Asymptotically fast solution of Toeplitz-like singular linear systems

ERICH KALTOFEN

Rensselaer Polytechnic Institute
Department of Computer Science
Troy, New York, USA

Outline

- examples of Toeplitz-like matrices
 - in Coppersmith's block Wiedemann method
 - in Euclidean schemes
- Toeplitz-like matrices
 - definition by displacement operators
 - products and inverses
- divide-and-conquer inversion
- randomizations
 - o attaining generic rank profile
 - minimizing the generator length
 - o singular systems
- loose ends

Wiedmann's coordinate recurrence method (1986)

For $u, v \in \mathbb{K}^N$ and $A \in \mathbb{K}^{N \times N}$ consider the sequence of field elements

$$a_i = u^{\text{tr}} A^i v, \quad i = 0, 1, 2, \dots$$

Let $f^{(A)}(\lambda) = \sum_{k=0}^{M} f_k^{(A)} \lambda^k \in \mathbb{K}[\lambda]$ with $f^{(A)}(A) = 0$.

Since $u^{\operatorname{tr}} A^j f^{(A)}(A) v = 0$, we have

$$\forall j \ge 0$$
: $\sum_{k=0}^{M} f_k^{(A)} a_{k+j} = 0$

that is, $\{a_i\}_{i=0,1,...}$ satisfies a linear recurrence.

Randomly precondition A and choose random u and v; then

 $\operatorname{Det}(\lambda I - A) = \operatorname{minimum} \operatorname{recurrence} \operatorname{polynomial} \operatorname{of} \{a_i\}_{i=0,1,\dots}.$

The associated Toeplitz system

Coefficients $f_0^{(A)}, \ldots, f_{M'}^{(A)}$ of a multiple of $f^{(A)}$ can be found by computing a **non-zero** solution to the Toeplitz system

$$\begin{bmatrix} a_{N} & a_{N-1} & \dots & a_{1} & a_{0} \\ a_{N+1} & a_{N} & \dots & a_{2} & a_{1} \\ \vdots & a_{N+1} & \ddots & \vdots & a_{2} \\ \vdots & & & & \vdots \\ a_{2N-2} & & & a_{N-1} \\ a_{2N-1} & a_{2N-2} & \dots & a_{N} & a_{N-1} \end{bmatrix} \cdot \begin{bmatrix} f_{N} \\ f_{N-1} \\ f_{N-2} \\ \vdots \\ f_{0} \end{bmatrix} = \mathbf{0}.$$

Achievable in $O(N(\log N)^2 \log \log N)$ arithmetic steps by the Brent-Gustavson-Yun half-GCD Toeplitz solver (1980).

Coppersmith's (1992) parallelization (modified)

Use of the block vectors $\boldsymbol{x} \in \mathbb{K}^{N \times m}$ in place of u $\boldsymbol{z} \in \mathbb{K}^{N \times n}$ in place of v

$$oldsymbol{a}_i = oldsymbol{x}^{ ext{tr}} B^{i+1} oldsymbol{z} \in \mathbb{K}^{m imes n}$$

Find a vector polynomial $c_L \lambda^L + c_{L+1} \lambda^{L+1} + \cdots + c_D \lambda^D \in \mathbb{K}^n[\lambda]$, such that

$$\forall j \geq 0$$
: $\sum_{i=L}^{D} \boldsymbol{a}_{j+i} c_i = \sum_{i=L}^{D} \boldsymbol{x}^{\operatorname{tr}} B^{i+j} B \boldsymbol{z} c_i = \boldsymbol{0} \in \mathbb{K}^{m \times n}$

The associated block-Toeplitz system

Let $D = \lceil N/n \rceil$, S = n(D+1), $E = \lceil S/m \rceil$, and let R = mE. Compute a non-zero solution to the linear homogeneous $R \times S$ system

where $c_i \in \mathbb{K}^n$.

Achievable in $O((m+n)^2N(\log N)^2\log\log N)$ arithmetic steps by a **generalization/randomization** of the Bitmead-Anderson/Morf (1980) fast inversion algorithm for Toeplitz-like matrices.

