
Subquadratic-Time Factoring of

Polynomials over Finite Fields

*

Erich Kaltofen

Department of Computer Science

Rensselaer Polytechnic Institute

Troy, New York 12180-3590

Internet: kaltofen@cs.rpi.edu

URL: http://www.cs.rpi.edu/~kaltofen

Victor Shoup

Universit�at des Saarlandes

FB 14{Informatik, PF 15 11 50

D-66041 Saarbr�ucken, Germany

Internet: shoup@cs.uni-sb.de

March 18, 1995

ABSTRACT

New probabilistic algorithms are presented for factoring uni-

variate polynomials over �nite �elds. The algorithms factor

a polynomial of degree n over a �nite �eld of constant cardi-

nality in time O(n

1:815

). Previous algorithms required time

�(n

2+o(1)

). The new algorithms rely on fast matrix multi-

plication techniques. More generally, to factor a polynomial

of degree n over the �nite �eld F

q

with q elements, the algo-

rithms use O(n

1:815

log q) arithmetic operations in F

q

.

The new \baby step/giant step" techniques used in our

algorithms also yield new fast practical algorithms at super-

quadratic asymptotic running time, and subquadratic-time

methods for manipulating normal bases of �nite �elds.

1 INTRODUCTION

In this paper, we present a new probabilistic approach for

factoring univariate polynomials over �nite �elds. The re-

sulting algorithms factor a polynomial of degree n over a �-

nite �eld F

q

whose cardinality q is constant in timeO(n

1:815

).

The best previous algorithms required time �(n

2+o(1)

).

This running-time bound relies on fast matrix multipli-

cation algorithms. Let ! be an exponent of matrix multipli-

cation; that is, ! is chosen so that we can multiply two n�n

matrices using O(n

!

) arithmetic operations (we assume that

2 < ! � 3). Using the result of Coppersmith & Winograd

(1990), we can take ! < 2:375477.

More generally, we prove the following:

Theorem 1 For any 0 � � � 1, there exists a probabilistic

algorithm for factoring a univariate polynomial of degree n

over a �nite �eld F

q

that uses an expected number of

O(n

(!+1)=2+(1��)(!�1)=2

+ n

1+�+o(1)

log q)

arithmetic operations in F

q

. In particular, choosing !

< 2:375477 and minimizing the exponent of n, we get

O(n

1:815

log q) operations in F

q

.

�

This material is based on work supported in part by the National

Science Foundation under Grant No. CCR-9319776 (�rst author) and

by an Alexander von Humboldt Research Fellowship (second author).

RELATION TO PREVIOUS WORK

The �rst random polynomial-time algorithm for this problem

is due to Berlekamp (1970). Berlekamp's algorithm reduces

the problem to that of �nding elements in the null space of

an n � n matrix over F

q

. Using standard techniques from

linear algebra, Berlekamp's algorithm can be implemented

so as to use an expected number of O(n

!

+ n

1+o(1)

log q)

operations in F

q

.

A very di�erent algorithm is described by Cantor and

Zassenhaus (1981). Starting with a square-free polynomial,

that algorithm �rst separates the irreducible factors of dis-

tinct degree (distinct-degree factorization), and then com-

pletely factors each of the resulting factors (equal-degree fac-

torization). The Cantor/Zassenhaus algorithm can be imple-

mented so as to use an expected number of O(n

2+o(1)

log q)

operations in F

q

.

Von zur Gathen & Shoup (1992) developed new algo-

rithmic techniques that essentially allow one to implement

the Cantor/Zassenhaus algorithm so that it uses an ex-

pected number of O(n

2+o(1)

+ n

1+o(1)

log q) operations in

F

q

. Their techniques allow one to solve the special problem

of equal-degree factorization using an expected number of

O(n

(!+1)=2+o(1)

+ n

1+o(1)

log q) operations in F

q

.

Niederreiter (1993) developed an alternate approach to

factoring polynomials over �nite �elds. However, from a

complexity point of view this method is closely related to

Berlekamp's original algorithm (Fleischmann 1993, Nieder-

reiter and G�ottfert 1994).

Kaltofen & Lobo (1994) adapted the linear system solver

of Wiedemann (1986) to Berlekamp's algorithm. Utilizing

techniques from von zur Gathen & Shoup, they show how

their Black Box Berlekamp algorithm can be implemented

so as to use an expected number of O(n

2+o(1)

+n

1+o(1)

log q)

in F

q

.

Notice that at � = 0, the running-time of our algorithm

matches that of Berlekamp's, and at � = 1 it matches that

of Cantor/Zassenhaus, so that in some sense it interpolates

between these two algorithms.

When log q is not too large in relation to n, then our new

algorithm is asymptotically faster than previous algorithms.

This is certainly clear if q is a constant and ! < 3. Also, for

! < 2:375477, as n and q tend to in�nity with log q < n

0:454

,

our new algorithm uses O(n

2�
(1)

) operations in F

q

, whereas

the best previous algorithms require �(n

2+o(1)

) operations.

OVERVIEW

Our Theorem 1 is proved using the Cantor/Zassenhaus

strategy. The main technical contribution here is a sub-

quadratic distinct-degree factorization algorithm, which is

based on a \baby step/giant step" strategy. Our Fast Can-

tor/Zassenhaus algorithm is described in x2.

We also show how to modify the Black Box Berlekamp

algorithm, using a very similar baby step/giant step tech-

nique, to get a subquadratic-time algorithm as well. This

algorithm is described in x3. Interestingly, our techniques

for the Black Box Berlekamp algorithm lead to subquadratic

algorithms for �nding a normal element in a �nite �eld and

for converting to and from normal coordinates. We present

those algorithms in x4.

At the heart of our algorithms is the following problem.

Given polynomials f , g, and h in F

q

[x] of degree bounded

by n, compute g(h) mod f 2 F

q

[x]. Recently, this so-called

modular polynomial composition problem has arisen in many

contexts (von zur Gathen & Shoup 1992, Shoup 1994a). The

algorithm of Brent & Kung (1978) solves this problem using

O(n

(!+1)=2

) operations in F

q

.

Any improvement in the complexity of this problem

would yield an improvement in the complexity of factoring.

Indeed, if this problem could be solved using O(n

1+o(1)

) op-

erations in F

q

, then our Fast Cantor/Zassenhaus algorithm

could be implemented so as to use O(n

1:5+o(1)

+n

1+o(1)

log q)

operations in F

q

.

