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Abstract

The black box representation of a multivariate polynomial is

a function that takes as input a value for each variable and

then produces the value of the polynomial. We revisit the

problem of computing the greatest common divisor (GCD)

in black box format of several multivariate polynomials that

themselves are given by black boxes. To this end an im-

proved version of the algorithm sketched in Kaltofen and

Trager [J. Symbolic Comput., vol. 9, nr. 3, p. 311 (1990)] is

described. Also the full analysis of the improved algorithm is

given. Our algorithm constructs in random polynomial-time

a procedure that will evaluate a �xed associate of the GCD

at an arbitrary point (supplied as its input) in polynomial

time. The randomization of the black box construction is of

the Monte-Carlo kind, that is with controllably high proba-

bility the procedures evaluating the GCD are correct at all

input points. Finally, a Maple prototype implementation as

well as our plans for developing a subsystem for manipulat-

ing multivariate polynomials and rational functions in black

box representation are presented.

1 Introduction

The dreaded phenomenon of expression swell in symbolic

computation can be palliated by adopting implicit repre-

sentations for symbolic objects, such as by straight-line

programs (Kaltofen 1988 and 1989) or by so-called black

box representations (Kaltofen and Trager 1990). In the

latter, each expression is a symbolic object, more speci�-

cally, a computer program with a set of statically initial-

ized data, which takes as input a value for each variable

and then produces the value of the symbolic object it rep-

resents at the speci�ed point. E�cient algorithms for fac-

toring multivariate polynomials in the black box represen-
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tation are described in Kaltofen and Trager (1990). Various

e�cient methods for recovering the sparse representation

of a polynomial or rational function, for example, as lists

of non-zero monomials, have also been previously discov-

ered (Zippel 1979 and 1990, Ben-Or and Tiwari 1988, Grig-

oriev et al. 1990, Kaltofen and Lakshman 1988, Kaltofen

et al. 1990, Mansour 1992, Grigoriev and Karpinski 1993,

Lakshman and Saunders 1994 and 1995, Grigoriev and Lak-

shman 1994).

In this article, we revisit the problem of computing the

black box greatest common divisor (GCD) of several mul-

tivariate polynomials that are given by black boxes. In

Kaltofen and Trager (1990, p. 311), we have presented a

brief sketch of a possible solution. Here we give both the

detailed description and a full analysis of an improved ver-

sion of that algorithm. We also discuss the prototypical

implementation of our algorithm in Maple and the issues

that arise for building a system for manipulating polynomi-

als in black box representation that is callable from general

purpose computer algebra software such as Axiom, Maple,

or Mathematica.

The black box GCD algorithm must �x a unique scalar

multiple of the GCD that the produced black box will eval-

uate at the given points. The scalar multiple is �xed by

performing a generic symbolic shift of the variables that

makes the shifted GCD monic in the main variable X. By

our shifts, we also avoid the computationally costly content

and primitive part problem of GCD algorithms for poly-

nomials in explicit representation like Brown's (1971), Zip-

pel's (1979), or Char's et al. (1989) modular algorithms,

and like Moses's and Yun's (1973), Wang's (1980), or

Kaltofen's (1985) Hensel-lifting based algorithms. Note that

the shifts do not introduce expression swell since the repre-

sentation of the input polynomials is by black boxes. Values

of the GCD are obtained by introducing a second variable Y

in the fashion of homotopy continuation (Drexler 1977). For

Y = 0, the black box computes the value of the GCD at a

predetermined point, while for Y = 1 we will have the value

of the GCD at the inputs to the black box. Finally, the

problem of computing the GCD of several polynomials is

reduced to the problem of computing the GCD of a pair

of polynomials by taking a random scalar sum, which is a

technique �rst introduce by D. Spear (see Wang 1980, p.

57). Finally, we remark that our algorithm uses randomiza-

tion and that the resulting black box for the GCD may with

controllably small probability be incorrect. However, if the

black box was determined correctly, the values for the GCD
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will always be correct.

Our improvement of the algorithm sketched in Kaltofen

and Trager (1990) is as follows. By using a modular GCD

approach for the arising bivariate GCD problem (in the vari-

ables X and Y ) we can greatly reduce the number of calls

to the black boxes for the input polynomials. In fact, under

fortunate circumstances the input black boxes need only be

called degree of the input polynomials many times in order

to obtain the value of the GCD at a single point.

The black box approach to computing GCDs of multi-

variate polynomials has several advantages over other meth-

ods. First, it can handle polynomials that are exponential

in size even when represented in sparse format, such as de-

terminants of matrices with polynomial entries. Second, the

produced GCD can be manipulated in various ways. For in-

stance, the new sparse interpolation algorithms with respect

to non-standard bases can retrieve a concise representation

even if the GCD is not sparse in the power basis sense (Lak-

shman and Saunders 1994 and 1995, Grigoriev and Laksh-

man 1994). An example would be a GCD that is sparse

by shifting the variables, like (x

1

� 1) � (x

2

� 2) � � � (x

n

�

n)+1. Third, the black box representation improves on the

straight-line program representation (Kaltofen 1988) in that

the produced objects, in our case the black box programs for

the GCD, are very small in size. In fact, the black box rep-

resentation was invented because of the experience obtained

from experiments in our Dagwood system for manipulating

straight-line programs (Freeman et al. 1988).

