
Blocked Iterative Sparse Linear System Solvers

for Finite Fields

�

Erich Kaltofen

June 7, 1996

Department of Mathematics, North Carolina State University

Raleigh, North Carolina 27695-8205; Internet: kaltofen@eos.ncsu.edu

URL: http://www4.ncsu.edu/~kaltofen

Extended Abstract

The problem of solving a large sparse or structured system of linear equa-

tions in the symbolic context, for instance when the coe�cients lie in a �nite

�eld, has arisen in several applications. A famous example are the linear

systems over F

2

, the �eld with 2 elements, that arise in sieve based integer

factoring algorithms. For example, for the factorization of the RSA-130 chal-

lenge number several column dependencies of a 3 504 823� 3 516 502 matrix

with an average of 39:4 non-zero entries per column needed to be computed

[10]. A second example is the Berlekamp polynomial factorization algorithm

[6]. In that example, the matrix is not explicitly constructed, but instead a

fast algorithm for performing the matrix times vector product is used. Fur-

ther examples for such \black box matrices" arise in the power series solution

of algebraic or di�erential equations by undetermined coe�cients. The aris-

ing linear systems for the coe�cients usually have a distinct structure that

allows a fast coe�cient matrix times vector product.

Here we shall assume that the coe�cients are from a �nite �eld, which

is the case in the integer and polynomial factoring algorithms. In other

symbolic applications computations modulo a large prime number are often

used to discover the term structure of the solutions, as is done, for example,

in the Macaulay system. Exact coe�cient values can sometimes be recov-

ered by Chinese remaindering or continued fraction approximation. Modular

arithmetic also becomes necessary for very large inputs, where the rational

coe�cients would grow too large to be e�ciently handled.

�

This material is based on work supported in part by the National Science Foundation

under Grant No. CCR-9319776.

Appears in Proc. Stratagem'96, INRIA Sophia Antipolis, pp. 91{95 (1996).

1



Algorithms for solving linear systems that use a fast coe�cient matrix

times vector product are sometimes referred to as \matrix free," as the co-

e�cient matrix is never explicitly constructed. Numerical linear algebra has

the Krylov, Lanczos, and conjugate gradient methods. As it turns out, these

methods can be implemented over a �nite �eld. The solutions cannot be

approximated in this setting but instead the iterations must continue until

certain subspaces are exhausted. With n we shall denote the dimensions

of the coe�cient matrix A. Let b 2 F

n

q

and consider the Krylov subspace

spanned by the vectors

b; Ab; A

2

b; : : : ; A

i

b; : : : (1)

The approach due to Wiedemann [14] works in two rounds. First a linear

dependency of the vectors (1) is found. This is done by applying a random

linear map

a

0

= u

T

b; a

1

= u

T

Ab; : : : ; a

i

= u

T

A

i

b; : : :

where u

T

is the transpose of a random linear vector, and by computing a

linear generator c

0

+ c

1

� + � � �+ c

m

�

m

2 F

q

[�] for the sequence fa

i

g of �eld

elements. We then have

8 j � 0: c

0

a

j

+ c

1

a

j+1

+ � � �+ c

m

a

j+m

= 0:

The generator can be found from no more than 2n initial sequence elements

by the Berlekamp/Massey algorithm. It can proven for large q that the

resulting generator with high probability remains one for the sequence of

Krylov vectors (1). Thus

c

0

b+ c

1

Ab+ � � �+ c

m

A

m

b = 0

and if c

0

6= 0, which is the case if the matrix is non-singular, one obtains the

solution

A �

1

c

0

(c

1

b + c

2

Ab + � � �+ c

m

A

m�1

b) = b

by a second round of matrix times vector products. Therefore, if one does not

store all A

i

b in the �rst round it can take as many as 3n iterations before the

exact solution is constructed. Wiedemann and others [8] give several variants

of this approach, including solution of singular systems. Most importantly,

2



Wiedemann manages to analyze the probability of success for one of his

variants even if the �eld is F

2

.