Our algorithms rely on fast multiplication of matrices,

indeed of n

1=2

� n

1=2

matrices, and therefore are not par-

ticularly practical. Interestingly, however, the techniques

themselves can be adapted so as to give a quite practical

factoring algorithm that uses

O(n

2:5

+ n

1+o(1)

log q)

operations in F

q

and space for O(n

1:5

) elements in F

q

, where

the implied \big-O" constants are quite reasonable. From

practical experience, we have found that when q is a large

prime, this new algorithm allows much larger polynomials

to be factored using a reasonable amount of space and time

than was previously possible using other algorithms. This is

brie
y discussed in x5; a more complete discussion, including

a description of an implementation of this algorithm as well

as the results of empirical tests, is given in Shoup (1994b).

To attain a subquadratic running time, our algorithms

rely on randomization. Even if we restrict ourselves to the

�eld F

2

, the asymptotically fastest known deterministic algo-

rithm (Shoup 1990) runs in time O(n

2+o(1)

), and it remains

an open problem to �nd a subquadratic deterministic algo-

rithm.

2 THE FAST CANTOR/ZASSENHAUS

ALGORITHM

Let f 2 F

q

[x] be the polynomial to be factored, and let

n = deg(f). Using standard techniques (see Knuth 1981),

we can assume that f is square-free. The algorithm solves

the following two subproblems:

Distinct-degree factorization The input is a square-free

polynomial f 2 F

q

[x] of degree n. The output is

f

[1]

; : : : ; f

[n]

2 F

q

[x] such that for 1 � d � n, f

[d]

is the product of the monic irreducible factors of f of

degree d.

Equal-degree factorization The input is a polynomial

f 2 F

q

[x] of degree n and an integer d such that f is

the product of distinct monic irreducible polynomials,

each of degree d. The output is the set of irreducible

factors of f .

The input polynomial is �rst fed into a distinct-degree fac-

torizer, and the nontrivial outputs are then fed into equal-

degree factorizers.

The equal-degree factorization problem can be solved

on degree n inputs with the probabilistic algorithm of von

zur Gathen & Shoup (1992) using an expected number of

O(n

(!+1)=2+o(1)

+ n

1+o(1)

log q); or O(n

1:688

+ n

1+o(1)

log q)

operations in F

q

.

We shall now present a family of (deterministic) algo-

rithms for the distinct-degree factorization problem, param-

eterized by � with 0 � � � 1, that uses

O(n

(!+1)=2+(1��)(!�1)=2

+ n

1+�+o(1)

log q)

operations in F

q

. This will establish Theorem 1.

Our distinct-degree factorization algorithm uses a \baby

step/giant step" strategy that exploits the following fact.

Lemma 1 For nonnegative integers i and j, the polynomial

x

q

i

� x

q

j

2 F

q

[x] is divisible by precisely those irreducible

polynomials in F

q

[x] whose degree divides i � j.

Proof. Assume without loss of generality that i � j. Then

x

q

i

�x

q

j

= (x

q

i�j

�x)

q

j

, and the result follows at once from

the factorization of x

q

k

� x, which consists of all irreducible

factors whose degree is a divisor of k (see Lidl & Niederreiter

1983, Theorem 3.20). 2

We �rst present a high-level description of our distinct-

degree factorization algorithm. The details of how each step

is to be implemented are deferred until later.

Algorithm D This algorithm takes as input a square-

free polynomial f 2 F

q

[x] of degree n. The output is

f

[1]

; : : : ; f

[n]

2 F

q

[x] such that for 1 � d � n, f

[d]

is the

product of the monic irreducible factors of f of degree d. The

algorithm is parameterized by a constant �, with 0 � � � 1.

Step D1 (compute baby steps) Let l = dn

�

e. For 0 �

i � l, compute h

i

= x

q

i

mod f 2 F

q

[x].

Step D2 (compute giant steps) Let m = dn=2le. For

1 � j � m, compute H

j

= x

q

lj

mod f 2 F

q

[x].

Step D3 (compute interval polynomials) For 1 � j �

m, compute

I

j

=

Y

0�i<l

(H

j

� h

i

) mod f 2 F

q

[x]:

Note that by Lemma 1, the polynomial I

j

is divisible

by those irreducible factors of f whose degree divides

an integer k with (j � 1)l < k � jl.

Step D4 (compute coarse DDF) In this step, we com-

pute polynomials F

1

; : : : ; F

m

, where

F

j

= f

[(j�1)l+1]

f

[(j�1)l+2]

� � � f

[jl]

:

This is done as follows.

f

�

 f ;

for j 1 to m do

fF

j

 gcd(f

�

; I

j

); f

�

 f

�

=F

j

g

Step D5 (compute �ne DDF) In this step, we compute

the output polynomials f

[1]

; : : : ; f

[n]

. First, initialize

f

[1]

; : : : ; f

[n]

to 1. Then do the following.

for j 1 to m do

fg F

j

;

for i l � 1 down to 0 do

ff

[lj�i]

 gcd(g;H

j

� h

i

); g g=f

[lj�i]

g

g

if f

�

6= 1 then f

[deg(f

�

)]

 f

�

;

The correctness of this algorithm is clear from the comments

contained therein.

Before establishing the running-time bound in Theo-

rem 1, we begin with the following slightly weaker, but sim-

pler, result.

Theorem 2 Algorithm D can be implemented so as to use

O(n

(!+1)=2+1��

+ n

1+�+o(1)

log q)

operations in F

q

. In particular, choosing ! < 2:375477 and

minimizing the exponent of n, we get O(n

1:844

log q) opera-

tions in F

q

.

The proof of Theorem 2 is based on the observation that

for any positive integer r, if we are given h = x

q

r

mod f 2

F

q

[x], then for any g 2 F

q

[x], we can compute g

q

r

mod f

as g(h) mod f 2 F

q

[x]. To solve this so-called \modular

composition" problem, we use the following result.

Lemma 2 Given a polynomial f 2 K[x] of degree n over an

arbitrary �eld K, and polynomials g; h 2 K[x] of degree less

than n, we can compute the polynomial g(h) mod f 2 K[x]

using O(n

(!+1)=2

) arithmetic operations in K.

Proof. This is essentially Algorithm 2.1 in Brent & Kung

(1978). 2

We now prove Theorem 2.

Step D1 is performed by iterating the standard repeated-

squaring algorithm l times. This takes O(n

1+�+o(1)

log q)

operations in F

q

.

Step D2 is performed by setting H

1

= h

l

, and then it-

erating the algorithm of Lemma 2, computing each H

j

as

H

j�1

(H

1

) mod f 2 F

q

[x]. This takes O(n

(!+1)=2+1��

) op-

erations in F

q

.