Most sparse interpolation algorithms are ideally suited

for parallelization: the algorithms probe the polynomial at

selected points and then perform the interpolation task by

use of the obtained values. Therefore, the evaluation at the

di�erent points can be done on di�erent computers. Rayes

et al. (1994) have implemented the sparse GCD algorithm

by Zippel (1979) in that way. However, their approach is re-

stricted to a single sparse interpolation method (Zippel's),

and their algorithm still faces the content and leading coef-

�cient problems. Furthermore, due to the small size of our

resulting black box programs for the GCD, sparse interpola-

tion can be parallelized on a network of computers with less

data transfer (cf. D��az et al. 1991) than one would have if

the input polynomials were represented in standard format

or if the resulting GCD were represented as a straight-line

program.

Our paper is organized as follows. In x2, we describe the

black box GCD algorithm in full detail and state its com-

putational complexity. We give running time measures for

both the task of constructing the black box and for an evalu-

ation of the produced black box at a point. In x3, we supply

the proofs of our analysis including the estimate on the prob-

ability that the algorithm fails to produce a correct result.

In x4, we describe our Maple prototype implementation and

concomitantly lay out our plans of an implementation in a

compilable language.

2 The Black Box GCD Algorithm

We now give a detailed description of our algorithm. For

clarity, we shall state the actual computations in imperative

mood and typeset them in italics font, while keeping the

extensive comments in narrative and roman.

Algorithm Black Box GCD

Input: A black box for each polynomial f

i

(x

1

; : : : ; x

n

)

2 K[x

1

; : : : ; x

n

] for i = 1; : : : ; r, r � 2, where K is a

�eld.

Output: A program (see Figure 1) that makes calls to

the black boxes of the f

i

's and has with probability

no less than 1 � � the following property. The pro-

gram accepts n �eld elements p

1

; : : : ; p

n

: It returns

g(p

1

; : : : ; p

n

) 2 K where g = GCD

1�i�r

(f

i

): Notice

that g(p

1

; : : : ; p

n

) is determined only up to a mul-

tiple in K. For repeated invocations with di�erent

arguments, it returns the value scaled by the same

multiple. Notice also that the failure probability ap-

plies to the construction and not to the execution of

the program. That is, with probability at least 1� �

the output program is correct; a correct program will

always produce the true values of the GCD.

Step 1: Pick random �eld elements

a

2

; : : : ; a

n

; b

2

; : : : ; b

n

; c

3

; : : : ; c

r

from a su�ciently large �nite subset R � K. We will give

the cardinality of this set in relation to deg(f

i

) for 1 � i � r

and � in the statement of theorem 1 below.

Let the overline operator

�

for any h 2 K[x

1

; : : : ; x

n

] be the

projection

�

h(X;Y ) = h(X;Y (p

2

� a

2

p

1

� b

2

) + a

2

X + b

2

;

: : : ; Y (p

n

� a

n

p

1

� b

n

) + a

n

X + b

n

):

Note that

�

h(p

1

; 1) = h(p

1

; : : : ; p

n

): We will be using the

bivariate polynomials

�

f

0

(X;Y ) =

�

f

2

(X;Y ) +

r

X

i=3

c

i

�

f

i

(X;Y );

�

f

1

(X;Y );


(X;Y ) = GCD(

�

f

0

(X;Y );

�

f

1

(X;Y ));

and the univariate GCDs

�


e

(X) = GCD(

�

f

0

(X; e);

�

f

1

(X; e)) for e 2 K:

Among the possible associates for the GCDs 
 and �


e

we

always choose those whose leading coe�cient is one an the

same element of K, namely the leading coe�cient of �


0

. We

will show in the proof of Theorem 1 below that with high

probability 
 = �g.

Step 2: By standard interpolation compute

�

f

0

(X; 0) = f

2

(X; a

2

X + b

2

; : : : ; a

n

X + b

n

)+

r

X

i=3

c

i

f

i

(X; a

2

X + b

2

; : : : ; a

n

X + b

n

)

and

�

f

1

(X; 0) = f

1

(X; a

2

X + b

2

; : : : ; a

n

X + b

n

);

then compute �


0

(X) = GCD(

�

f

0

(X; 0);

�

f

1

(X; 0)).