A second approach is based on the Lanczos method. For a moment,

suppose that the matrix A is real, symmetric, and positive de�nite. Then

the bilinear map

hu; vi

A

= u

T

Av

constitutes an inner product. Lanczos proceeds by computing an orthogonal

basis for (1) with respect to h�; �i

A

, namely

w

0

= b; w

1

= Aw

0

� �

1

w

0

; w

i+2

= Aw

i+1

� �

i+1

w

i+1

� �

i

w

i

:

Here

�

i+1

w

i+1

=

hAw

i+1

; w

i+1

i

A

hw

i+1

; w

i+1

i

A

w

i+1

and �

i

w

i

=

hAw

i+1

; w

i

i

A

hw

i

; w

i

i

A

w

i

are the projections with regard to h�; �i

A

of Aw

i+1

onto w

i+1

and w

i

, since

hAw

i+1

; w

j

i

A

= hw

i+1

; Aw

j

i

A

= 0 kills all the other projections onto w

j

for

j < i. If A is non-singular, then

A

�1

b =

m�1

X

i=0

hA

�1

b; w

i

i

A

hw

i

; w

i

i

A

w

i

=

m�1

X

i=0

b

T

w

i

hw

i

; w

i

i

A

w

i

:

Note that A

T

= A. The only matrix times vector products needed are

Aw

0

; Aw

1

; : : : ; Aw

m�1

, where m � n. One can perform the algorithm over a

�nite �eld as long as hw

i+1

; w

i+1

i

A

6= 0. If A is not symmetric, LaMacchia

and Odlyzko [9] suggest to use

�

A = A

T

DA and

�

b = A

T

Db, where D is a

random diagonal matrix. The matrix D helps in avoiding self-orthogonal

w

i+1

. The cost is then no more than 2n matrix times vector products, noting

that one needs a black box for A

T

as well. By the transposition principle

(Tellegen's theorem) [13] a black box for A can be converted to a black box

for A

T

at no loss in time e�ciency. We note that the overall form of the

conjugate gradient method is very similar to the Lanczos algorithm. We

know of no complete failure probability analysis for either method. For large

�nite �elds a more complicated preconditioner is provable for the Lanczos

method at least in the non-singular case [4].

When very large inputs are considered it becomes necessary to appeal to

parallel techniques, that is reduce the number of outer loop iterations. This

3



is accomplished by blocking the vector b. Coppersmith [2] describes such an

approach for the Wiedemann algorithm. Choose the block vectors u 2 F

n��

q

and b 2 F

n��

q

and compute the matrix sequence

a

i

= u

T

A

i+1

b 2 F

���

q

; 0 � i <

2n

�

+ 2:

The linear generator then becomes a vector polynomial

c

0

+ c

1

�+ � � �+ c

d

�

d

2 F

�

q

[�]; d � dn=�e:

such that

8j � 0 :

d

X

i=0

a

j+i

c

i

=

d

X

i=0

u

T

A

i+j

bc

i

= 0:

If one can drop the projection by u, one again obtains a linear dependency of

the vectors A

i

bc

i

leading to a solution. The generator polynomial can either

be computed by a generalization of the Berlekamp/Massey algorithm [2] or

by a block Toeplitz solver [5]. Parallelization is possible either by performing

each A � (A

i�1

b) in a parallel fashion, as is done over F

2

where each column

of (A

i�1

b) can be stored in a di�erent bit position inside a computer word,

or by computing the sequences of the �-th columns of the a

i

separately. The

latter is especially useful when the matrix is given by a black box procedure

that uses very little space, like in the polynomial factoring application.

A similar blocking approach is described for the Lanczos method by

Coppersmith [1] and by Montgomery [12]. Again, a problem arises when

w

T

i+1

Aw

i+1

is a singular matrix, where w

i+1

2 F

n��

q

. A possibility described

by Coppersmith is to maintain a new set of vectors that orthogonally spans

a subspace of the Krylov space. Unfortunately, all known block methods

must be considered heuristics over small �nite �elds, although they have

been observed to work in practice on the matrices from integer factoring and

polynomial factorization.

Fortunately, we have a complete analysis of a variant of the block Wiede-

mann algorithm for large �elds which reveals several interesting properties

[5]. For one, it appears that blocking not only allows for parallelization, but

it improves the probability that the algorithms succeed in �nding a solution.

