Distinct degree factorization (Gauss, Disqu. Arith., §370-1)

Fact:
$$x^{q^i} - x = \prod_{\substack{f \text{ irreducible over } \mathbb{F}_q \\ \deg(f) \text{ divides } i}} f(x)$$

Write $f^{[i]} = \prod_{\substack{g \text{ irred. factor of } f \\ \deg(g) = i}} g$

```
f^* \leftarrow f; /* squarefree */
for i \leftarrow 1, \ldots, \lfloor n/2 \rfloor do \{f^{[i]}(x) \leftarrow \operatorname{GCD}(-x + x^{q^i} \bmod f^*(x), f^*(x)); f^* \leftarrow f^* \Big/ f^{[i]}; } f^{[\deg(f^*)]} \leftarrow f^*; /* factor with degree > \lfloor n/2 \rfloor*/
```

Suppose $f(x) \in \mathbb{F}_q[x]$ has degree n, g(x), h(x) are modular residues. All counts are in terms of arithmetic operations in \mathbb{F}_q .

$\operatorname{Problem}$	Complexity	Inventors of algorithm
$1. g \cdot h \pmod{f}$	$O(n(\log n)\log\log n)$	Schönhage & Strassen 1969 Schönhage 1977 $(p=2)$
2. $GCD(f, g)$	$O(n(\log n)^2 \log\log n)$	Knuth 1971/Moenck 1973
$3. g^q \pmod{f}$	$O((\log q)n^{1+o(1)})$	using Pingala 200 b.c.
4. $g(h(x)) \pmod{f(x)}$	$O(n^{1.67})$	using Brent & Kung 1978, Huang & Pan 1997
$5. x^{q^n} \pmod{f(x)}$	$O(n^{1.67})$	von zur Gathen & Shoup 1991

given $x^q \pmod{f(x)}$

6. $g(h_1), ..., g(h_n) \pmod{f}$ $O(n^{2+o(1)})$ using Moenck & Borodin 1972

7. $x^{q^2}, ..., x^{q^n} \pmod{f(x)}$ $O(n^{2+o(1)})$ von zur Gathen & Shoup 1991 given $x^q \pmod{f(x)}$

Fast computation of $x^{q^n} \mod f(x)$

$$x^{q^i} \equiv (\underbrace{x^{q^{i-1}}})^q$$
$$h_{i-1}(x)$$

$$\equiv h_{i-1}(\underbrace{x^q}_{h_1(x)}) \qquad \longleftarrow (a+b)^q = a^q + b^q \text{ in } \mathbb{F}_q$$

$$\equiv h_{i-1}(h_1(x))$$

$$\equiv h_{|i/2|}(h_{|i/2|}(h_{i \mod 2}(x))) \pmod{f(x)}$$

(modular polynomial composition)

Fast modular polynomial composition

Compute $g(h(x)) \pmod{f(x)}$ with $O(n^{1.69})$ field operations.

$$g(x) = \sum_{j=0}^{\lceil \sqrt{n} \rceil} \left(\sum_{l=0}^{\lfloor \sqrt{n} \rfloor - 1} c_{j,l} x^l \right) \cdot x^{\lfloor \sqrt{n} \rfloor \cdot j}$$

$$\begin{bmatrix} \frac{h^0 \bmod f}{h^1 \bmod f} \\ \frac{h^1 \bmod f}{h^2 \bmod f} \\ \vdots \\ h^{\lfloor \sqrt{n} \rfloor - 1} \bmod f \end{bmatrix}$$

$$\lfloor \sqrt{n} \rfloor \times \lfloor \sqrt{n} \rfloor \quad \lfloor \sqrt{n} \rfloor \times n \qquad \Rightarrow O(\sqrt{n}(\sqrt{n})^{2.38})$$

Equal degree factorization (Cantor & Zassenhaus 1981, Ben-Or 1981)

Fact:
$$x^{q^i} - x = \prod_{a \in \mathbb{F}_q} \left(a + x + x^q + x^{q^2} + \dots + x^{q^{i-1}} \right)$$
 (trace of Frobenius autom. $\mathbb{F}_{q^i} \to \mathbb{F}_q$)

/* f has irreducible distinct factors of degree d , $q=p^k$ */

Step 1 Pick a random $\alpha \mod f$;

$$\beta \equiv \alpha + \alpha^p + \alpha^{p^2} + \dots + \alpha^{p^{kd-1}} \bmod f; /* \mathbb{F}_{q^d} \to \mathbb{F}_p */$$