Step D3 is performed as follows. Let R be the ring

F

q

[x]=(f). We �rst compute the coe�cients of the poly-

nomial H(Y) 2 R[Y] of degree l, where

H(Y) =

Y

0�i<l

(Y � (h

i

mod f)):

Then we evaluate H(Y) at the m points

(H

1

mod f); : : : ; (H

m

mod f) 2 R:

Using fast algorithms for multiplication of polynomials in

R[Y] (Cantor & Kaltofen 1991) Step D3 can be implemented

so as to use O(n

1+�+o(1)

+n

2��+o(1)

) operations in F

q

(Aho

et al. 1974).

In Step D4, we need to compute O(m) GCD's and divi-

sions, requiring O(n

2��+o(1)

) operations in F

q

.

To implement Step D5 e�ciently, we �rst reduce each h

i

modulo each F

j

. Reducing one h

i

modulo each F

j

takes

O(n

1+o(1)

) operations in F

q

, using standard \Chinese re-

maindering" techniques (Aho et al. 1974) Thus, reducing

all of the h

i

's modulo all of the F

j

's takes just O(n

1+�+o(1)

)

operations in F

q

. Also, we compute H

j

mod F

j

for each F

j

.

This takes O(n

2��+o(1)

) operations in F

q

. With these pre-

computations, the total cost of computing the GCD's and

divisions in the inner loop amounts to O(n

1+�+o(1)

) opera-

tions in F

q

. Thus the total cost of Step D5 is O(n

1+�+o(1)

+

n

2��+o(1)

) operations in F

q

.

That proves Theorem 2.

We now show how to modify the implementation of

Step D2 to obtain the slightly better running-time bound

of Theorem 1.

Theorem 3 Algorithm D can be implemented so as to use

O(n

(!+1)=2+(1��)(!�1)=2

+ n

1+�+o(1)

log q)

operations in F

q

. In particular, choosing ! < 2:375477 and

minimizing the exponent of n, we get O(n

1:815

log q) opera-

tions in F

q

.

To prove this theorem, it will su�ce to show that we

can compute the polynomials H

1

; : : : ; H

m

in Step D2 using

O(n

(!+1)=2+(1��)(!�1)=2

) operations in F

q

. This is an imme-

diate consequence of the following two lemmas.

Lemma 3 Given a polynomial f 2 K[x] of degree n over

an arbitrary �eld K, and polynomials g

1

; : : : ; g

k

; h 2 K[x] of

degree less than n, where k = O(n), we can compute

g

1

(h) mod f; : : : ; g

k

(h) mod f 2 K[x]

using

O(n

(!+1)=2

k

(!�1)=2

)

arithmetic operations in K.

Proof. Setting t = d

p

nke, we decompose each of the input

polynomials g

1

; : : : ; g

k

as

g

i

=

X

0�j<n=t

g

i;j

y

j

; y = x

t

, (1)

where the g

i;j

's are polynomials of degree less than t. We

�rst compute the polynomials h

(i)

= h

i

mod f for 0 � i � t.

Next, we compute all of the polynomials g

i;j

(h) mod f by

computing the following product of an n � t matrix and a

t� (kdn=te) matrix:

�

~

h

(0)

�

�

: : :

�

�
~

h

(t�1)

�

�

�

~g

1;0

�

�

: : :

�

�

~g

1;dn=te�1

�

�

: : :

�

�

~g

k;0

�

�

: : :

�

�

~g

k;dn=te�1

�

:

Here, we use the notation
~
� to denote the column vector con-

sisting of the coe�cients of a polynomial. This computation

is done by performing O(

p

n=k) multiplications of t� t ma-

trices. Finally, we compute for 1 � i � k the polynomial

g

i

(h) mod f(x) 2 K[x] by substituting the polynomial h

(t)

for y in the formula (1), and performing a Horner evaluation

scheme. This is done by iteratively performing dn=te � 1

polynomial multiplications mod f and O(n=t) polynomial

additions.

It is easily seen that the dominant cost is again the matrix

multiplication step, which can be carried out using the stated

number of operations. 2

We remark that when k = 1, the algorithm in the above

proof is the same as Brent & Kung's modular composition

algorithm.

Lemma 4 Let f 2 F

q

[x] be a polynomial of degree n. Sup-

pose that we are given x

q

r

mod f 2 F

q

[x]. Then we can

compute

x

q

r

mod f; x

q

2r

mod f; : : : ; x

q

kr

mod f 2 F

q

[x];

where k = O(n), using

O(n

(!+1)=2

k

(!�1)=2

)

operations in F

q

.

Proof. For i � 1, let G

i

= x

q

ir

mod f 2 F

q

[x]: As-

sume we have computed G

1

; : : : ; G

m

. Then we can compute

G

m+1

; : : : ; G

2m

by computing

G

1

(G

m

) mod f; : : : ; G

m

(G

m

) mod f

using the algorithm in the previous lemma.

So to computeG

1

; : : : ; G

k

given G

1

, we simply repeat the

above \doubling" step O(log k) times. The stated running-

time estimate then follows easily. 2

3 THE FAST BLACK BOX BERLEKAMP

ALGORITHM

In Kaltofen & Lobo (1994), a version of Berlekamp's factor-

ing algorithm was given based on Wiedemann's (1986) sparse

linear system solver. In this section, we show how to modify

that algorithm to obtain a probabilistic, subquadratic-time

algorithm.

We split this section into two parts. In x3.1, we review

the ideas behind the Black Box Berlekamp algorithm, pre-

senting a high-level description of that algorithm. Then in

x3.2, we describe a subquadratic-time implementation, �rst

proving a running time bound of O(n

1:880

+n

1:808

log q) op-

erations in F

q

. We then modify this method to obtain the

bound O(n

1:852

+ n

1:763

log q). With yet a bit more work,

we show how to obtain the bound O(n

1:815

log q).

3.1 THE BLACK BOX BERLEKAMP

ALGORITHM

We �rst recall the main ideas behind the Black Box Berle-

kamp algorithm. Suppose the coe�cient �eld F

q

has charac-

teristic p. Let f 2 F

q

[x] be a monic square-free polynomial

of degree n to be factored. Assume that the factorization of

f into irreducibles is

f = f

1

� � � f

r

:

For 1 � i � r, let d

i

= deg(f

i

), and let p

e

i

be the highest

power of p that divides d

i

. Furthermore, let e = maxfe

i

:

1 � i � rg.

Now consider the q-th power map �:� 7! �

q

for � 2

F

q

[x]=(f). Let � 2 F

q

[�] be the minimum polynomial of �

over F

q

, i.e., � is the monic polynomial of least degree such

that �(�) = 0. The polynomial � can easily be described in

terms of the degrees of the irreducible factors of f , as follows.

