Subquadratic-Time Factoring of Polynomials over Finite Fields

ERICH KALTOFEN

Rensselaer

Rensselaer Polytechnic Institute
Department of Computer Science
Troy, New York, USA

Joint work with VICTOR SHOUP

Outline

• Factorization of integers and polynomials

• Statement of result

• Matrix-free linear system solvers

• Matrix-free Berlekamp algorithm

• Baby steps/giant steps speed-up

• Implementation observations

Factorization of an integer N (quadratic sieves, number field sieves)

Compute a solution to the congruence equation

$$X^2 \equiv Y^2 \pmod{N}$$

via r relations on b basis primes

$$X_1^2 \cdot X_2^2 \cdots X_r^2 \equiv (p_1^{e_1})^2 \cdot (p_2^{e_2})^2 \cdots (p_b^{e_b})^2 \pmod{N}$$

Then N divides (X + Y)(X - Y), hence

$$GCD(X + Y, N)$$
 divides N

Factorization of polynomial f over finite field \mathbb{F}_p (Berlekamp 1967 algorithm)

Note that since $a^p \equiv a \pmod{p}$ for all $a \in \mathbb{F}_p$ we have

$$x^p - x \equiv x \cdot (x - 1) \cdot (x - 2) \cdots (x - p + 1) \pmod{p}$$

Compute a polynomial solution to the congruence equation

$$w(x)^p \equiv w(x) \pmod{f(x)}$$

Then f divides $w \cdot (w-1) \cdot (w-2) \cdot \cdots (w-p+1)$, hence

GCD(w(x) - a, f(x)) divides f(x) for some $a \in \mathbb{F}_p$

Solving $w^p \equiv w \pmod{f}$ by linear algebra

For $w(x) \in \mathbb{F}_p[x]$, $\deg(w) < n$:

$$w(x)^p = w(x^p) \equiv w(x) \pmod{f(x)}$$
 (Note: $(a+b)^p = a^p + b^p$)
because $\binom{p}{i} \equiv 0 \pmod{p}$
for $0 < i < p$)

 $\downarrow \downarrow$

$$\overline{w(x^p) \bmod f(x)}^{\operatorname{tr}} = \underbrace{[w_0 \dots w_{n-1}]}_{\operatorname{tr}} \cdot \underbrace{\begin{bmatrix} \vdots \\ \overline{x^{ip} \bmod f(x)}^{\operatorname{tr}} \end{bmatrix}}_{Q} \underbrace{= \overrightarrow{w}^{\operatorname{tr}}}_{Q}$$
(Petr's 1937 matrix)

Run-time comparisons (field arithmetic operations)

$$p = O(1) \qquad \log p = \Theta(n)$$
 Berlekamp '70
$$O(n^{\omega} + n^{1+o(1)} \log p)$$

$$O(n^{2.38}) \qquad O(n^{2.38})$$

$$O(n^{2.38})$$
 Cantor & Zassenhaus '81
$$O(n^{2+o(1)} \log p)$$

$$\text{von zur Gathen & Shoup '91} \\ O(n^{2+o(1)} + n^{1+o(1)} \log p)$$

$$O(n^{2+o(1)}) \qquad O(n^{2+o(1)})$$

$$O(n^{2+o(1)}) \qquad O(n^{2+o(1)})$$
 Kaltofen & Shoup '94
$$O(n^{(\omega+1)/2+(1-\gamma)(\omega-1)/2} + n^{1+\gamma+o(1)} \log p)$$
 for any $0 \le \gamma \le 1$

 $\omega = \text{matrix multiplication exponent}$

Asymptotically fastest methods degree n versus $\log p = O(n^{\alpha})$

A "black box" matrix

is an efficient **procedure** with the specifications

i.e., the matrix is not stored explicitly, its structure is unknown.

Main algorithmic problem: How to efficiently solve a linear system with a black box coefficient matrix?

Idea for Wiedemann's algorithm

 $B \in \mathbb{F}^{n \times n}$, \mathbb{F} a (possibly finite) field

$$\phi^B(\lambda) = c_0' + c_1'\lambda + \dots + c_m'\lambda^m \in \mathbb{F}[\lambda]$$
 minimum polynomial of B :

$$\forall u, v \in \mathbb{F}^n : \forall j \ge 0 : u^{\operatorname{tr}} B^j \phi^B(B) v = 0$$

$$\downarrow c_0' \cdot \underbrace{u^{\operatorname{tr}} B^j v}_{a_j} + c_1' \cdot \underbrace{u^{\operatorname{tr}} B^{j+1} v}_{a_{j+1}} + \dots + c_m' \cdot \underbrace{u^{\operatorname{tr}} B^{j+m} v}_{a_{j+m}} = 0$$

$$\downarrow \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad$$

 $\{a_0, a_1, a_2, \ldots\}$ is generated by a linear recursion

Theorem (Wiedemann 1986): For random $u, v \in \mathbb{F}^n$, a linear generator for $\{a_0, a_1, a_2, \ldots\}$ is one for $\{I, B, B^2, \ldots\}$.