The interpolation algorithms mentioned above and be-

low need to know deg

X

(

�

f

i

) for all 1 � i � r. Either

the degree or an upper bound is supplied as input, or

the degree can be probabilistically guessed as follows (see

Kaltofen and Trager 1990). Pick a random B 2 R and com-

pute

�

f

i

(X;B) by determining a succession of polynomials

�

f

(d)

i

(X;B) for d = 1; 2; 3; : : : until

�

f

(d)

i

(X;B) =

�

f

i

(X;B),

where

�

f

(d)

i

(X;B) is the interpolate at X = 0; 1; : : : ; d of

�

f

i

(X;B). We test whether

�

f

(d)

i

(X;B) =

�

f

i

(X;B) by eval-

uating at a random A 2 R: if

�

f

(d)

i

(A;B) =

�

f

i

(A;B) then
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p

1

; : : : ; p

n

2 K

�������������!

Precomputed data including a

2

; : : : ; a

n

;

b

2

; : : : ; b

n

; c

3

; : : : ; c

r

, deg

X

(

�

f

1

), : : :,

deg

X

(

�

f

r

), GCD(

�

f

0

(X; 0);

�

f

1

(X; 0)).

Program makes \oracle calls": 1 � i � r

q

1

; : : : ; q

n

����������!

f

i

(x

1

; : : : ; x

n

)

f

i

(q

1

; : : : ; q

n

)

�����������!

g(p

1

; : : : ; p

n

) 2 K

��������������!

Figure 1: The program for evaluating the GCD of black box

we declare

�

f

(d)

i

(X;B) =

�

f

i

(X;B) and deg

X

(

�

f

i

) = d, other-

wise we continue the interpolation. The failure probability

is bounded by deg(

�

f

i

)=card(R), which means that the degree

in X of

�

f

i

(X;Y ) would have to be very large in order for

the guessing procedure to be unreliable. Note that one may

use B = 0 provided the leading coe�cient of

�

f

i

(X;Y ) does

not depend on Y . One can estimate the probability that the

random a

i

yield this condition, but we will not incorporate

such an estimate in our analysis. Ultimately, if the probabil-

ity of determining the degree correctly is to be guaranteed,

an upper bound for all deg(f

i

) must be provided by the user

of this algorithm.

If not all polynomials f

i

for i � 3 are needed to deter-

mine �


0

, those polynomials that are redundant meaning that

they can be omitted without a�ecting the GCD, preferably

the ones of highest degree, can be ignored for future con-

siderations. An optimization at this point can signi�cantly

reduce the complexity of the output black box.

Step 3: This step constructs the programs for evaluation

of g at p

1

; : : : ; p

n

as described in the output speci�ca-

tions. First a

2

; : : : ; a

n

; b

2

; : : : ; b

n

; c

3

; : : : ; c

r

, d

i

= deg

X

(

�

f

i

)

for 1 � i � r, �


0

, and � = deg(�


0

) are \hardwired" into that

program. Then the following Steps A, and B are appended

to the program.

Step A: Let S � K containing f1g be of cardinality at

least d

0

d

1

+ �: First select i

1

= 1 and compute �


1

(X). If

deg(�


1

(X)) = � then the black box can terminate early,

therefore return �


1

(p

1

) as the requested evaluation. If

deg(�


1

(X)) > � compute 
 by using a modular GCD ap-

proach. To this end select i

1

; i

2

; : : : ; i

�

pairwise distinct

elements in S such that deg(�


i

j

) = � for 0 � j � �. Any

element e in S such that deg(�


e

) > � must be discarded.

Further we are guaranteed that only d

0

d

1

of such elements

exist. If for any element e in S we have deg(�


e

) < � then

the black box is invalid and the program returns an error

indicating that a new black box is needed with di�erent ran-

dom elements. The polynomials �


e

are computed as GCDs

of

�

f

0

(X; e) and

�

f

1

(X; e) which can be computed by interpo-

lation using d

i

as degree bound for each

�

f

i

(X; e).

Step B: Let I = fi

0

= 0; i

1

; i

2

; : : : ; i

�

g, let P = f�


i

0

(X);

�


i

1

(X); : : : ; �


i

�

(X)g with each polynomial having its leading

coe�cient ldcf(�


0

(X)), and let COEFF(i, P ) for 0 � i � �

be a function that returns an ordered coe�cient list corre-

sponding to the i

th

coe�cient of X

i

of all the polynomials

in P . Furthermore, let INTER(I; C; V ) be a function that

computes the polynomial in the variable V which interpo-

lates the points in I at the values given by C.


  X

�

;

For j  0; : : : ; � � 1 Do:

Let 
 = 
 +X

j

� INTER(I;COEFF(i ;P); Y );

Finally 
(p

1

; 1) can now be returned at the requested eval-

uation. �

The following theorem states the complexity and the fail-

ure estimate in relation to the cardinality of R mentioned in

Step 1 of the above algorithm.