By the Chinese remainder theorem we have the F

q

-algebra

isomorphism

F

q

[x]=(f)

�

=

F

q

[x]=(f

1

)� � � � � F

q

[x]=(f

r

):

For 1 � i � r, let �

i

be the q-th power map on F

q

[x]=(f

i

),

and let �

i

2 F

q

[�] be its minimum polynomial. From the

basic theory of �nite �elds, we know that �

i

= �

d

i

� 1.

Moreover, by the Chinese remainder theorem,

� = lcmf�

1

; : : : ; �

r

g = lcmf�

d

1

� 1; : : : ; �

d

r

� 1g:

Now consider the polynomial �(�) = �(�)=(� � 1), and the

image I

i

� F

q

[x]=(f

i

) of �(�

i

). Since (�

i

�1)(�) = �

q

�� = 0

for all � 2 I

i

, it follows that I

i

� F

q

. It is easily seen that

�� 1 divides �

d

i

� 1 exactly to the power p

e

i

, which implies

that I

i

= F

q

if e

i

= e, and I

i

= f0g if e

i

< e (see Kaltofen

& Lobo 1994, x3, for more details).

These considerations motivate the following recursive al-

gorithm. The details of how each step is to be implemented

are deferred until later.

Algorithm B The algorithm takes as input a square-free

monic polynomial f 2 F

q

[x] of degree n, and produces as

output the set of irreducible factors of f .

Step B1 (compute minimum polynomial)

Probabilistically compute a polynomial �

�

2 F

q

[�]

that with probability at least 1=2 is equal to �, the

minimum polynomial of the q-th power map � on

F

q

[x]=(f), and that otherwise divides �.

Step B2 (evaluate polynomial) If �

�

(�) = �

n

� 1, then

halt, as f is then certi�ed to be irreducible. If � � 1

does not divide �

�

(�), go back to Step B1, as then �

�

is clearly erroneous.

Otherwise, set �

�

(�) = �

�

(�)=(��1), choose a random

� 2 F

q

[x]=(f), and compute

�

�

= (�

�

(�))(�) 2 F

q

[x]=(f):

Step B3 (split) Let �

�

= (g mod f). Compute h

1

=

gcd(g; f) and h

2

= f=h

1

. If �

�

= � then the degrees

of all irreducible factors of h

2

are divisible by p

e

and

the residues of h

2

modulo these factors are random

elements in F

q

n f0g. Compute h

�

2 F

q

[x]=(h

2

) as

h

�

=

�

g

(q�1)=2

mod h

2

if p > 2,

P

k�1

j=0

g

2

j

mod h

2

if q = 2

k

.

Recursively factor h

1

, h

�

2

= gcd(1+h

�

mod h

2

; h

2

) and

h

2

=h

�

2

.

Before going into the details of each step, we �rst calcu-

late a bound on the recursion depth of this algorithm.

Lemma 5 The expected value of the recursion depth of Al-

gorithm B is O(dlog

p

ne log r), where r is the number of ir-

reducible factors of f .

Proof. Consider one invocation of the algorithm and recall

the notation preceding the algorithm. Each factor f

i

with

e

i

= e will be separated from the factors f

j

with e

j

< e in

Step B3 with probability bounded away from 0 by a con-

stant. If f has several factors with e

i

= e, then each pair

of such factors will be separated in Step B3 with probabil-

ity bounded away from 0 by a constant. These statements

follow easily from the fact that �

�

is correctly computed

with probability 1/2, and from the discussion preceding the

algorithm.

Using a standard argument (see, for example, Lemma 4.1

in von zur Gathen & Shoup 1992), at an expected depth of

O(log r), all irreducible factors f

i

with e

i

= e will be isolated,

and the only reducible factors remaining will have e

i

< e.

It follows that at an expected depth of O(dlog

p

ne log r),

all irreducible factors of f will be isolated. 2

Next, we discuss the problem of computing �

�

in Step B1.

Following Wiedemann (1986), this is done as follows. We

choose random � 2 F

q

[x]=(f) and a random F

q

-linear map

u:F

q

[x]=(f)! F

q

, and compute the minimum polynomial of

the linearly generated sequence fa

i

: a

i

= u(�

i

(�)) and i �

0g. Using an asymptotically fast version of the Berlekamp-

Massey algorithm (Massey 1969, Dornstetter 1987), given

the �rst 2n terms of the sequence fa

i

: i � 0g, we can deter-

mine the minimum polynomial �

�;u

2 F

q

[�] of this sequence

using O(n

1+o(1)

) operations in F

q

. In general, �

�;u

divides �,

but the probability that �

�;u

= � (for random �, u) may be

less than 1/2, and indeed not even bounded away from 0 by

a constant. To increase this probability, we repeat the above

procedure some number �(n; q) times, each time choosing a

new � and a new u at random, thus obtaining polynomials

�

�

i

;u

i

, where 1 � i � �(n; q). Then we compute

�

�

= lcmf�

�

i

;u

i

: 1 � i � �(n; q)g:

The value �(n; q) can be chosen as indicated in the next

lemma.

Lemma 6 Let �(n; q) be de�ned as follows. If q � 4n, then

�(n; q) = 1. Otherwise,

�(n; q) =

8

>

<

>

:

6 if q = 2,

4 if q = 3,

3 if 4 � q � 9,

2 if q � 11.

Then the probability that �

�

= � is at least 1=2.

Proof. If q � 4n, then the result follows by the analysis of

Kaltofen & Pan (1991). Otherwise we argue along the same

lines as Wiedemann (1986, xVI). Suppose � =

�

1

1

� � �

�

s

s

is the factorization of � into irreducibles. Suppose � 2

F

q

[x]=(f) and u:F

q

[x]=(f) ! F

q

are chosen at random. As

above, let �

�

2 F

q

[�] be the minimum polynomial of the

sequence f�

i

(�) : i � 0g and let �

�;u

be the minimum poly-

nomial of the sequence fu(�

i

(�)) : i � 0g.

Claim. For any single j with 1 � j � s, the probability

that

�

j

j

does not divide �

�;u

is no more than

(2=q � 1=q

2

)

�

where � = deg(

j

).

