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Factorization of an integer N
(quadratic sieves, number field sieves)

Compute a solution to the congruence equation
X?=Y? (mod N)
via r relations on b basis primes

X7 X5 X2 = (1) (p52)? - (pg?)? (mod N)

Then N divides (X +Y)(X —Y), hence

GCD(X + Y, N) divides N



Factorization of polynomial f over finite field [F,
(Berlekamp 1967 algorithm)

Note that since a? = a (mod p) for all a € F, we have

P —x=z-(r—1)-(r—-2)---(z—p+1) (mod p)

Compute a polynomial solution to the congruence equation

w(z)? = w(z) (mod f(z))

Then f divides w- (w—1)-(w—2)---(w —p -+ 1), hence

GCD(w(z) — a, f(x)) divides f(x) for some a € F,



Solving w? = w (mod f) by linear algebra
For w(x) € B, |x], deg(w) < n:
w(x)? = w(xP) = w(z) (mod f(x)) (Note: (a+ b)P =aP + bP

because <p) =0 (mod p)
i

for 0 < i < p)

_ ﬁtr

tr .
W i : 10<1<n

(Petr’s 1937 matrix)



Run-time comparisons (field arithmetic operations)

p=0(1) logp=0(n)

Berlekamp ’70 O (n*?%) O(n*2%)
O(nw 4+ nl—l—o(l) lOg p>

Cantor & Zassenhaus 81 O(n?te))  O(n3te)
O(n?T°W) log p)

von zur Gathen & Shoup 91 O(n?tem)  O(n2te)

O(n2—|—o(1) 4+ nl—l—o(l) log p>

Kaltofen & Shoup ’94 O(n'8%) O(n*?)
O(n(w+1)/2+(1_7)(w_1)/2 + n1+7+0(1) log p)

for any 0 <~y <1

w = matrix multiplication exponent



Asymptotically fastest methods
degree n versus logp = O(n®)



A “black box” matrix

is an efficient procedure with the specifications

y € B.-yel”

~

B e Fxn
F an arbitrary field

i.e., the matrix is not stored explicitly, its structure is unknown.

Main algorithmic problem: How to efficiently solve a linear system
with a black box coefficient matrix?



Idea for Wiedemann’s algorithm

B € F"*" T a (possibly finite) field

PB(N) =+ A+ -+ A™ € F[A\] minimum polynomial of B:

Vu,v€F*: Vji>0: u"B¢P(B)v=0

|

cp-uBlydc) - u BTy 4 e uT BTy =0
\ & vy A\ 4 \ - J/

" ~

aj aj+1 @j+m

|

{ag, a1, as,...} is generated by a linear recursion



Theorem (Wiedemann 1986): For random u,v € F",
a linear generator for {ag, a1, as,...} is one for {I, B, B%, ...}.

V3 >0:coa; +crajp1+ - +cqajyqg =0
H (with high probability)
coB’v+ BT+ -+ chj+dv =0
H (with high probability)
coB? + 1Bt 4 4 g BT =0

that is, ¢ () divides cg + cit A+ -+ - + c A™



Algorithm Homogeneous Wiedemann

Input: B € F**" singular
Output: w # 0 such that Bw =0

Step W1: Pick random u,v € [F"; b < Bu;

for i < 0 to 2n — 1 do a; +— u""Bb.
(Requires 2n black box calls.)

Step W2: Compute a linear recurrence generator for {a;},
N+ o AT b egdd, £>0,d <n,e #0,
by the Berlekamp/Massey 1967 algorithm.

Step W3: W + cov+cpp 1B+ -+ chd_Ev;
(With high probability @ # 0 and B*'@ = 0.)

Compute first k with B*@ = 0; return w + B* .



Steps W1 and W3 have the same computational complexity

u-[v | Bv | B%*v|...| B®™]=[a_1 ay a a2n 1 ]
o
C1
(v | Bv | B%*v|...|B*™]-| . | =w
_CQn_

Fact: X -y and X" - z have he same computational complexity
(Kaminski, Kirkpatrick, Bshouty 1988).



“Matrix-free” Berlekamp algorithm (K 1991)

Compute v e (Q —1) as

v(z)P —v(x) mod f(x) in nlogyp - (logn)?W) E,-ops

—v(z) + >0, vz(a:p mod f(:l:l)Z mod f(x)
hi(z)
= —v(z) + v(h1(x)) mod f(x) in O(n'") F,-ops (given hy)

“modular polynomial composition” (Brent and Kung 1978)




The probabilistic analysis needed when using the Wiedemann algorithm
as the solver can be made explict (K & Lobo 1994).

For example, one has:

Fact: If f is squarefree, the minimum polynomial of () is

% ()\) = LCM <<, (A™ — 1), where m; = deg(f;).

Note: ¢9(\) = @~ 1(X —1).



The baby steps/giant steps polynomial factorizer

tr . tr .
Consider computing a; = @ -Q'- ¥ = (@ Q) (Q% ), where
0<:<2n,0<j5<t,0<k<2n/t,
t=[n",0<y <1,

Baby steps: A @’ by repeated u(x)? mod f(x).

Giant steps: Q.- v by repeated transposed modular polynomial
t
composition with h;(z) = 2P mod f(x).

Finally, all a; by fast rectangular matrix multiplication.



Shoup’s baby steps/giant steps implementation

Can factor a 1024 degree pseudo-random polynomial modulo a 1024 bit
prime number in about 50 hours on a single 20 MIPS computer.

The algorithm requires 11 Mbytes of memory.

Note: Shoup implemented a variant based on the distinct-degree
factorization algorithm (see paper).
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