Subquadratic-Time Factoring of
Polynomials over Finite Fields

ERricH KALTOFEN

LRenssclacr

Rensselaer Polytechnic Institute
Department of Computer Science

Troy, New York, USA

Joint work with VICTOR SHOUP

Outline

Factorization of integers and polynomials

Statement of result

Matrix-free linear system solvers

Matrix-free Berlekamp algorithm

Baby steps/giant steps speed-up

Implementation observations

Factorization of an integer N
(quadratic sieves, number field sieves)

Compute a solution to the congruence equation
X?=Y? (mod N)
via r relations on b basis primes

X7 X5 X2 = (1) (p52)? - (pg?)? (mod N)

Then N divides (X +Y)(X —Y), hence

GCD(X + Y, N) divides N

Factorization of polynomial f over finite field [F,
(Berlekamp 1967 algorithm)

Note that since a? = a (mod p) for all a € F, we have

P —x=z-(r—1)-(r—-2)---(z—p+1) (mod p)

Compute a polynomial solution to the congruence equation

w(z)? = w(z) (mod f(z))

Then f divides w- (w—1)-(w—2)---(w —p -+ 1), hence

GCD(w(z) — a, f(x)) divides f(x) for some a € F,

Solving w? = w (mod f) by linear algebra
For w(x) € B, |x], deg(w) < n:
w(x)? = w(xP) = w(z) (mod f(x)) (Note: (a+ b)P =aP + bP

because <p) =0 (mod p)
i

for 0 < i < p)

_ ﬁtr

tr .
W i : 10<1<n

(Petr’s 1937 matrix)

Run-time comparisons (field arithmetic operations)

p=0(1) logp=0(n)

Berlekamp ’70 O (n*?%) O(n*2%)
O(nw 4+ nl—l—o(l) lOg p>

Cantor & Zassenhaus 81 O(n?te)) O(n3te)
O(n?T°W) log p)

von zur Gathen & Shoup 91 O(n?tem) O(n2te)

O(n2—|—o(1) 4+ nl—l—o(l) log p>

Kaltofen & Shoup ’94 O(n'8%) O(n*?)
O(n(w+1)/2+(1_7)(w_1)/2 + n1+7+0(1) log p)

for any 0 <~y <1

w = matrix multiplication exponent

Asymptotically fastest methods
degree n versus logp = O(n®)

A “black box” matrix

is an efficient procedure with the specifications

y € B.-yel”

~

B e Fxn
F an arbitrary field

i.e., the matrix is not stored explicitly, its structure is unknown.

Main algorithmic problem: How to efficiently solve a linear system
with a black box coefficient matrix?

Idea for Wiedemann’s algorithm

B € F"*" T a (possibly finite) field

PB(N) =+ A+ -+ A™ € F[A\] minimum polynomial of B:

Vu,v€F*: Vji>0: u"B¢P(B)v=0

|

cp-uBlydc) - u BTy 4 e uT BTy =0
\ & vy A\ 4 \ - J/

" ~

aj aj+1 @j+m

|

{ag, a1, as,...} is generated by a linear recursion

Theorem (Wiedemann 1986): For random u,v € F",
a linear generator for {ag, a1, as,...} is one for {I, B, B%, ...}.

V3 >0:coa; +crajp1+ - +cqajyqg =0
H (with high probability)
coB’v+ BT+ -+ chj+dv =0
H (with high probability)
coB? + 1Bt 4 4 g BT =0

that is, ¢ () divides cg + cit A+ -+ - + c A™

Algorithm Homogeneous Wiedemann

Input: B € F**" singular
Output: w # 0 such that Bw =0

Step W1: Pick random u,v € [F"; b < Bu;

for i < 0 to 2n — 1 do a; +— u""Bb.
(Requires 2n black box calls.)

Step W2: Compute a linear recurrence generator for {a;},
N+ o AT b egdd, £>0,d <n,e #0,
by the Berlekamp/Massey 1967 algorithm.

Step W3: W + cov+cpp 1B+ -+ chd_Ev;
(With high probability @ # 0 and B*'@ = 0.)

Compute first k with B*@ = 0; return w + B* .

Steps W1 and W3 have the same computational complexity

u-[v | Bv | B%*v|...| B®™]=[a_1 ay a a2n 1]
o
C1
(v | Bv | B%*v|...|B*™]-| . | =w
CQn

Fact: X -y and X" - z have he same computational complexity
(Kaminski, Kirkpatrick, Bshouty 1988).

“Matrix-free” Berlekamp algorithm (K 1991)

Compute v e (Q —1) as

v(z)P —v(x) mod f(x) in nlogyp - (logn)?W) E,-ops

—v(z) + >0, vz(a:p mod f(:l:l)Z mod f(x)
hi(z)
= —v(z) + v(h1(x)) mod f(x) in O(n'") F,-ops (given hy)

“modular polynomial composition” (Brent and Kung 1978)

The probabilistic analysis needed when using the Wiedemann algorithm
as the solver can be made explict (K & Lobo 1994).

For example, one has:

Fact: If f is squarefree, the minimum polynomial of () is

% ()\) = LCM <<, (A™ — 1), where m; = deg(f;).

Note: ¢9(\) = @~ 1(X —1).

The baby steps/giant steps polynomial factorizer

tr . tr .
Consider computing a; = @ -Q'- ¥ = (@ Q) (Q%), where
0<:<2n,0<j5<t,0<k<2n/t,
t=[n",0<y <1,

Baby steps: A @’ by repeated u(x)? mod f(x).

Giant steps: Q.- v by repeated transposed modular polynomial
t
composition with h;(z) = 2P mod f(x).

Finally, all a; by fast rectangular matrix multiplication.

Shoup’s baby steps/giant steps implementation

Can factor a 1024 degree pseudo-random polynomial modulo a 1024 bit
prime number in about 50 hours on a single 20 MIPS computer.

The algorithm requires 11 Mbytes of memory.

Note: Shoup implemented a variant based on the distinct-degree
factorization algorithm (see paper).

Email: kaltofen@cs.rpi.edu
URL: http://www.cs.rpi.edu/"kaltofen