We prove this claim by using a fact established by Wiede-

mann. He shows that there exists a surjective F

q

-linear map

L:V ! W depending on �, where V is the linear space

of F

q

-linear maps from F

q

[x]=(f) to F

q

and W is the linear

space of polynomials of degree less than deg(�

�

), such that

for any u 2 V we have �

�;u

= �

�

= gcd(�

�

;L(u)). Suppose

now that

�

j

j

divides �

�

. Then

�

j

j

divides �

�;u

if

j

does

not divide L(u), which for a random u is a random poly-

nomial over F

q

of degree less than deg(�

�

). Clearly, of all

q

deg(�

�

)

such polynomials only q

deg(�

�

)��

are divisible by

j

,

so the probability that

j

does not divide L(u) is 1� 1=q

�

.

Furthermore, by considering the rational canonical form of

the linear transform � we can show the existence of an ele-

ment �

0

such that �

�

0

= �. As L is surjective, there also

must exist a u

0

such that �

�

0

;u

0

= �

�

0

= �. By switching

the rôles of u and �, as Wiedemann does in the proof of his

Proposition 4, we can obtain that the probability that

�

j

j

divides �

�;u

0

is 1 � 1=q

�

. Thus, the probability that

�

j

j

divides �

�

is no less.

Therefore, the probability that

�

j

j

does not divide �

�;u

is no less than 1 � (1 � 1=q

�

)

2

= 2=q

�

� 1=q

2�

. The claim

then follows from the inequality 2c

�

�c

2�

� (2c�c

2

)

�

, which

holds for all real numbers c with 0 < c � 1=2 and all integers

� � 1.

From this claim, one sees that if this procedure is re-

peated k = �(n; q) times, and we compute �

�

as the poly-

nomial least common multiple of all of the �

�

i

;u

i

's, then

the probability that

�

j

j

does not divide �

�

is at most

(2=q � 1=q

2

)

k deg(

j

)

.

Since the factorization of x

q

l

�x includes each irreducible

polynomial of degree l, the number of irreducibles of degree

l is at most q

l

=l. Hence summing over all irreducible polyno-

mials dividing �, as well as all those irreducible polynomials

not dividing �, we get an upper bound on the probability

that �

�

6= � of

X

l�1

q

l

l

(2=q � 1=q

2

)

k l

= � log(1� q(2=q � 1=q

2

)

k

):

The lemma then follows from a simple numerical calculation.

2

3.2 A SUBQUADRATIC-TIME

IMPLEMENTATION

Theorem 4 For any constant � with 0 � � � 1, Algo-

rithm B can be implemented so as to use an expected number

of

O(n

(!+1)=2+(3�!)j��1=2j+o(1)

+ n

(!+1)=2+1��+o(1)

+ n

1+�+o(1)

log q) (2)

operations in F

q

. In particular, choosing ! < 2:375477 and

minimizing the exponent of n, we get O(n

1:880

+n

1:808

log q)

operations in F

q

.

Remark The �rst term in (2) is dominated by the second

exactly when � < (!�5)=(2(!�4)), and thus at least when

� < 3=4.

To prove Theorem 4, we �rst show that one invocation

of Algorithm B, not counting the recursive calls, can be im-

plemented so as to satisfy the bound in Theorem 4. By

Lemma 5, multiplying this by O((log n)

2

) gives a bound on

the total cost of the algorithm, and thus the theorem will

follow.

The cost of Step B3 is O(n

1+o(1)

log q) operations in F

q

,

and the cost of the Berlekamp-Massey algorithm in Step B1

is O(n

1+o(1)

) operations in F

q

. So to prove our result, we

have to solve the following two types of problems within the

stated time bounds.

automorphism projection Given � 2 F

q

[x]=(f), the lin-

ear map u:F

q

[x]=(f) ! F

q

, and a positive integer

k = O(n), compute u(�

i

(�)) 2 F

q

for all i with

0 � i < k.

automorphism evaluation Given � 2 F

q

[x]=(f) and a

polynomial � 2 F

q

[�] of degree less than k, where

k = O(n), compute (�(�))(�) 2 F

q

[x]=(f).

We �rst claim that these two problems are computation-

ally equivalent, in a very strong sense. Consider the n�k ma-

trix A whose columns consist of the coordinates with respect

to the natural power basis 1; x; x

2

; : : : ; x

n�1

for F

q

[x]=(f)

of �; �(�); : : : ; �

k�1

(�). Then the automorphism projection

problem consists of multiplying A on the left by a row vec-

tor (u

0

; : : : ; u

n�1

) 2 F

1�n

q

. The automorphism evaluation

problem consists of multiplying A on the right by a column

vector (�

0

; : : : ; �

k�1

)

T

2 F

k�1

q

. Thus these two problems

are merely the transpose of each each other, and by the so-

called transposition principle (see Kaminski et al. 1988) a

straight-line program of length l for one can be quickly con-

verted (in time O(l)) into a straightline program of length

O(l) for the other, provided the straight-line program com-

putes linear forms in the input variables fu

i

g (respectively,

f�

i

g). It should be noted that this observation applies to

the Wiedemann algorithm in general. For example, in Algo-

rithm 1 in Wiedemann (1986) step 4 and step 6 are compu-

tationally equivalent within a constant factor. We remark

that the transposition principle is a direct consequence of

the so-called reverse mode in automatic di�erentiation, see

Canny et al. (1989); for reverse mode see also Ostrowski et

al. (1979), Linnainmaa (1976), Baur & Strassen (1983), and

Griewank (1991).

Thus, to prove our theorem, it will su�ce to prove the

required bound for just one of these problems. We prove

it for the automorphism evaluation problem. The following

algorithm for automorphism evaluation is based on the same

\baby step/giant step" strategy used in Brent & Kung's

modular composition algorithm.

Algorithm AE This algorithm takes as input an element

� 2 F

q

[x]=(f), where f 2 F

q

[x] is of degree n, and a polyno-

mial � 2 F

q

[�] of degree less than k, where k = O(n). The

output is (�(�))(�) 2 F

q

[x]=(f). The algorithm is parame-

terized by a constant �, with 0 � � � 1.

We set t = dn

�

e and m = dk=te, and we write � as

� =

X

0�j<m

�

j

(�)�

tj

;

where each �

j

2 F

q

[�] has degree less than t.

Then we have

(�(�))(�) =

X

0�j<m

�

tj

((�

j

(�))(�)):

The algorithm proceeds as follows.

Step AE1 Compute �

i

(�) 2 F

q

[x], for all i with 0 � i < t,

by iterating a repeated squaring algorithm.

Step AE2 Using the values computed in Step AE1, we

compute (�

j

(�))(�) 2 F

q

[x] for all j with 0 � j < m.

This is done by multiplying an m� t matrix by a t�n

matrix.

Step AE3 We compute x

q

t

mod f , using the method of Al-

gorithm 5.2 in von zur Gathen & Shoup (1992), which

requires the computation of x

q

mod f , plus O(log t)

modular polynomial compositions.

