
On the Genericity of the Modular

Polynomial GCD Algorithm

Erich Kaltofen

www.math.ncsu.edu/˜kaltofen

Joint work with: Michael Monagan (Simon Fraser University)



W. S. Brown’s 1971 modular GCD algorithm

For Z[x1; : : : ;xn] (Algorithm M)

Compute GCDs modulo several primes pi (see P below);

Chinese-remainder the coefficients of the GCDs;

Test if enough primes.

For Z p[x1; : : : ;xn] (Algorithm P)

Compute GCDs for several evaluations xn bi (recursively);

Interpolate the coefficients of the GCDs;

Test if enough evaluations.



Details of Brown’s algorithm

Select appropriate scalar multiples of modular images

�!Impose GCD of leading coeffs as leading coeff of GCD, or

�!Perform rational recovery on coefficients

Eliminate (finitely many) “unlucky” primes/evaluations

�!Use symmetric remainders in range �bp=2c; : : : ;bp=2c

�!Test first if GCD has not changed (folklore)

and then if it divides input polynomials



Subsequent Work

Moses and Yun ’73, Wang ’80, Kaltofen ’85

Hensel lifting “EZ”-GCD algorithms and their sparse versions

Caviness and Rothstein ’75

Modular GCD algorithm over Gaussian integers

Zippel ’79 Modular sparse GCD algorithm

Char, Gonnet, and Geddes ’84

Map all the way to integer GCDs (heuristic)

Langemyr-McCallum ’89, Encarnación 95, Monagan-Margot ’98

Algebraic number coefficients

Kaltofen ’85, Kaltofen and Trager ’88, Dı́az and Kaltofen ’95

GCDs of straight-line programs and black boxes



Dobbertin’s example
z := (A^2*B^2*Z^2+A^2*B^2+B^2*Z^2+Z^2+B^2)/Z:

a := (B^2*C^2*A^2+B^2*C^2+C^2*A^2+A^2+C^2)/A:

b := (C^2*Z*B^2+C^2*Z+Z*B^2+B^2+Z)/B:

c := (Z*A*C^2+Z*A+A*C^2+C^2+A)/C:

P := Z^2*A^3*B^2*C^2*(z^2*b^2*c^2

+(a+z+1)^2*(a+c^2+1)):

P := expand(P) mod 2;

P := A2 B8 Z4C4

+A2 B2 Z4C4
+A4 B8 Z4C4

+ : : : (158 terms total)

Maple V.4 fails to squarefree decompose P modulo 2.



Our idea

For Z p[x1][x2; : : : ;xn], where p is small (Algorithm M0)

Compute GCDs modulo several irreducibles mi(x1);

Chinese-remainder the coefficients of the GCDs;

Test if enough primes.

Notes

1. Dan Grayson points out: modulo mi(x1) is equivalent

to x1 z 2 Z p[z]=(mi(z))� Z p

�!FoxBox’s extended domain black boxes

2. Unassociated irreducibles mi(x1) are sufficiently dense

�!see paper

3. Maple timings establish speed-up better than theory

�!internal representation of algebraic extension



Conclusions

– Finding “right” generalization

can be difficult, but generic algorithms look simple

– Z p[y] trick applies to Zippel/Ben-Or-Tiwari sparse interpolation

– Generic implementation may reveal subtle bugs/problems

* Generalization to a single generic algorithm for sparse+dense

needs to be done


