On the Genericity of the Modular Polynomial GCD Algorithm

Erich Kaltofen
www.math.ncsu.edu/ $/ k a l t o f e n$

Joint work with: Michael Monagan (Simon Fraser University)
W. S. Brown's 1971 modular GCD algorithm

For $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ (Algorithm M)
Compute GCDs modulo several primes p_{i} (see P below); Chinese-remainder the coefficients of the GCDs;
Test if enough primes.

For $\mathbb{Z}_{p}\left[x_{1}, \ldots, x_{n}\right]$ (Algorithm P)
Compute GCDs for several evaluations $x_{n} \leftarrow b_{i}$ (recursively); Interpolate the coefficients of the GCDs;
Test if enough evaluations.

Details of Brown's algorithm

Select appropriate scalar multiples of modular images
\longrightarrow Impose GCD of leading coeffs as leading coeff of GCD, or
\longrightarrow Perform rational recovery on coefficients

Eliminate (finitely many) "unlucky" primes/evaluations
\longrightarrow Use symmetric remainders in range $-\lfloor p / 2\rfloor, \ldots,\lfloor p / 2\rfloor$
\longrightarrow Test first if GCD has not changed (folklore)
and then if it divides input polynomials

Subsequent Work
Moses and Yun '73, Wang '80, Kaltofen '85
Hensel lifting "EZ"-GCD algorithms and their sparse versions
Caviness and Rothstein '75
Modular GCD algorithm over Gaussian integers
Zippel '79 Modular sparse GCD algorithm
Char, Gonnet, and Geddes ' 84
Map all the way to integer GCDs (heuristic)
Langemyr-McCallum '89, Encarnación 95, Monagan-Margot '98
Algebraic number coefficients
Kaltofen '85, Kaltofen and Trager '88, Díaz and Kaltofen '95
GCDs of straight-line programs and black boxes

Dobbertin's example

$$
\begin{aligned}
& z:=\left(A^{\wedge} 2 * B^{\wedge} 2 * Z^{\wedge} 2+A^{\wedge} 2 * B^{\wedge} 2+B^{\wedge} 2 * Z^{\wedge} 2+Z^{\wedge} 2+B^{\wedge} 2\right) / Z: \\
& \text { a : }=\left(B^{\wedge} 2 * C^{\wedge} 2 * A^{\wedge} 2+B^{\wedge} 2 * C^{\wedge} 2+C^{\wedge} 2 * A^{\wedge} 2+A^{\wedge} 2+C^{\wedge} 2\right) / A \text { : } \\
& \text { b : }=\left(C^{\wedge} 2 * Z * B^{\wedge} 2+C^{\wedge} 2 * Z+Z * B^{\wedge} 2+B^{\wedge} 2+Z\right) / B: \\
& \text { c }:=\left(Z * A * C^{\wedge} 2+Z * A+A * C^{\wedge} 2+C^{\wedge} 2+A\right) / C: \\
& \mathrm{P}:=\mathrm{Z}^{\wedge} 2 * \mathrm{~A}^{\wedge} 3 * \mathrm{~B}^{\wedge} 2 * \mathrm{C}^{\wedge} 2 *\left(\mathrm{z}^{\wedge} 2 * \mathrm{~b}^{\wedge} 2 * \mathrm{c}^{\wedge} 2\right. \\
& \left.+(a+z+1) \wedge 2 *\left(a+c^{\wedge} 2+1\right)\right): \\
& \mathrm{P}:=\text { expand(P) mod 2; }
\end{aligned}
$$

$P:=A^{2} B^{8} Z^{4} C^{4}+A^{2} B^{2} Z^{4} C^{4}+A^{4} B^{8} Z^{4} C^{4}+\ldots(158$ terms total $)$

Maple V. 4 fails to squarefree decompose P modulo 2.

Our idea

For $\mathbb{Z}_{p}\left[x_{1}\right]\left[x_{2}, \ldots, x_{n}\right]$, where p is small (Algorithm M^{\prime})
Compute GCDs modulo several irreducibles $m_{i}\left(x_{1}\right)$; Chinese-remainder the coefficients of the GCDs;
Test if enough primes.

Notes

1. Dan Grayson points out: modulo $m_{i}\left(x_{1}\right)$ is equivalent to $x_{1} \leftarrow z \in \mathbb{Z}_{p}[z] /\left(m_{i}(z)\right) \supset \mathbb{Z}_{p}$
\longrightarrow FoxBox's extended domain black boxes
2. Unassociated irreducibles $m_{i}\left(x_{1}\right)$ are sufficiently dense \longrightarrow see paper
3. Maple timings establish speed-up better than theory \longrightarrow internal representation of algebraic extension

Conclusions

- Finding "right" generalization can be difficult, but generic algorithms look simple
$-\mathbb{Z}_{p}[y]$ trick applies to Zippel/Ben-Or-Tiwari sparse interpolation
- Generic implementation may reveal subtle bugs/problems
* Generalization to a single generic algorithm for sparse+dense needs to be done