Theorem 1 The Black Box Polynomial GCD algorithm can

construct its output program in polynomially many arith-

metic steps as a function of r and deg(f

i

) for 1 � i � r. For

each i, it requires deg(f

i

)+1 oracle calls to the black box of

the polynomial if the degree of each polynomial is known, or

deg(f

i

)+2 oracle calls to the black box of the polynomial if

only a degree bound is known. If the cardinality of the set

R in Step 1 is chosen

card(R) � deg(f

1

) � (1 + 2 max

2�i�r

fdeg(f

i

)g)

.

�

then the algorithm succeeds with probability no less than

1 � � and the resulting program will always correctly eval-

uate the GCD at all points. That program in turn can be

executed in polynomially many arithmetic steps and at best

with deg(f

i

) + 1 many oracle calls to each black box of f

i

for all 1 � i � r, and at worst with

deg(f

i

) � (� + deg(f

1

) � max

2�i�r

fdeg(f

i

)g)

many oracle calls to each black box of f

i

, where � =

deg(GCD

1�i�r

(f

i

)).

Note that our analysis supposes that the degrees of the

input polynomials (or upper bounds for them) are known.

As explained in Step 2, it is possible to probabilistically de-

termine them. The proof of the above theorem is somewhat

involved and is given in the next section. Those readers in-

terested in the implementation of our algorithm may skip to

the subsequent section.

3 Complexity Analysis

In this section we provide a proof for the complexity and

probabilistic analysis of the Black Box GCD algorithm as

given in Theorem 1. We will base our arguments on three

lemmas, which we state and prove next. First, we shall es-

tablish a well-known condition under which GCD operations

and homomorphic imaging commute. In order to avoid am-

biguities, we sometimes write GCD

D

(f

1

; f

2

) meaning that

the GCD is to be taken in the domain D. Note that our

condition is weaker than those established by Brown (1971),

who assumes that no leading coe�cient of the inputs an no

leading coe�cient of a non-zero remainder in the Euclidean

chain is mapped to zero. Consequently, we will obtain better

probabilistic estimates.
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Lemma 1 Let E be a UFD, K a �eld, �:E ! K be a ring

homomorphism, f

1

= a

n

x

n

+� � �+a

0

and f

2

= b

m

x

m

+� � �+b

0

2 E[x], l = ldcf

x

(S

�

(f

1

; f

2

)) where � = deg(GCD

E[x]

(f

1

; f

2

))

and where S

�

(f

1

; f

2

) is the subresultant formal degree � of

f

1

and f

2

(see Brown and Traub 1971). If �(l) 6= 0 we have

u � �(GCD

E[x]

(f

1

; f

2

)) = GCD

K[x]

(�(f

1

); �(f

2

))

and

� = deg(GCD

K[x]

(�(f

1

); �(f

2

))) (1)

for u 2 K n f0g.

Proof From the condition �(l) 6= 0 we can infer that one or

both of the ldcf

x

(�(f

1

)) and ldcf

x

(�(f

2

)) must be nonzero.

Let c

�

= ldcf

x

(GCD

E[x]

(f

1

; f

2

)). Our �rst claim is that

� = deg(�(GCD

E[x]

(f

1

; f

2

)));

where � was de�ned as deg(GCD

E[x]

(f

1

; f

2

)). We observe

without loss of generality that if �(a

n

) 6= 0, c

�

j a

n

implies

that �(c

�

) 6= 0, which proves the claim. Let

�

0

= deg(GCD

K[x]

(�(f

1

); �(f

2

))):

Since � is a ring homomorphism

�(GCD

E[x]

(f

1

; f

2

)) j GCD

K[x]

(�(f

1

); �(f

2

)) (2)

and consequently,

� � �

0

: (3)

Let f

1

; f

2

; : : : ; f

k

be the polynomial remainder sequence

(PRS) of f

1

and f

2

. Also, let

^

f

1

;

^

f

2

; : : : ;

^

f

^

k

be the PRS of

�(f

1

) and �(f

2

). Assume for purpose of contradiction that

�

0

> �. According to the Fundamental Theorem of Subre-

sultants S

j

(

^

f

1

;

^

f

2

) = 0 for j = 0; : : : ; �

0

� 1. Since � is in the

range 0; : : : ; �

0

� 1, S

�

(

^

f

1

;

^

f

2

)) = 0.

Case 1: Both ldcf

x

(�(f

1

)) and ldcf

x

(�(f

2

)) are nonzero :

The dimension of the matrix corresponding to �(S

�

(f

1

; f

2

))

is (n + m � 2�) � (n + m � 2�). Since ldcf

x

(�(f

1

)) and

ldcf

x

(�(f

2

)) are nonzero the degree of �(f

1

) and �(f

2

) does

not change, and therefore the dimension of the matrix corre-

sponding to S

�

(�(f

1

); �(f

2

)) is also (n+m�2�)�(n+m�2�).

From this it follows that when ldcf

x

(�(f

1

)) and ldcf

x

(�(f

2

))

are nonzero �(S

�

(f

1

; f

2

)) = S

�

(�(f

1

); �(f

2

)) and hence a

contradiction.