The analysis in [5] is based on the observation that if the random entries

of u and b are picked in a special way, the block algorithm simulates the

4



Wiedemann algorithm. Thus, the needed conditions are even more likely to

occur when the entries are chosen at random. Furthermore, the Corollary to

Theorem 7 in [5] shows that one may compute a solution to a linear system

sequentially with only (1 + �)n matrix times vector products and an addi-

tional O(n

2+o(1)

) arithmetic operation while using O(n) intermediate storage.

This result is accomplished by using blocks of size �

2

for u. Note that in

the unsymmetric case both the Lanczos and the conjugate gradient meth-

ods appear to require at the worst 2n matrix times vector products. These

improvements of the Wiedemann approach carries over to the parallel case.

The block Lanczos method over F

2

has been implemented on an IBM

3090 computer by Coppersmith [1] and on a CRAY-C90 computer by Mont-

gomery [12]. The block Wiedemann method has been implemented over F

2

by Coppersmith on an IBM RS-6000 [2] and by Lobo on an IBM SP-2 [7].

Furthermore, over F

p

the block Wiedemann method has been used on a net-

work of workstations to solve linear systems and factor polynomials modulo

a prime number [6, 11, 3]. The most pressing open problems are to supply

a probabilistic analysis for the block approach when the �eld is small, and

to explore reduction of matrix times vector products. In the current state of

knowledge, the Wiedemann approach seems to have the edge.

Acknowledgement: I thank Wayne Eberly for the discussions we have had

on the Lanczos approach.

References

[1] D. Coppersmith. Solving linear systems over GF(2): block Lanczos

algorithm. Lin. Algebra Applic., 192:33{60, 1993.

[2] D. Coppersmith. Solving homogeneous linear equations over GF(2) via

block Wiedemann algorithm. Math. Comput., 62(205):333{350, 1994.

[3] A. Diaz, M. Hitz, E. Kaltofen, A. Lobo, and T. Valente. Process schedul-

ing in DSC and the large sparse linear systems challenge. J. Symbolic

Comput., 19(1{3):269{282, 1995.

[4] W. Eberly and E. Kaltofen. Work in progress. To be published.

5



[5] E. Kaltofen. Analysis of Coppersmith's block Wiedemann algorithm

for the parallel solution of sparse linear systems. Math. Comput.,

64(210):777{806, 1995.

[6] E. Kaltofen and A. Lobo. Factoring high-degree polynomials by the

black box Berlekamp algorithm. In J. von zur Gathen and M. Giesbrecht,

editors, Proc. Internat. Symp. Symbolic Algebraic Comput. ISSAC '94,

pages 90{98, New York, N. Y., 1994. ACM Press.

[7] E. Kaltofen and A. Lobo. Distributed matrix-free solution of large sparse

linear systems over �nite �elds. In A. M. Tentner, editor, High Perfor-

mance Computing 1996, pages 244{247, San Diego, CA, 1996. Society

for Computer Simulation, Simulation Councils, Inc.

[8] E. Kaltofen and B. D. Saunders. On Wiedemann's method of solving

sparse linear systems, volume 539 of Springer Lect. Notes Comput. Sci.,

pages 29{38. Springer Verlag, Heidelberg, Germany, 1991.

[9] B. A. LaMacchia and A. M. Odlyzko. Solving large sparse linear systems

over �nite �elds, volume 537 of Lect. Notes Comput. Sci., pages 109{133.

Springer Verlag, Heidelberg, Germany, 1991.

[10] A. K. Lenstra. Factorization of RSA-130 using the number �eld sieve,

April 1996. Message posted on newsgroup sci.crypt.research.

[11] A. Lobo. Matrix-free linear system solving and applications to symbolic

computation. PhD thesis, Rensselaer Polytechnic Institute, Troy, New

York, December 1995.

[12] P. L. Montgomery. A block Lanczos algorithm for �nding dependencies

over GF(2), volume 921 of Springer Lecture Notes Comput. Sci., pages

106{120. Springer Verlag, Heidelberg, Germany, 1995.

[13] P. Pen�eld Jr., R. Spencer, and S. Duinker. Tellegen's Theorem and

Electrical Networks. M.I.T. Press, Cambridge, MA, 1970.

[14] D. Wiedemann. Solving sparse linear equations over �nite �elds. IEEE

Trans. Inf. Theory, it-32:54{62, 1986.

6