Parallel coarse-grain realization

The ν^{th} processor computes the ν^{th} column of $\boldsymbol{a}_i, i \lesssim \frac{N}{m} + \frac{N}{n}$

Implementation: sparse random matrices over GF(32749)

	Task	Blocking Factor		
N		2	4	8
10,000†	(1) $\langle a^{(i)} \rangle$ (2) b-massey (3) evaluation total	$7^{h}29'$ $2^{h}25'$ $3^{h}47'$ $13^{h}41'$	$3^{h}54'$ $4^{h}08'$ $1^{h}59'$ $10^{h}06'$	$2^{h}09' \\ 8^{h}00' \\ 1^{h}05' \\ 11^{h}14'$
20,000‡	(1) $\langle a^{(i)} \rangle$ (2) b-massey (3) evaluation total	$57^{h}17'$ $9^{h}48'$ $29^{h}42'$ $96^{h}47'$	$28^{h}43'$ $16^{h}36'$ $14^{h}44'$ $60^{h}02'$	$15^{h}21'$ $33^{h}39'$ $7^{h}53'$ $56^{h}53'$

Distributed on our DSC system Each processor rated at 28.5 MIPS

 $\dagger \approx 350\,000$ non-zero entries

 $\ddagger \approx 1\,300\,000$ non-zero entries

Example: Euclidean scheme

Given $L \leq \min\{M, N\}$ and

$$f_{-1}(x) = a_M x^M + a_{M-1} x^{M-1} + \dots + a_0 \in \mathbb{K}[x]$$

and

$$f_0(x) = b_N x^N + b_{N-1} x^{N-1} + \dots + b_0 \in \mathbb{K}[x]$$

compute the remainder f_i in the Euclidean chain with

$$\deg(f_i) \le L < \deg(f_{i-1})$$

and the multipliers s_i and t_i with

$$s_i f_{-1} + t_i f_0 = f_i.$$

Solve for the coefficients of S(x), T(x), and F(x):

$$Sf_{-1} + Tf_0 = F,$$

$$\begin{cases} \deg(F) \le L, \\ \deg(S) \le N - L - 1, \\ \deg(T) \le M - L - 1. \end{cases}$$

 \iff compute right null space of dimension $M + N - (L - \deg f_i)$ of

$$\begin{bmatrix} a_0 & & & 0 & b_0 & & 0 & -1 & & 0 \\ a_1 & a_0 & & & b_1 & \ddots & & \ddots & \\ \vdots & a_1 & \ddots & & \vdots & \ddots & b_0 & 0 & & -1 \\ a_M & \vdots & & a_0 & & & & & & \\ 0 & a_M & & & b_N & & & & & \\ 0 & & \ddots & \vdots & 0 & \ddots & \vdots & & 0 \\ & & & \ddots & a_M & & \ddots & b_N & & \\ 0 & & & 0 & & 0 & & & & \\ N-L & & M-L & & L+1 & & & \end{bmatrix}.$$

Toeplitz-like matrices

Kailath et al. 1979 consider the matrix displacement operators

$$\phi_{+}(A) = A - \downarrow(\uparrow A) = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,N} \\ a_{2,1} & a_{2,2} & \dots & a_{2,N} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N,1} & a_{N,2} & \dots & a_{N,N} \end{bmatrix} - \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & a_{1,1} & \dots & a_{1,N-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_{N-1,1} & \dots & a_{N-1,N-1} \end{bmatrix}$$

and
$$\phi_{-}(A) = A - \uparrow (\uparrow A)$$
.

A matrix is **Toeplitz-like** if the matrix ranks $\alpha_{+}(A) = \operatorname{rank}(\phi_{+}(A))$ or $\alpha_{-}(A) = \operatorname{rank}(\phi_{-}(A))$ are small.

If A is an $m \times n$ block matrix with Toeplitz blocks, then $\alpha_+(A) \leq m + n$.

Displacement rank formulas

$$(1a) \phi_{+}(A) = \sum_{j=1}^{\alpha_{+}(A)} y_{j} z_{j}^{\operatorname{tr}} \iff A = \sum_{j=1}^{\alpha_{+}(A)} L[\![y_{j}]\!] U[\![z_{j}^{\operatorname{tr}}]\!] \qquad (\Sigma LU\text{-rep.})$$

$$(1b) \phi_{-}(A) = \sum_{k=1}^{\alpha_{-}(A)} \bar{y}_{k} \bar{z}_{k}^{\mathrm{tr}} \iff A = \sum_{k=1}^{\alpha_{-}(A)} U[\![(\bar{y}_{k}^{\mathrm{rev}})^{\mathrm{tr}}]\!] L[\![\bar{z}_{k}^{\mathrm{rev}}]\!] (\Sigma \mathrm{UL-rep.})$$

(2)
$$-2 \le \alpha_+(A) - \alpha_-(A) \le 2$$

(3)
$$\alpha_{+}(A) = \alpha_{-}(A^{-1})$$
 and $\alpha_{-}(A) = \alpha_{+}(A^{-1})$