Case 2: Without loss of generality, ldcf

x

(�(f

1

)) = 0 and

ldcf

x

(�(f

2

)) 6= 0 :

Consider the following example.

�(S

�

(f

1

; f

2

)) = �(Det(

2

6

6

6

6

6

6

4

a

n

a

n�1

a

n�2

: : :

0 a

n

a

n�1

: : :

.

.

.

.

.

.

b

m

b

m�1

b

m�2

: : :

0 b

m

b

m�1

: : :

.

.

.

.

.

.

3

7

7

7

7

7

7

5

))

= Det(

2

6

6

6

6

6

6

6

4

0 �(a

n�1

) �(a

n�2

) : : :

0 0 �(a

n�1

) : : :

.

.

.

.

.

.

�(b

m

) �(b

m�1

) �(b

m�2

) : : :

0 �(b

m

) �(b

m�1

) : : :

.

.

.

.

.

.

3

7

7

7

7

7

7

7

5

)

and

S

�

(�(f

1

); �(f

2

))=Det(

2

6

6

6

6

6

6

6

4

�(a

n�1

) �(a

n�2

) : : :

0 �(a

n�1

) �(a

n�2

) : : :

.

.

.

.

.

.

�(b

m

) �(b

m�1

) �(b

m�2

) : : :

0 �(b

m

) �(b

m�1

) : : :

.

.

.

.

.

.

3

7

7

7

7

7

7

7

5

):

The dimension of �(S

�

(f

1

; f

2

)) is again (n+m�2�)�(n+m�

2�). However, since ldcf

x

(�(f

1

)) = 0, there is a degree drop

(in the above example by 1) in �(f

1

) and hence the dimen-

sion of S

�

(�(f

1

); �(f

2

)) is now (n+m�2��1)�(n+m�2��

1). By minor expansion of the �rst column of �(S

�

(f

1

; f

2

)),

we see that �(S

�

(f

1

; f

2

)) = ldcf

x

(�(f

2

))�S

�

(�(f

1

); �(f

2

)). In

the case more coe�cients of �(f

1

) map to zero we see that

�(S

�

(f

1

; f

2

)) = � ldcf

x

(�(f

2

))

�

� S

�

(�(f

1

); �(f

2

)), where �

is the number of coe�cients of �(f

1

) mapping to zero before

the �rst nonzero coe�cient is reached. We can be guaran-

teed that both �(f

1

) and �(f

2

) can not vanish identically

since �(l) 6= 0. This is again a contradiction to the assump-

tion.

From the contradiction between what was arrived at from

the Fundamental Theorem of Subresultants and Case 1 and

2, we know that �

0

� �, hence,

� � �

0

: (4)

From (3) and (4)

� = �

0

: (5)

Finally (1) follows from (2) and (5).

The next lemma concerns the reduction of the GCD prob-

lem of many polynomials to computing the GCD of a

pair of polynomials. Here we follow a strategy �rst used

by Spear and extended to multivariate polynomials by

Kaltofen (1988, Theorem 6.2). Note that the usage of only

r� 2 random elements can also be found in von zur Gathen

et al.(1994).

Lemma 2 Let f

i

(x

1

; : : : ; x

n

) 2 K[x

1

; : : : ; x

n

] be nonzero

polynomials for i = 1; : : : ; r, r � 2, K a �eld, d = deg(f

1

)

for 1 � i � r, R � K. Then for randomly chosen c

i

2 R,

3 � i � r we have,

Pr(GCD

1�i�r

(f

i

) = GCD(f

1

; f

2

+

r

X

i=3

c

i

f

i

)) � 1�d

.

card(R)

Proof We �rst show this lemma for n = 1. Let

^

f

1

= f

1

;

^

f

2

= f

2

+

r

X

i=3




i

f

i

2 E[x]; E = K[


3

: : : 


r

];




3

: : : 


r

be indeterminants, and let g = GCD

1�i�r

(f

i

):

Clearly, g j

^

f

1

; g j

^

f

2

: The �rst claim is that g = ĝ where ĝ =

GCD(

^

f

1

;

^

f

2

): We observe that ĝ 2 K[x], since ĝ divides f

1

.

