Blocked Iterative Sparse Linear System Solvers
for Finite Fields*

Erich Kaltofen

June 7, 1996

Department of Mathematics, North Carolina State University
Raleigh, North Carolina 27695-8205; Internet: kaltofen@eos.ncsu.edu
URL: http://wwwé.ncsu.edu/"kaltofen

FExtended Abstract

The problem of solving a large sparse or structured system of linear equa-
tions in the symbolic context, for instance when the coefficients lie in a finite
field, has arisen in several applications. A famous example are the linear
systems over F,, the field with 2 elements, that arise in sieve based integer
factoring algorithms. For example, for the factorization of the RSA-130 chal-
lenge number several column dependencies of a 3504 823 x 3516 502 matrix
with an average of 39.4 non-zero entries per column needed to be computed
[10]. A second example is the Berlekamp polynomial factorization algorithm
[6]. In that example, the matrix is not explicitly constructed, but instead a
fast algorithm for performing the matrix times vector product is used. Fur-
ther examples for such “black box matrices” arise in the power series solution
of algebraic or differential equations by undetermined coefficients. The aris-
ing linear systems for the coefficients usually have a distinct structure that
allows a fast coefficient matrix times vector product.

Here we shall assume that the coefficients are from a finite field, which
is the case in the integer and polynomial factoring algorithms. In other
symbolic applications computations modulo a large prime number are often
used to discover the term structure of the solutions, as is done, for example,
in the Macaulay system. Exact coefficient values can sometimes be recov-
ered by Chinese remaindering or continued fraction approximation. Modular
arithmetic also becomes necessary for very large inputs, where the rational
coefficients would grow too large to be efficiently handled.

*This material is based on work supported in part by the National Science Foundation
under Grant No. CCR-9319776.
Appears in Proc. Stratagem’96, INRIA Sophia Antipolis, pp. 91-95 (1996).



Algorithms for solving linear systems that use a fast coefficient matrix
times vector product are sometimes referred to as “matrix free,” as the co-
efficient matrix is never explicitly constructed. Numerical linear algebra has
the Krylov, Lanczos, and conjugate gradient methods. As it turns out, these
methods can be implemented over a finite field. The solutions cannot be
approximated in this setting but instead the iterations must continue until
certain subspaces are exhausted. With n we shall denote the dimensions
of the coefficient matrix A. Let b € F' and consider the Krylov subspace
spanned by the vectors

b, Ab, A%b, ..., A'D, ... (1)

The approach due to Wiedemann [14] works in two rounds. First a linear
dependency of the vectors (1) is found. This is done by applying a random

linear map
ap=ulb,ay =utAb,... a; =u' A, ...

where u?T is the transpose of a random linear vector, and by computing a
linear generator ¢y + c1A + - - - 4+ ¢, A™ € F;[A] for the sequence {a;} of field
elements. We then have

Vi >0: coa; +ciaj11 + -+ + Cnljpm = 0.

The generator can be found from no more than 2n initial sequence elements
by the Berlekamp/Massey algorithm. It can proven for large ¢ that the
resulting generator with high probability remains one for the sequence of
Krylov vectors (1). Thus

cob+c1Ab+ -+ ¢, A"b =0

and if ¢y # 0, which is the case if the matrix is non-singular, one obtains the
solution )
A- C—(clb +epAb+ -+ e, A" = b

0
by a second round of matrix times vector products. Therefore, if one does not
store all A’ in the first round it can take as many as 3n iterations before the
exact solution is constructed. Wiedemann and others [8] give several variants
of this approach, including solution of singular systems. Most importantly,



Wiedemann manages to analyze the probability of success for one of his
variants even if the field is .