that is, $\phi^B(\lambda)$ divides $c_0 + c_1\lambda + \cdots + c_m\lambda^m$

Algorithm Homogeneous Wiedemann

Input: $B \in \mathbb{F}^{n \times n}$ singular

Output: $w \neq \mathbf{0}$ such that $Bw = \mathbf{0}$

Step W1: Pick random $u, v \in \mathbb{F}^n$; $b \leftarrow Bv$; for $i \leftarrow 0$ to 2n - 1 do $a_i \leftarrow u^{\operatorname{tr}} B^i b$. (Requires 2n black box calls.)

Step W2: Compute a linear recurrence generator for $\{a_i\}$, $c_{\ell}\lambda^{\ell} + c_{\ell+1}\lambda^{\ell+1} + \cdots + c_d\lambda^d$, $\ell \geq 0, d \leq n, c_{\ell} \neq 0$, by the Berlekamp/Massey 1967 algorithm.

Step W3: $\widehat{w} \leftarrow c_{\ell}v + c_{\ell+1}Bv + \cdots + c_{d}B^{d-\ell}v;$ (With high probability $\widehat{w} \neq 0$ and $B^{\ell+1}\widehat{w} = 0.$) Compute first k with $B^{k}\widehat{w} = 0$; return $w \leftarrow B^{k-1}\widehat{w}$. Steps W1 and W3 have the same computational complexity

$$u^{\mathrm{tr}} \cdot [v \mid Bv \mid B^2v \mid \dots \mid B^{2n}v] = [a_{-1} \quad a_0 \quad a_1 \quad \dots \quad a_{2n-1}]$$

$$\begin{bmatrix} v \mid Bv \mid B^2v \mid \dots \mid B^{2n}v \end{bmatrix} \cdot \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_{2n} \end{bmatrix} = w$$

Fact: $X \cdot y$ and $X^{\text{tr}} \cdot z$ have he same computational complexity (Kaminski, Kirkpatrick, Bshouty 1988).

"Matrix-free" Berlekamp algorithm (K 1991)

Compute $\overrightarrow{v}^{\text{tr}} \cdot (Q - I)$ as

$$v(x)^p - v(x) \mod f(x)$$

in $n \log p \cdot (\log n)^{O(1)} \mathbb{F}_p$ -ops

$$-v(x) + \sum_{i=0}^{n-1} v_i (\underbrace{x^p \bmod f(x)})^i \bmod f(x)$$

$$h_1(x)$$

$$= -v(x) + v(h_1(x)) \bmod f(x)$$

"modular polynomial composition"

in
$$O(n^{1.7})$$
 \mathbb{F}_p -ops (given h_1)

(Brent and Kung 1978)

The probabilistic analysis needed when using the Wiedemann algorithm as the solver can be made explict (K & Lobo 1994).

For example, one has:

Fact: If f is squarefree, the minimum polynomial of Q is

$$\phi^{Q}(\lambda) = LCM_{1 \le i \le r}(\lambda^{m_i} - 1), \text{ where } m_i = \deg(f_i).$$

Note: $\phi^Q(\lambda) = \phi^{Q-I}(\lambda - 1)$.

The baby steps/giant steps polynomial factorizer

Consider computing
$$a_i = \overrightarrow{u}^{\text{tr}} \cdot Q^i \cdot \overrightarrow{v} = (\overrightarrow{u}^{\text{tr}}Q^j) \cdot (Q^{tk}\overrightarrow{v})$$
, where $0 \le i \le 2n, 0 \le j < t, 0 \le k \le 2n/t, t = \lceil n^{\gamma} \rceil, 0 \le \gamma \le 1.$

Baby steps: $\overrightarrow{u}^{\text{tr}} \cdot Q^j$ by repeated $u(x)^p \mod f(x)$.

Giant steps: $Q^{tk} \cdot \overrightarrow{v}$ by repeated transposed modular polynomial composition with $h_t(x) = x^{p^t} \mod f(x)$.

Finally, all a_i by fast rectangular matrix multiplication.

Shoup's baby steps/giant steps implementation

Can factor a 1024 degree pseudo-random polynomial modulo a 1024 bit prime number in about 50 hours on a **single** 20 MIPS computer.

The algorithm requires 11 Mbytes of memory.

Note: Shoup implemented a variant based on the distinct-degree factorization algorithm (see paper).

Email: kaltofen@cs.rpi.edu

URL: http://www.cs.rpi.edu/~kaltofen