Now write

^

f

2

= ĝ

^

f

�

2

, where

^

f

�

2

2 E[x]. We know that ĝ j f

1

,

if we evaluate

^

f

2

= ĝ

^

f

�

2

at 


i

= 0 for 3 � i � r, then we see

that ĝ j f

2

. Evaluating this equation at 


i

= 1 and 


j

= 0,

i 6= j for 3 � i � r we get ĝ j f

2

+ f

i

for 3 � i � r since

we know that ĝ j f

2

, hence ĝ j f

i

for 3 � i � r. Therefore

ĝ j g. Consequently since g j

^

f

1

and g j

^

f

2

we know that
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g j ĝ, hence we can conclude that g = ĝ which proves the

�rst claim. Now let �

c

3

;:::;c

r

:E ! K be the ring homomor-

phism 


i

= c

i

for 3 � i � r, l 2 E[x] be the ldcf

x

(S

�

(

^

f

1

;

^

f

2

))

where � = deg(GCD

E[x]

(

^

f

1

;

^

f

2

)): By lemma 1 if for randomly

chosen c

i

2 R for 3 � i � r we have �

c

3

;:::;c

r

(l) 6= 0; then

GCD

K[x]

(�

c

3

;:::;c

r

(

^

f

1

); �

c

3

;:::;c

r

(

^

f

2

)) =

�

c

3

;:::;c

r

(GCD

E[x]

(

^

f

1

;

^

f

2

));

which implies the asserted event. Since the deg(l) � d,

the Schwartz (1980)/Zippel (1979) Lemma then establishes

the stated probability. The multivariate case can now

be reduced to the univariate case as in Theorem 6.2 in

Kaltofen (1988).

By use of Lemma 1 we can now justify the evaluations used

in Step 1 of the Black Box GCD algorithm. Because of

Lemma 2 we can restrict ourselves to the case of two poly-

nomials.

Lemma 3 Let

^

f

1

and

^

f

2

be nonzero polynomials 2

K[x

1

; : : : ; x

n

], d

1

= deg(

^

f

1

); d

2

= deg(

^

f

2

); R � K,

a

2

; : : : ; a

n

; b

2

; : : : ; b

n

be randomly chosen elements 2 R,

�:K[x

1

; : : : ; x

n

] ! K[X] be the ring homomorphism gener-

ated by x

1

= X; x

i

= a

i

X + b

i

for 2 � i � n; g

1

= GCD(

^

f

1

;

^

f

2

) and let g

2

= GCD(�(

^

f

1

); �(

^

f

2

)): Then we have

Pr (�(g

1

) = g

2

and deg(g

1

) = deg(g

2

)) �

1� 2d

1

d

2

.

card(R)

Proof Let  :K[�

2

; : : : ; �

n

][x

1

; : : : ; x

n

]! K[�

2

; : : : ; �

n

; �

2

;

: : : ; �

n

][X] be the ring isomorphism generated by substi-

tuting x

1

= X; x

i

= �

i

X + �

i

for 2 � i � n; let �

0

:

K[�

2

; : : : ; �

n

; �

2

; : : : ; �

n

] ! K be the ring homomorphism

generated by �

i

= a

i

; and �

i

= b

i

for 2 � i � n; and let

~g

1

= GCD( (

^

f

1

)  (

^

f

2

)): We have � = �

0

 as seen in the

diagram in Figure 2.

Due to the nature of the mapping in the ring isomorphism  

we can see that deg(g

1

) = deg

X

(~g

1

) since the �

i

do not allow

the vanishing of ldcf

X

(~g

1

): Let l = ldcf

X

(S

�

( (

^

f

1

);  (

^

f

2

)));

where � = deg(g

1

) and S

�

is the �

th

subresultant with re-

spect to X: We know that l 2 K[�

2

; : : : ; �

n

; �

2

; : : : ; �

n

] and

from the Schwartz/Zippel Lemma

Pr

�

�

0

(l) 6= 0

�

� 1� deg(l)

.

card(R):

The degree of the coe�cients with respect to X in  (

^

f

1

) and

 (

^

f

2

) can be bounded from above by d

1

and d

2

respectively.

There are d

2

� � rows of entries in the matrix corresponding

to S

�

( (

^

f

1

);  (

^

f

2

)) of degree at most d

1

and there are d

1

��

rows of entries of degree at most d

2

: In the worst case of � =

0 we can bound the degree of all of the coe�cients in above

mentioned subresultant by 2d

1

d

2

and hence l: Using Lemma

1 with �

0

;  (

^

f

1

);  (

^

f

2

), E = K[�

2

; : : : ; �

n

; �

2

; : : : ; �

n

] and

assuming that �

0

(l) 6= 0 we can apply Lemma 1, which yields

�

0

(~g

1

) = g

2

and deg(~g

1

) = deg

X

(g

2

).

Finally, we can prove Theorem 1.

Proof of Theorem 1 The statements on the run time and

required black box oracle calls of the algorithm and the re-

turned program are easily veri�ed. First we need to inter-

polate the univariate polynomials de�ned in Step 1, namely,

�

f

0

(X; 0) of degree at most max

2�i�r

fdeg(f

i

)g and

�

f

1

(X; 0)

of degree deg(f

1

). There are deg(f

i

) + 1 many oracle calls

to each individual black box of f

i

if the degree is known.

If the polynomial is probabilistically guessed as described

in Step 2, an extra oracle call for the check at X = A is

required. In either case the interpolation and single GCD

needed to compute 


0

(X) = GCD(

�

f

0

(X; 0);

�

f

1

(X; 0)) de-

scribed in the algorithm can be accomplished in polynomial

time.

