if the matrix ranks a; (A) = rank(¢,(A))
or a_(A) = rank(¢_(A)) are small.

If A is an m x n block matrix with Toeplitz blocks, then
ar(A) <m+n.



Displacement rank formulas

a+(A) a+(A)
(la) ¢4 (A Z yiz = A= Z Lly;] Ul=] (XLU-rep.)
j=1
a_(A) a_(A)
(1b) ¢_(A) = TRZl = A= Z U7 )] L[zV] (XUL-rep.)
k=1

(4) o (AB) < ay(A) + oy (B) +1

Y, %5, Yk, 2k are N-dimensional vectors
yr™v, zr7V are the mirror images of Ui, Z
Lly] is a lower-triangular Toeplitz matrix whose first column is y

U[z"] is an upper triangular Toeplitz matrix whose first row is z*"



Main algorithmic problems
Given the XLU representation for an N x NN non-singular matrix A of

displacement rank «, compute the Y UL representation for A=1.
Note: input and output occupies O(aN) elements.

Given the X LU representation for an N x N singular matrix A,
compute rank(A) and a vector w such that Aw = 0 and w # 0.

By use of randomization we can solve both problems in
O(a”’N(log N)? loglog N)

arithmetic operations.



Divide-and-conquer strategy & la Strassen

Suppose all possible leading principal submatrices are non-singular
(“generic rank profile”): for

A2,1 ‘ A2,2
we have
A1 — Al—i +A1_,1A1,2A_1A2,1A1_,} ‘ _Al—jAmA—l

—A_lAz,lAl_’} ‘ A1
where A = Ag 9 — Ag,lAiiAl,g is the Schur complement.

Lemma (cf. Bitmead-Anderson/Morf 1980): If A; ; is non-singular
and if A[1,1] # 0 then ay(A) < ay(A).



Generic rank profile by randomization

Theorem (Kaltofen and Saunders 1991): Let v and w be vectors
whose entries are randomly selected from a subset S of the field of
entries. Then

A=UQ"] - A - L[w]
N—— N— "
1% W

N(N+1)
cardinality(.S) °

has generic rank profile with probability 1 —

~

Note: ay (A) < ay(A) + 4.



Minimal-length generators by randomization

Suppose we are given a non-minimal LU representation

5,
A= LIl UEEEL, 8> ar(A).
k=1
Then we may probabilistically find a minimal LU representation
A=Y Lyl UL, a=as(A),
j=1

in O(aBN + BN log N loglog N) arithmetic operations.

Uses randomizations for generic rank profile:

Vo gi(A) W=g-2" = ¢,.(A) = (V'§) (Z"W)



Picking a random solution of a singular system

Let A € K™ be of rank r and generic rank profile. Then for

y — v uniformly samples the right null space of A.



Loose ends

avold randomization

can complexity be reduced to "N (log N)°V) with n < 2 by fast
matrix multiplication?

give efficient parallel algorithm; that is, algorithm with (log N)°()

parallel time and a?N processors
Best-known solution takes a/N? processors

generalize shift operators to Macaulay matrices

prove fast method practical in comparision to the O(aN?) Levin-
son/Durbin method