A second approach is based on the Lanczos method. For a moment,
suppose that the matrix A is real, symmetric, and positive definite. Then
the bilinear map

{(u,v) 4 = u" Av

constitutes an inner product. Lanczos proceeds by computing an orthogonal
basis for (1) with respect to (-,-) 4, namely

wo = b, w; = Awg — aywo, Wiy = Awiyy — Qipiwip — Biw;.
Here

(sz'+1, wi)A
<wi7 wi>A

(sz'+1, wi+1>A
<wz'+1, wi+1>A

Qi1 Wi = wity and Giw; = i
are the projections with regard to (-,-)4 of Aw;y; onto w;y; and w;, since
(Awiy1,wj) 4 = (wiy1, Aw;j) 4 = 0 kills all the other projections onto w; for

j <. If A is non-singular, then

~— (A !b, wZ it b w;

im0 (wi, wi)a 0 (wi, wi)a
Note that AT = A. The only matrix times vector products needed are
Awy, Awy, . .., Aw,,_1, where m < n. One can perform the algorithm over a

finite field as long as (w41, w;y1)a # 0. If A is not symmetric, LaMacchia
and Odlyzko [9] suggest to use A = ATDA and b = ATDb, where D is a
random diagonal matrix. The matrix D helps in avoiding self-orthogonal
w;+1. The cost is then no more than 2n matrix times vector products, noting
that one needs a black box for AT as well. By the transposition principle
(Tellegen’s theorem) [13] a black box for A can be converted to a black box
for AT at no loss in time efficiency. We note that the overall form of the
conjugate gradient method is very similar to the Lanczos algorithm. We
know of no complete failure probability analysis for either method. For large
finite fields a more complicated preconditioner is provable for the Lanczos
method at least in the non-singular case [4].

When very large inputs are considered it becomes necessary to appeal to
parallel techniques, that is reduce the number of outer loop iterations. This



is accomplished by blocking the vector b. Coppersmith [2] describes such an
approach for the Wiedemann algorithm. Choose the block vectors u € ]F(I"X’B
and b € IF;I”X'S and compute the matrix sequence

| 2
a; =u'A'b e B, 0<i< ﬁn +o.

The linear generator then becomes a vector polynomial
co+ad+-+cgA €F[A], d < [n/B].

such that . .
VJ Z 0: Zaj+ici = Z UTAi+jbCi =0.

i=0 i=0
If one can drop the projection by u, one again obtains a linear dependency of
the vectors A'be; leading to a solution. The generator polynomial can either
be computed by a generalization of the Berlekamp/Massey algorithm [2] or
by a block Toeplitz solver [5]. Parallelization is possible either by performing
each A - (A" 'b) in a parallel fashion, as is done over |, where each column
of (A" 'b) can be stored in a different bit position inside a computer word,
or by computing the sequences of the v-th columns of the a; separately. The
latter is especially useful when the matrix is given by a black box procedure
that uses very little space, like in the polynomial factoring application.

A similar blocking approach is described for the Lanczos method by
Coppersmith [1] and by Montgomery [12]. Again, a problem arises when
wi Aw;yy s a singular matrix, where w;y; € IF';X/} . A possibility described
by Coppersmith is to maintain a new set of vectors that orthogonally spans
a subspace of the Krylov space. Unfortunately, all known block methods
must be considered heuristics over small finite fields, although they have
been observed to work in practice on the matrices from integer factoring and
polynomial factorization.

Fortunately, we have a complete analysis of a variant of the block Wiede-
mann algorithm for large fields which reveals several interesting properties
[5]. For one, it appears that blocking not only allows for parallelization, but
it improves the probability that the algorithms succeed in finding a solution.
The analysis in [5] is based on the observation that if the random entries
of u and b are picked in a special way, the block algorithm simulates the



Wiedemann algorithm. Thus, the needed conditions are even more likely to
occur when the entries are chosen at random. Furthermore, the Corollary to
Theorem 7 in [5] shows that one may compute a solution to a linear system
sequentially with only (1 + ¢)n matrix times vector products and an addi-
tional O(n?*°(V) arithmetic operation while using O(n) intermediate storage.
This result is accomplished by using blocks of size 3% for u. Note that in
the unsymmetric case both the Lanczos and the conjugate gradient meth-
ods appear to require at the worst 2n matrix times vector products. These
improvements of the Wiedemann approach carries over to the parallel case.