The dominating work of the output program is Step A,

the computation of GCDs of interpolated univariate poly-

nomials. Let d

0

= deg(

�

f

0

(X; 0)), d

1

= deg(

�

f

1

(X; 0)), and

let S � K containing f1g be of cardinality at least d

0

d

1

+ �.

As described, if deg(�


1

) = deg(�


0

) the black box program

for the GCD can terminate early only using r+

P

r

i=1

deg(f

i

)

many oracle calls. Both the interpolation and computation

of �


1

(X) can be accomplished in polynomial time. The de-

gree of 


0

(X) is, with high probability (see Lemma 3), equal

to �. Then, if deg(�


1

) = deg(�


0

) the polynomial �


1

(X) is

essentially the GCD described in Lemma 2 and is equal to

the homomorphic image of GCD

1�i�r

(f

i

).

At worst d

0

d

1

+ � elements from S are needed to com-

pute �g. The GCD algorithm needs � \lucky" values for Y

to interpolate �g, since the coe�cients for Y = 0 are already

available, and because there can be a maximum of d

0

d

1

\un-

lucky" values, as we will argue below. There are deg(f

i

)+1

many oracle calls for each black box of f

i

needed to inter-

polate

�

f

0

(X; e) and

�

f

1

(X; e), that for every e in S. Hence,

since only d

0

d

1

+ � values from S must be used at the worst,

the number of required black box oracle calls follows. Again

both the interpolations of

�

f

0

(X; e) and

�

f

1

(X; e) and GCD

computations can be accomplished in polynomial time. The

number of \unlucky" values of Y = e is derived as follows.

Let l(Y ) = ldcf

X

(S

�

(

�

f

0

(X;Y );

�

f

1

(X;Y ))). The degree of l

can be bounded by d

0

d

1

and hence only d

0

d

1

values can zero

the leading coe�cient of the subresultant, thus making the

computed GCD invalid (cf. Lemma 1).

All that remains is to analyze the failure probabilities.

From Lemma 2 we obtain that with probability at least 1�

deg(f

1

)=card(R) we have

g = GCD(f

1

; : : : ; f

r

) = GCD(f

1

; f

2

+ c

3

f

3

+ � � �+ c

r

f

r

);

when the elements c

3

; : : : ; c

r

are chosen at random from the

set R. Assuming that this is the case, Lemma 3 then yields

that with probability at least 1� 2 deg(f

0

) deg(f

1

)=card(R)

we have GCD(

�

f

0

(X; 0);

�

f

1

(X; 0)) = �g(X; 0), where the

barred polynomials are de�ned in Step 1. Furthermore, the

leading coe�cient of �g(X;Y ) is independent of Y , since

by Lemma 3 we also have deg(g) = deg(�g(X; 0)). Since

by virtue of homomorphic imaging we have that �


0

is a

polynomial multiple of 
(X; 0), these conditions imply that


(X;Y ) = GCD(

�

f

0

(X; Y );

�

f

1

(X;Y )) = �g(X;Y ) and that

the polynomial 
 as determined in Step B is the image of

one and the same associate of g, namely the one whose

leading coe�cient in X has been preselected. Both events

occur with probability no less than the product of the

stated bounds, which yields the given estimate.

4 Maple Prototype and Future Plans

By taking advantage of the functionality of the \in house"

standard library functions o�ered by most general purpose

computer algebra systems, we were able to prototype our
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K[�

2

; : : : ; �

n

][x

1

; : : : ; x

n

] ! K[�

2

; : : : ; �

n

; �

2

; : : : ; �

n

][X]

�& # �

0

K[X]

Figure 2: Diagram of  ; � and �

0

improved algorithm for computing black box greatest com-

mon divisors using Maple.

Our �rst task was to represent polynomials as a sym-

bolic object which takes as input a value for each variable

and then produces the value of the polynomial at the spec-

i�ed point. Maple o�ers the function procmake which takes

the \neutral form" of a procedure body and creates an exe-

cutable procedure. By using the \neutral forms" for state-

ments, local variables, parameters, and several functions

we were able to write the Maple procedure bbpolygen that

when applied to a polynomial returns a procedure that eval-

uates the polynomial at a given point. As a further exercise

we wrote the Maple procedure bbdmgen that when given a

matrix and the indeterminates of the matrix as input re-

turns a procedure that at a given point �rst substitutes val-

ues for the indeterminates in the matrix and then produces

the value of the determinant of the modi�ed matrix. As an

example, the Maple code in Figure 4 creates two black boxes

that at a given point produces the value of the determinant

of their respective Vandermonde matrix.