(4)
$$\alpha_{+}(AB) \leq \alpha_{+}(A) + \alpha_{+}(B) + 1$$

 $y_j, z_j, \bar{y}_k, \bar{z}_k$ are N-dimensional vectors $\bar{y}_{k_-}^{\text{rev}}, \bar{z}_k^{\text{rev}}$ are the mirror images of \bar{y}_k, \bar{z}_k

L[y] is a lower-triangular Toeplitz matrix whose first column is y $U[z^{tr}]$ is an upper triangular Toeplitz matrix whose first row is z^{tr}

Main algorithmic problems

Given the Σ LU representation for an $N \times N$ non-singular matrix A of displacement rank α , compute the Σ UL representation for A^{-1} . Note: input and output occupies $O(\alpha N)$ elements.

Given the Σ LU representation for an $N \times N$ singular matrix A, compute rank(A) and a vector w such that $Aw = \mathbf{0}$ and $w \neq \mathbf{0}$.

By use of randomization we can solve both problems in

$$O(\alpha^2 N (\log N)^2 \log\log N)$$

arithmetic operations.

Divide-and-conquer strategy á la Strassen

Suppose all possible leading principal submatrices are non-singular ("generic rank profile"): for

$$A = \left[\frac{A_{1,1} \mid A_{1,2}}{A_{2,1} \mid A_{2,2}} \right]$$

we have

$$A^{-1} = \left[\frac{A_{1,1}^{-1} + A_{1,1}^{-1} A_{1,2} \Delta^{-1} A_{2,1} A_{1,1}^{-1} \mid -A_{1,1}^{-1} A_{1,2} \Delta^{-1}}{-\Delta^{-1} A_{2,1} A_{1,1}^{-1} \mid \Delta^{-1}} \right].$$

where $\Delta = A_{2,2} - A_{2,1}A_{1,1}^{-1}A_{1,2}$ is the **Schur complement**.

Lemma (cf. Bitmead-Anderson/Morf 1980): If $A_{1,1}$ is non-singular and if $A[1,1] \neq 0$ then $\alpha_+(\Delta) \leq \alpha_+(A)$.

Generic rank profile by randomization

Theorem (Kaltofen and Saunders 1991): Let v and w be vectors whose entries are randomly selected from a subset S of the field of entries. Then

$$\widetilde{A} = \underbrace{U[v^{\operatorname{tr}}]}_{V} \cdot A \cdot \underbrace{L[w]}_{W}$$

has generic rank profile with probability $1 - \frac{N(N+1)}{\text{cardinality}(S)}$.

Note: $\alpha_+(\widetilde{A}) \le \alpha_+(A) + 4$.

Minimal-length generators by randomization

Suppose we are given a **non-minimal** Σ LU representation

$$A = \sum_{k=1}^{\beta} L[[\hat{y}_k]] U[[\hat{z}_k^{\text{tr}}]], \quad \beta > \alpha_+(A).$$

Then we may probabilistically find a **minimal** Σ LU representation

$$A = \sum_{j=1}^{\alpha} L[y_j] U[z_j^{\mathrm{tr}}], \quad \alpha = \alpha_+(A),$$

in $O(\alpha\beta N + \beta N \log N \log \log N)$ arithmetic operations.

Uses randomizations for generic rank profile:

$$V \cdot \phi_{+}(A) \cdot W = \tilde{\boldsymbol{y}} \cdot \tilde{\boldsymbol{z}}^{\mathrm{tr}} \Longrightarrow \phi_{+}(A) = (V^{-1}\tilde{\boldsymbol{y}}) \cdot (\tilde{\boldsymbol{z}}^{\mathrm{tr}}W^{-1})$$

Picking a random solution of a singular system

Let $\widetilde{A} \in \mathbb{K}^{n \times n}$ be of rank r and generic rank profile. Then for

$$\left\{ \widetilde{A} \cdot \left\{ egin{array}{c} y' \ 0 \ dots \ 0 \end{array}
ight\} n-r = \widetilde{A}v, \quad v ext{ random},$$

y-v uniformly samples the right null space of \widetilde{A} .

Loose ends

• avoid randomization

• can complexity be reduced to $\alpha^{\eta}N(\log N)^{O(1)}$ with $\eta < 2$ by fast matrix multiplication?

• give efficient parallel algorithm; that is, algorithm with $(\log N)^{O(1)}$ parallel time and $\alpha^2 N$ processors

Best-known solution takes αN^2 processors

• generalize shift operators to Macaulay matrices

• prove fast method practical in comparision to the $O(\alpha N^2)$ Levinson/Durbin method