The block Lanczos method over F, has been implemented on an IBM
3090 computer by Coppersmith [1] and on a CRAY-C90 computer by Mont-
gomery [12]. The block Wiedemann method has been implemented over I,
by Coppersmith on an IBM RS-6000 [2] and by Lobo on an IBM SP-2 [7].
Furthermore, over F, the block Wiedemann method has been used on a net-
work of workstations to solve linear systems and factor polynomials modulo
a prime number [6, 11, 3]. The most pressing open problems are to supply
a probabilistic analysis for the block approach when the field is small, and
to explore reduction of matrix times vector products. In the current state of
knowledge, the Wiedemann approach seems to have the edge.

Acknowledgement: I thank Wayne Eberly for the discussions we have had
on the Lanczos approach.

References

[1] D. Coppersmith. Solving linear systems over GF(2): block Lanczos
algorithm. Lin. Algebra Applic., 192:33-60, 1993.

2] D. Coppersmith. Solving homogeneous linear equations over GF(2) via
block Wiedemann algorithm. Math. Comput., 62(205):333-350, 1994.

3] A. Diaz, M. Hitz, E. Kaltofen, A. Lobo, and T. Valente. Process schedul-
ing in DSC and the large sparse linear systems challenge. J. Symbolic
Comput., 19(1-3):269-282, 1995.

[4] W. Eberly and E. Kaltofen. Work in progress. To be published.



[5] E. Kaltofen. Analysis of Coppersmith’s block Wiedemann algorithm
for the parallel solution of sparse linear systems. Math. Comput.,
64(210):777-806, 1995.

6] E. Kaltofen and A. Lobo. Factoring high-degree polynomials by the
black box Berlekamp algorithm. In J. von zur Gathen and M. Giesbrecht,
editors, Proc. Internat. Symp. Symbolic Algebraic Comput. ISSAC ’9/,
pages 90-98, New York, N. Y., 1994. ACM Press.

(7] E. Kaltofen and A. Lobo. Distributed matrix-free solution of large sparse
linear systems over finite fields. In A. M. Tentner, editor, High Perfor-
mance Computing 1996, pages 244-247, San Diego, CA, 1996. Society
for Computer Simulation, Simulation Councils, Inc.

18] E. Kaltofen and B. D. Saunders. On Wiedemann’s method of solving
sparse linear systems, volume 539 of Springer Lect. Notes Comput. Sci.,
pages 29-38. Springer Verlag, Heidelberg, Germany, 1991.

9] B. A. LaMacchia and A. M. Odlyzko. Solving large sparse linear systems
over finite fields, volume 537 of Lect. Notes Comput. Sci., pages 109-133.
Springer Verlag, Heidelberg, Germany, 1991.

[10] A. K. Lenstra. Factorization of RSA-130 using the number field sieve,
April 1996. Message posted on newsgroup sci.crypt.research.

[11] A. Lobo. Matriz-free linear system solving and applications to symbolic
computation. PhD thesis, Rensselaer Polytechnic Institute, Troy, New
York, December 1995.

[12] P. L. Montgomery. A block Lanczos algorithm for finding dependencies
over GF(2), volume 921 of Springer Lecture Notes Comput. Sci., pages
106-120. Springer Verlag, Heidelberg, Germany, 1995.

[13] P. Penfield Jr., R. Spencer, and S. Duinker. Tellegen’s Theorem and
Electrical Networks. M.I.'T. Press, Cambridge, MA, 1970.

[14] D. Wiedemann. Solving sparse linear equations over finite fields. IEEE
Trans. Inf. Theory, 17-32:54-62, 1986.