Step AE4 We use the values computed in Steps AE2 and

AE3 together with a Horner evaluation scheme to get

(�(�))(�). This is done iteratively, performing m� 1

modular compositions.

Lemma 7 Algorithm AE can be implemented so as to use

O(n

(!+1)=2+(3�!)j��1=2j

+ n

(!+1)=2+1��

+ n

1+�+o(1)

log q)

operations in F

q

[x]. Moreover, the algorithm satis�es the

conditions of the transposition principle.

Proof. Step AE1 takes O(n

1+�+o(1)

log q) operations in F

q

.

In Step AE2, if � > 1=2, we compute O(n

1+�

=n

2(1��)

)

multiplications of square matrices of dimension O(n

1��

);

otherwise, if � � 1=2, we perform O(n

2��

=n

2�

) multipli-

cations of square matrices of dimension O(n

�

). In either

case, the number of operations in F

q

is readily calculated as

O(n

(!+1)=2+(3�!)j��1=2j

).

Step AE3 takes O(n

(!+1)=2

+n

1+o(1)

log q) operations in

F

q

.

Step AE4 takes O(n

(!+1)=2+1��

) operations in F

q

.

To prove the second assertion in the lemma, one easily

checks that all of the values computed by the algorithm are

linear in the input variables representing the coe�cients of

�. 2

Although the above discussion implies the existence of an

algorithm for automorphism projection, it is not too di�cult

to give an explicit algorithm. We describe one here.

Let Q be the n � n matrix representing the q-th power

map � on F

q

[x]=(f), with respect to the natural power ba-

sis. The matrix Q is the transpose of Petr's matrix (see

Schwarz 1956) computed in the classical Berlekamp algo-

rithm. We represent the projection map u as a row vector

~u

T

, and we let ~� be the column vector consisting of the

coordinates of �. We want to compute the values

~u

T

Q

i

~� (0 � i < k). (3)

Algorithm AP This algorithm takes as input � and u as

above and computes the quantities (3). The algorithm is

parameterized by a constant �, with 0 � � � 1.

Set t = dn

�

e and m = dk=te. We rewrite (3) as

(~u

T

Q

tj

) � (Q

i

~�) (0 � j < m; 0 � i < t): (4)

The algorithm proceeds as follows.

Step AP1 Compute the vectors Q

i

~�, for 0 � i < t, by

iterating a repeated squaring algorithm t�1 times (left

multiplication by Q is the same as q-th powering).

Step AP2 Compute x

q

t

as in Step AE3.

Step AP3 Compute the vectors ~u

T

Q

tj

, for 0 � j < m,

by iteratively computing m� 1 \transposed" modular

polynomial compositions to carry out the right multi-

plications by Q

t

, each of which (by the transposition

principle) has the same cost as an ordinary modular

composition (with x

q

t

mod f).

Step AP4 Using the values computed in Steps AP1 and

AP3, all of the values in (4) are computed by multi-

plying an m� n matrix by an n� t matrix.

It is straightforward to check that Lemma 7 also holds for

Algorithm AP. We point out that an explicit algorithm for

the \transposed" modular composition problem in Step AP3

is given in Shoup (1994b, x4.1).

Interestingly, Algorithm AP suggests a slightly faster

algorithm for automorphism projection. Notice that the

term n

(!+1)=2+1��

in the running-time bound comes from

Step AP3. Using the transposition principle and the strat-

egy used to prove Theorem 3, we can reduce this term to

n

(!+1)=2+(1��)(!�1)=2

as follows.

Lemma 8 Given x

q

t

mod f , we can compute ~u

T

Q

tj

for

all j with 0 � j < m, where m = O(n), using only

O(n

(!+1)=2

m

(!�1)=2

) operations in F

q

.

Proof. We use the same \doubling" strategy used in the

algorithm in the proof of Lemma 4. Assume we have com-

puted the row vectors

~u

T

; ~u

T

Q

t

; : : : ; ~u

T

Q

(k�1)t

; (5)

as well as x

q

kt

mod f for some k � 1. Then we multiply each

vector in the sequence (5) by Q

kt

and compute x

q

2kt

mod f .

The problem of applying Q

kt

to the sequence (5) is pre-

cisely the transpose of the problem solved by the algorithm

in Lemma 3, and so by the transposition principle, now ap-

plied to a block diagonal matrix with Q

kt

as diagonal blocks,

we can do this in O(n

(!+1)=2

k

(!�1)=2

) arithmetic operations.

Computing x

q

2kt

mod f from x

q

kt

mod f requires just one

modular composition. That completes the description of the

doubling step. The running time bound follows easily. 2

Again, by the transposition principle, this implies the

existence of an algorithm for the automorphism evaluation

problem with the same complexity, although it is not en-

tirely clear at the moment how to explicitly describe this

algorithm.

Combining all of this with our previous analysis of Algo-

rithm B, we have proved the following.

Theorem 5 For any constant � with 0 � � � 1, Algo-

rithm B can be implemented so as to use an expected number

of

O(n

(!+1)=2+(3�!)j��1=2j+o(1)

+ n

(!+1)=2+(1��)(!�1)=2+o(1)

+ n

1+�+o(1)

log q) (6)

operations in F

q

. In particular, choosing ! < 2:375477 and

minimizing the exponent of n, we get O(n

1:852

+n

1:763

log q)

operations in F

q

.

Remark The �rst term in (6) is dominated by the second

exactly when � < 2=(5�!), and thus at least when � < 2=3.

For ! = 2:375477, by making use of techniques for fast

rectangular matrix multiplication, the operation count (6)

in Theorem 5 can be reduced to

O(n

(!+1)=2+(1��)(!�1)=2+o(1)

+ n

1+�+o(1)

log q);

and in particular to O(n

1:815

log q) for an appropriate choice

of �. We indicate how this is done.

The �rst term in (6) arises from the rectangular m � n

times n�tmatrix multiplication in Step AP4. By the remark

after Theorem 5, we may assume � � 2=3 and in particular

that t > m.

Techniques for fast rectangular matrix multiplication al-

low us to multiply a b

�

� b matrix by a b � b matrix with

O(b

2+o(1)

) operations for some � > 0 (Coppersmith 1982,

Lotti & Romani 1983). With the construction yielding

! < 2:375477 by Coppersmith and Winograd (1990), we

may chose � = 0:29 (Coppersmith, private communication).