Step 2 If p > 2 then $\gamma \equiv \beta^{(p-1)/2} \mod f$ else $\gamma = \beta$;

Step 3 Recursively factor $g_1 = GCD(\gamma, f), g_2 = GCD(1 + \gamma, f),$ and $f/(g_1g_2)$;

Computing $x^q \mod f(x)$ with $f(x) \in \mathbb{F}_q[x]$ where $q = 2^n$ by squaring (Pingala's method)

Suppose $\mathbb{F}_q = \mathbb{F}_2[z]/(\varphi(z))$, i.e., $f \in \mathbb{F}_2[x,z]$ and $\varphi \in \mathbb{F}_2[z]$:

$$h_0(x) \leftarrow x;$$
 for $i \leftarrow 1$,..., n do
$$\{\ h_i \leftarrow h_{i-1}^2 \bmod (f,\varphi); /*\ h_i \equiv x^{2^i} \pmod (f,\varphi) \ */\ \}$$

Fixed-precision cost:
$$n \times \underbrace{n^{1+o(1)}}_{\text{polyn. arith. over } \mathbb{F}_q} \times \underbrace{n^{1+o(1)}}_{\text{arith. in } \mathbb{F}_q} = n^{3+o(1)}$$

Computing $x^q \mod f(x)$ with $f(x) \in \mathbb{F}_q[x]$ where $q = 2^n$ even faster

Suppose we already have

$$x^{2^{i}} \mod f(x) = h_{i}(x) = c_{0}(z) + c_{1}(z)x + \dots + c_{n-1}(z)x^{n-1} \in \mathbb{F}_{q}[x].$$

and

$$z^{2^i} \mod \varphi(z) = \psi(z) \in \mathbb{F}_2[z].$$

Then

$$x^{2^{2^{i}}} \equiv (c_{0}(z) + c_{1}(z)x + \dots + c_{n-1}(z)x^{n-1})^{2^{i}} \pmod{(f(x), \varphi(z))}$$

$$\equiv (c_{0}(z)^{2^{i}} + c_{1}(z)^{2^{i}}x^{2^{i}} + \dots + c_{n-1}(z)^{2^{i}}(x^{n-1})^{2^{i}}$$

$$\equiv (c_{0}(z^{2^{i}}) + c_{1}(z^{2^{i}})x^{2^{i}} + \dots + c_{n-1}(z^{2^{i}})(x^{2^{i}})^{n-1}$$

$$\equiv c_{0}(\psi) + c_{1}(\psi)h_{i}(x) + \dots + c_{n-1}(\psi)h_{i}(x)^{n-1}$$

which can be computed with n modular polynomial compositions over \mathbb{F}_2 —binary cost: $O(n \cdot n^{1.67})$, and then one over \mathbb{F}_q —binary cost: $O(n^{1.67} \cdot n^{1+o(1)})$.

Computing the trace of the Frobenius automorphism

We want

$$v(x) + v(x)^p + v(x)^{p^2} + \dots + v(x)^{p^{kd-1}} \mod f(x)$$

and we have

$$h_{2j}(x) \equiv x^{p^{2j}} \pmod{f(x)} \quad j = 1, 2, \dots, \lceil \log(kd) \rceil$$

Trick:

$$\underbrace{(v(x)^{p} + v(x)^{p^{2}} + \dots + v(x)^{p^{i}})^{p^{i}}}_{w_{i}(x)} \equiv \begin{cases} w_{i}(x)^{p^{i}} \equiv \widetilde{w}_{i}(h_{i}) \\ v(x)^{p^{i+1}} + \dots + v(x)^{p^{2}i} \equiv w_{2i}(x) - w_{i}(x) \end{cases}$$

hence one finds the entire trace of Frobenius in $O(n^{2.67})$ fixed-precision operations (given h_1).

Irreducibility testing is even faster

Theorem Let $\mathbb{F}_q = \mathbb{F}_2[z]/(\varphi(z))$ with $\deg(\varphi) = n$. Then one can test if a polynomial of degree n over \mathbb{F}_q is irreducible, or if all its irreducible factors are of equal degree and if so determine their common degree, with

$$O(n^{2.67})$$

fixed precision deterministic operations.