Finally the Maple procedure bbgcdgen which takes as in-

put a list of black boxes, a list of indeterminates, a procedure

to generate the random �eld elements needed in the algo-

rithm description, and a procedure to generate the random

�eld elements needed for degree guessing in the interpola-

tion, returns a program that evaluates correctly the GCD of

the black boxes at any point with a probability controlled by

the random number generating procedures. The Maple code

in Figure 3 shows the construction of a black box that when

applied to a point returns the value of the GCD of those

black boxes which are computed by code shown in Figure 4.

O3 := g := bbgcdgen([b1,b2],[x1,x2,x3,x4,x5,x6,x7

,x8,y1,y2,y3,y4,y5,y6,y7,y8],

rand(1..100),rand(1..10000));

proc()

local pol,ra,rb,rc,dl,gb,dgb,ffegen;

pol := [b1,b2];

ra := *** TABLE CORRESPONDING TO a2...an ***

rb := *** TABLE CORRESPONDING TO b1...bn ***

rc := *** TABLE CORRESPONDING TO c3...cr ***

dl := *** TABLE CORRESPONDING TO d1...dr ***

gb := 89856+25344*X;

dgb := 1;

ffegen := proc()

local t;

_seed := irem(427419669081*

_seed,999999999989);

t := _seed;

irem(t,10000)+1

end;

RETURN(bbgcdaux(pol,ra,rb,rc,[args],dl,gb,

dgb,ffegen))

end

time 18.68 words 3416888

O4 := g(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);

0

time 31.68 words 5950846

Figure 3: The GCD black box of b1 and b2

Note that the call to bbgcdaux in the returned procedure

in Figure 3 executes the statements of Step A and Step B in

the algorithm description and that the generated program

for the GCD is independent of input black boxes except for

the used constants.

This paper is to be considered as the pilot to the project

of building a subsystem for manipulating multivariate poly-

nomials and rational functions in black box representation.

The Dagwood system (Freeman et al. 1988) realizes the

straight-line program representation in Lisp with a natural

interface to Macsyma. By virtue of our Maple prototype we

have demonstrated that the black box representation can be

implemented entirely within a general purpose computer al-

gebra system. There are, however, two additional goals that

we wish to accomplish:

(i) The black box programs produced by our algorithms,

such as the program for the GCD, should be compil-

able.

(ii) Several algorithms manipulating black boxes, such as

the sparse interpolation procedures, should be dis-

tributable over a network of compute nodes for parallel

execution.

We set goal (i) as the result of e�ciency considerations. A.

Lobo has implemented a generic sparse linear system solver

in C

++

using black box representations for matrices over �-

nite �elds (cf. D��az et al. 1993, x3). the linear system solver

accesses the black box matrix as two function arguments,

one to initialize static data in the fashion of a constructor in

object oriented programming, and one to perform the neces-

sary matrix times vector products, in the fashion of a mem-

ber functions. The black boxes produced by our algorithms

have a similar format. Thus a universal compilable evalua-

tion procedure for the GCD, similar to bbgcdaux above, can

be written provided we allow function arguments. Such is

our approach for building our system based on the C

++

or

the A

]

language (Watt et al. 1994). The problem remains

that our GCD procedure is then not callable from Maple,

say, due to the di�culty of passing a Maple function argu-

ment to a foreign library function. It is our hope that the

OpenMath interface language will address this problem.

Distribution of the black box programs can be performed

by our DSC system (D��az et al. 1991). We have the facility

to dynamically compile a program that has been constructed
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O1 := b1 := bbdmgen(vandermonde([x1,x2,x3,x4,x5,x6,x7,x8]),

O1 := [x1,x2,x3,x4,x5,x6,x7,x8,y1,y2,y3,y4,y5,y6,y7,y8]);

proc()

local i,AA,p;

AA := *** TABLE CORRESPONDING TO THE VANDERMONDE MATRIX ***

p := [x1,x2,x3,x4,x5,x6,x7,x8,y1,y2,y3,y4,y5,y6,y7,y8];

AA := subs(seq(p[i] = args[i],i = 1 .. nargs),op(AA));

RETURN(det(op(AA)))

end

time 0.13 words 7360

O2 := b2 := bbdmgen(vandermonde([x1,x2,y3,y4,y5,y6,y7,y8]),

O2 := [x1,x2,x3,x4,x5,x6,x7,x8,y1,y2,y3,y4,y5,y6,y7,y8]);

proc()

local i,AA,p;

AA := *** TABLE CORRESPONDING TO THE VANDERMONDE MATRIX ***

p := [x1,x2,x3,x4,x5,x6,x7,x8,y1,y2,y3,y4,y5,y6,y7,y8];

AA := subs(seq(p[i] = args[i],i = 1 .. nargs),op(AA));

RETURN(det(op(AA)))

end

time 0.11 words 5342

Figure 4: Black boxes for the determinants of Vandermonde matrices

by one of our algorithms either locally or separately on each

compute node. We also have built an interface to a gen-

eral purpose system, namely to Maple (Chan et al. 1994).

We plan to provide full parallel functionality for our future

system, in particular for the new sparse interpolation algo-

rithms.
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