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W. S. Brown’s 1971 modular GCD algorithm

For Z[x1; : : : ;xn] (Algorithm M)

Compute GCDs modulo several primes pi (see P below);

Chinese-remainder the coefficients of the GCDs;

Test if enough primes.

For Z p[x1; : : : ;xn] (Algorithm P)

Compute GCDs for several evaluations xn bi (recursively);

Interpolate the coefficients of the GCDs;

Test if enough evaluations.



Details of Brown’s algorithm

Select appropriate scalar multiples of modular images

�!Impose GCD of leading coeffs as leading coeff of GCD, or

�!Perform rational recovery on coefficients

Eliminate (finitely many) “unlucky” primes/evaluations

�!Use symmetric remainders in range �bp=2c; : : : ;bp=2c

�!Test first if GCD has not changed (folklore)

and then if it divides input polynomials
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Dobbertin’s example
z := (A^2*B^2*Z^2+A^2*B^2+B^2*Z^2+Z^2+B^2)/Z:

a := (B^2*C^2*A^2+B^2*C^2+C^2*A^2+A^2+C^2)/A:

b := (C^2*Z*B^2+C^2*Z+Z*B^2+B^2+Z)/B:

c := (Z*A*C^2+Z*A+A*C^2+C^2+A)/C:

P := Z^2*A^3*B^2*C^2*(z^2*b^2*c^2

+(a+z+1)^2*(a+c^2+1)):

P := expand(P) mod 2;

P := A2 B8 Z4C4

+A2 B2 Z4C4
+A4 B8 Z4C4

+ : : : (158 terms total)

Maple V.4 fails to squarefree decompose P modulo 2.



Our idea

For Z p[x1][x2; : : : ;xn], where p is small (Algorithm M0)

Compute GCDs modulo several irreducibles mi(x1);

Chinese-remainder the coefficients of the GCDs;

Test if enough primes.

Notes

1. Dan Grayson points out: modulo mi(x1) is equivalent

to x1 z 2 Z p[z]=(mi(z))� Z p

�!FoxBox’s extended domain black boxes

2. Unassociated irreducibles mi(x1) are sufficiently dense

�!see paper

3. Maple timings establish speed-up better than theory

�!internal representation of algebraic extension



Conclusions

– Finding “right” generalization

can be difficult, but generic algorithms look simple

– Z p[y] trick applies to Zippel/Ben-Or-Tiwari sparse interpolation

– Generic implementation may reveal subtle bugs/problems

* Generalization to a single generic algorithm for sparse+dense

needs to be done