The neededm�n�tmatrix product is done with O(n=t)

products ofm�t times t�tmatrices. We shall carry out each

of the latter products by multiplying a (t=b) � (t=b) block

matrix with (mb=t) � b blocks times a (t=b) � (t=b) block

matrix with b�b blocks. If mb=t = b

�

, i.e., b = (t=m)

1=(1��)

,

each block product costs O(b

2+o(1)

) operations, yielding a

total of O((t=b)

!

b

2+o(1)

) operations for them�t�t product.

Substituting m = O(n

1��

) and t = O(n

�

), we get for the

entire m� n � t product

O(n

1��+!��(!�2)(2��1)=(1��)+o(1)

) (7)

operations.

Now, for ! = 2:375477 and � = 0:29, one routinely checks

that for 2=3 � � � 1, the quantity (7) is dominated by either

the second or the third term of (6).

4 APPLICATIONS TO NORMAL BASES

The results of x3 can be used to speed certain operations

with so-called normal basis of �nite extensions of F

q

. In this

section we describe those subquadratic algorithms.

A �nite �eld F

q

n

of q

n

elements can be represented as

an n-dimensional vector space over F

q

. For instance, if

f(x) 2 F

q

[x] is an irreducible monic polynomial of degree n

over F

q

, the powers 1; x; : : : ; x

n�1

form a basis for the Kro-

necker representation F

q

[x]=(f(x)) of the �eld F

q

n

. It can be

advantageous for performing arithmetic in F

q

n

, in particular

exponentiation, if one �nds a normal element � 2 F

q

n

with

the property that

�; �

q

; : : : ; �

q

n�1

is a F

q

-vector space basis for F

q

n

. Von zur Gathen and

Giesbrecht (1990) give a randomized algorithm for �nding a

normal element � 2 F

q

[x]=(f(x)) in O(n

2+o(1)

log q) arith-

metic operations in F

q

. The running time of their algo-

rithm is reduced in (von zur Gathen and Shoup 1992) to

O(n

2+o(1)

+ n

1+o(1)

log q) arithmetic operations in F

q

. Here

we give O(n

1:815

log q) solutions to the following three prob-

lems:

basis selection Given f(x) 2 F

q

[x] irreducible monic of

degree n, compute a normal element � 2 F

q

[x]=(f(x)).

conversion to power basis coordinates Given f and �

as above and c

0

; : : : ; c

n�1

2 F

q

, compute c

0

� + � � � +

c

n�1

�

q

n�1

in power basis representation.

conversion to normal coordinates Given f and � as

above and
 2 F

q

[x]=(f(x)), compute c

0

; : : : ; c

n�1

2 F

q

such that c

0

�+ � � �+ c

n�1

�

q

n�1

=
.

Theorem 6 We have probabilistic algorithms that can solve

the basis selection and conversion to and from power basis

coordinates problems in

O(n

(!+1)=2+(1��)(!�1)=2+o(1)

+ n

1+�+o(1)

log q); (8)

arithmetic operations in F

q

for any � with 0 � � � 1.

Proof. Suppose ~� is the column vector containing the co-

e�cients of the canonical representative of �. Using the

notation of x3 we have that Q

i

~� is the coe�cient vector of

the canonical representative of �

q

i

, where Q is the matrix

representing the q-th power map on F

q

[x]=(f(x)). Hence �

is normal if

~�;Q~�;Q

2

~�; : : : ; Q

n�1

~�

are linearly independent vectors. Since f is irreducible and

the minimum polynomial of Q is �

n

� 1 such an � must

exist. Furthermore, for a random row vector ~u

T

and for a

random column vector ~� the probability that the minimum

linear generator of

~u

T

Q

i

~� (0 � i)

remains �

n

� 1 is no less than 1=(12maxflog

q

(n); 1g) (see

Wiedemann 1986, Proposition 3, or Giesbrecht 1993, x6.1).

Therefore, a normal element can be found with success prob-

ability no less than 1 � 1=e by running the automorphism

projection algorithm of x3 12maxflog

q

(n); 1g times. The

stated complexity (8) then follows from our estimates at the

end of x3.

Conversion to power basis coordinates is simply the auto-

morphism evaluation problem of x3, so it remains to demon-

strate conversion to normal basis coordinates in time (8).

By �rst applying the q-th power map n � 1 times to

 = c

0

�+ � � �+ c

n�1

�

q

n�1

and then applying a linear map u from F

q

n

to F

q

we obtain

u(

q

j

) =

n�1

X

i=0

c

i

u(�

q

i+j

) (0 � j < n): (9)

If the linear map u preserves �

n

� 1 as the minimum linear

generator for u(�

q

i

), where i � 0, then the Hankel matrix on

the right side of (9) must be non-singular, because otherwise

one could �nd a second linear generator of degree n. Such a

u is a by-product of our basis selection method and can be

found in a similar way if only � is given. The same is true

for the entries u(�

q

i+j

) in the Hankel matrix, while the left

side elements u(

q

j

) are computed again by automorphism

projection. The Hankel system is �nally solved for the c

i

in

O(n

1+o(1)

) arithmetic steps (Brent et al. 1980). 2

5 PRACTICAL ALGORITHMS

In this section, we describe how the methods developed in

this paper can be used to obtain practical algorithms, with-

out relying on fast matrix multiplication.

Consider our Fast Cantor/Zassenhaus algorithm. A

practical variant of Algorithm D, the distinct-degree factor-

izer, runs as follows. In Step D1, we set l �

p

n=2, so

m �

p

n=2 as well. We compute x

q

mod f via repeated

squaring. We generate both the baby steps and the giant

steps (Steps D1 and D2) by iteratively applying a modular

composition algorithm. Steps D3, D4, and D5 are performed

by carrying them out quite literally as they are described,

without any \tricks."

By using fast algorithms for polynomial multiplication

(which are indeed fast in practice), this variant of our

distinct-degree factorizer uses O(n

2:5

+ n

1+o(1)

log q) oper-

ations in F

q

and space for O(n

1:5

) elements in F

q

. Moreover,

both of the implied \big-O" constants are reasonably small.

Of course, in general, we may have to perform one or

more equal-degree factorizations as well. The equal-degree

factorization algorithm in von zur Gathen & Shoup (1992)

can be implemented so as to use O(n

2

log n + n

1+o(1)

log q)

operations in F

q

and space for O(n

1:5

) elements in F

q

, where

again the implied constants are reasonably small.

In Shoup (1994b), this factoring algorithm is developed

in further detail, and an implementation as well as the results

of empirical tests are described. That paper concludes that

if q is a large prime, then this new algorithm allows much

larger polynomials to be factored in a reasonable amount of

time and space than was previously possible using other al-

gorithms. As an example from that paper, a pseudo-random

degree 128 polynomial was factored modulo a 128-bit prime

on a SUN SPARC-station ELC, which is rated at about 20

MIPS. The running time was under 2 minutes. To put this in

some context, for the same polynomial on the same machine,

the built-in Maple factorizer (based on Cantor/Zassenhaus)

required about 25 hours. As another example, a pseudo-

random degree 1024 polynomial was factored modulo a 1024-

bit prime in about 50 hours, using about 11 megabytes of

memory.

It is also possible obtain a practical version of the Fast

Black Box Berlekamp algorithm using similar techniques,

although we have not as yet implemented this. However,

the empirical evidence we have suggests that Fast Black Box

Berlekamp would be slower than Fast Cantor/Zassenhaus.

REFERENCES

Aho, A., Hopcroft, J., and Ullman, J., The Design and Anal-

ysis of Algorithms; Addison and Wesley, Reading, MA,

1974.

Baur, W. and Strassen, V., \The complexity of partial

derivatives," Theoretical Comp. Sci. 22, pp. 317{330

(1983).

Berlekamp, E. R., \Factoring polynomials over large �nite

�elds," Math. Comp. 24, pp. 713{735 (1970).

Brent, R. P., Gustavson, F. G., and Yun, D. Y. Y., \Fast so-

lution of Toeplitz systems of equations and computation

of Pad�e approximants," J. Algorithms 1, pp. 259{295

(1980).

Brent, R. P. and Kung, H. T., \Fast algorithms for manip-

ulating formal power series," J. ACM 25/4, pp. 581{595

(1978).

Canny, J., Kaltofen, E., and Lakshman Yagati, \Solving sys-

tems of non-linear polynomial equations faster," Proc.

ACM-SIGSAM 1989 Internat. Symp. Symbolic Algebraic

Comput., pp. 121{128 (1989).

Cantor, D. G. and Kaltofen, E., \On fast multiplication of

polynomials over arbitrary algebras," Acta Inform. 28/7,

pp. 693{701 (1991).

Cantor, D. G. and Zassenhaus, H., \A new algorithm for

factoring polynomials over �nite �elds," Math. Comp.

36, pp. 587{592 (1981).

Coppersmith, D., \Rapid multiplication of rectangular ma-

trices," SIAM J. Comput. 11/3, pp. 467{471 (1982).

Coppersmith, D. and Winograd, S., \Matrix multiplication

via arithmetic progressions," J. Symbolic Comput. 9/3,

pp. 251{280 (1990).

Dornstetter, J. L., \On the equivalence between Berlekamp's

and Euclid's algorithms," IEEE Trans. Inf. Theory it-

33/3, pp. 428{431 (1987).

Fleischmann, P., \Connections between the algorithms of

Berlekamp and Niederreiter for factoring polynomials

over F

q

," Linear Algebra and Applications 192, pp. 101{

108 (1993).

von zur Gathen, J. and Giesbrecht, M., \Constructing nor-

mal bases in �nite �elds," J. Symbolic Comput. 10/6,

pp. 547{570 (1990).

von zur Gathen, J. and Shoup, V., \Computing Frobenius

maps and factoring polynomials," Comput. Complexity

2, pp. 187{224 (1992).

Giesbrecht, M., \Nearly optimal algorithms for canonical

matrix forms," Ph.D. Thesis, Dept. Comput. Science,

University of Toronto, Toronto, Canada, 1993.

Griewank, A., \Achieving logarithmic growth of temporal

and spatial complexity in reverse automatic di�erentia-

tion," Optimization Methods & Software 1, pp. 35{54

(1992).

Kaltofen, E. and Lobo, A., \Factoring high-degree polyno-

mials by the black box Berlekamp algorithm," in Proc.

Internat. Symp. Symbolic Algebraic Comput. ISSAC '94,

edited by J. von zur Gathen and M. Giesbrecht; ACM

Press, New York, N. Y., pp. 90{98, 1994.

Kaltofen, E. and Pan, V., \Processor e�cient parallel so-

lution of linear systems over an abstract �eld," in Proc.

3rd Ann. ACM Symp. Parallel Algor. Architecture; ACM

Press, pp. 180{191, 1991.

Kaminski, M., Kirkpatrick, D. G., and Bshouty, N. H., \Ad-

dition requirements for matrix and transposed matrix

products," J. Algorithms 9, pp. 354{364 (1988).

Knuth, D. E., The Art of Computer Programming, Vol. 2,

Seminumerical Algorithms, Ed. 2; AddisonWesley, Read-

ing, MA, 1981.

Lidl, R. and Niederreiter, H., Finite Fields; Addison-Wesley,

Reading, MA, 1983.

Linnainmaa, S., \Taylor expansion of the accumulated

rounding error," BIT 16, pp. 146{160 (1976).

Lotti, G. and Romani, F., \On the asymptotic complexity of

rectangular matrix multiplication," Theoretical Comput.

Sci. 23, pp. 171{185 (1983).

Massey, J. L., \Shift-register synthesis and BCH decoding,"

IEEE Trans. Inf. Theory it-15, pp. 122{127 (1969).

Niederreiter, H., \A new e�cient factorization algorithm for

polynomials over small �nite �elds," Applic. Algebra En-

gin., Commun. Comput. 4, pp. 81{87 (1993).

Niederreiter, H. and G�ottfert, R., \Factorization of polyno-

mials over �nite �elds and characteristic sequences," J.

Symbolic Comput. 16/5, pp. 401{412 (1994).

Ostrowski, G. M., Wolin, Ju. M., and Borisow, W. W., \

�

Uber

die Berechnung von Ableitungen," Wissenschaftliche

Zeitschrift Techn. Hochsch. Chem. Leuna-Merseburg

13/4, pp. 382{384 (1971). In German.

Schwarz,

�

St., \On the reducibility of polynomials over a �nite

�eld," Quart. J. Math. Oxford Ser. (2) 7, pp. 110{124

(1956).

Shoup, V., \On the deterministic complexity of factoring

polynomials over �nite �elds," Inform. Process. Letters

33/5, pp. 261{267 (1990).

Shoup, V., \Fast construction of irreducible polynomials

over �nite �elds," J. Symbolic Comput. 17/5, pp. 371{

391 (1994a).

Shoup, V., \A new polynomial factorization algorithm and

its implementation," Manuscript, Univ. d. Saarlandes,

Saarbr�ucken, Germany, August 1994b.

Wiedemann, D., \Solving sparse linear equations over �nite

�elds," IEEE Trans. Inf. Theory it-32, pp. 54{62 (1986).

