
1 INTRODUCTION

AAA and CS 1
The Applied Apprenticeship Approach to CS 1

Owen Astrachan
Duke University
ola@cs.duke.edu

David Reed
Dickinson College

reedd@dickinson.edu

(listed alphabetically)

Abstract

We have developed an application-based approach to in-
troductory courses in computer science. This approach
follows an apprenticeship model of learning, where stu-
dents begin by reading, studying, and extending pro-
grams written by experienced and expert programmers.
Applications play a central role since programming con-
structs are motivated and introduced in the context of
applications, not the other way around as is the tra-
dition in most texts and courses. Under our applied
approach, (1) students are able to learn from interest-
ing real-world examples, (2) the synthesis of different
programming constructs is supported using incremen-
tal examples, and (3) good design is stressed via code
and concept reuse. In this paper, we provide several
examples of our method as well as pointers to all the
material we have developed which is freely available
electronically. The philosophy underlying this method
transcends a particular programming language, but we
present our examples using C++ since that is the lan-
guage used in the CS 1 and CS 2 courses at Duke. This
method has been used with equal success using ISETL
at Dickinson.

1 Introduction

The introductory computer science courses, CS 1 and
CS 2, present many challenges to the instructor. One
need only look through any recent SIGCSE proceed-
ings to see the wide-variety of approaches being used
in these courses: depth vs. breadth; “traditional” vs.
object-based vs. object-oriented; functional vs. proce-
dural; and so on. At our institutions we have chosen

to concentrate on a methodology that transcends a par-
ticular language or focus. Our Applied Apprenticeship
Approach (we call the development of our method the
AAA project) has three objectives.

Change Expectations: One of our aims is to instill a
change in the expectations of both the students of these
programming courses and the teachers of the courses.
The traditional model in CS 1 and CS 2 courses is that
students will develop proficiency in a specific computer
language as well as “problem solving skills”. Students
are expected to hone these skills while designing and im-
plementing programs. The view espoused in our project
is explained in [Pat91] as “read/call before write” — stu-
dents should be expected to read and modify programs
before writing them. This apprenticeship model is sim-
ilar to the notion of using a case study as described
in [LC92, SLC93]. This apprenticeship model is even
more important when the language used is C++, a lan-
guage much too unwieldy to study and use in all its de-
tail by students encountering programming for the first
time. We believe that designing programs and classes is
a difficult task, and one that students should not be ex-
pected to master after one course. The apprenticeship
model ensures that by extending programs, and even-
tually developing them from scratch, good design skills
are inculcated over time.

Change Focus: We want to change the focus of the
kinds of programming problem encountered by students.
Students coming out of a one or two course sequence in
computer science often have no feel for what the disci-
pline is about. An emphasis on programming toy prob-
lems teaches students that computer science is about
semi-colons and choosing an appropriate looping con-
struct. It indicates nothing of the power of comput-
ers, the interdisciplinary nature of computer science, the
theoretical underpinnings of the discipline, and the aes-
thetics of programming. By using an apprenticeship ap-
proach in conjunction with an object-oriented language
such as C++, students can construct interesting pro-
grams that illustrate the real power of computing. This

1 1995 SIGCSE

2 SIMILAR APPROACHES

power is not examined in typical texts where averaging
ten numbers is often the culminating experience of the
array chapter. Our material provides a re-usable set of
C++ classes that can be used in real-world applications
from several disciplines. This approach facilitates a stu-
dent view of computer science as both an elegant and
useful science. Since we have adopted it enrollment in
our introductory courses has significantly increased.

Change Delivery: We want to change the manner in
which programming is taught, focusing more on appli-
cations as a means of introducing and motivating lan-
guage constructs. Courses which use “small” languages,
(i.e., languages with minimal syntax like Scheme), tend
to be application driven, as exemplified by texts such
as [AS85] and [HW94]. However, due to the amount of
language details in procedural languages such as Pas-
cal, Ada, and C/C++, traditional courses using these
languages tend to be language driven. Glancing at the
table of contents of almost any traditional CS 1 text
illustrates this: chapters tend to be divided along the
lines of programming constructs (first variables, then
conditionals, then loops, and so on). This by no means
implies that these are bad texts, but the discipline of
computer science and the study of programming can
appear fragmented if language constructs are the focus
of a course or text. Our experience has shown that
applications can successfully be used as a means of mo-
tivating language constructs and providing a context for
their study. This approach is described in [BSK94] as
“No topic before its time”. The use of examples which
can be incrementally developed is especially beneficial,
since numerous language constructs can be presented in
the same familiar context. For students this kind of con-
cept reuse is as important as code reuse. As each new
construct is added to the application, it can be under-
stood in relation to the existing constructs. Incremental
examples also encourage code reuse and stress good de-
sign, since a badly structured program will be difficult
to adapt to a new situations.

A somewhat orthogonal objective of our project, but
one we view as very important, is to develop support
for courses in the form of assignments, teaching ma-
terials, and a software component library that can be
used by students of all abilities. These materials should
be useful in any college or university, without requir-
ing a profound change in philosophy, a re-organization
of courses, or a profound investment in new equipment.
In other words, some of these materials should be use-
ful at any institution. Electronic access to all existing
course assignments, programs, and materials is made
available via ftp and the World-Wide Web.

In the remainder of this paper we compare our AAA
project with similar approaches and show several exam-
ples of the kinds of programs and classes we use in our
courses.

2 Similar Approaches

Several NSF grants have resulted in curricula that
may be indigenous to the institution supported by the
grant. A curriculum developed at the University of
Virginia [KPW94] is based on a four course sequence.
Adopting material for one course may be difficult (but
should be feasible) since the curriculum is designed as
a comprehensive whole. Materials developed at SUNY
Geneseo [SBK94, BSK94] require that a distinction be
made between a programming course and a course cov-
ering details of computer science.

Our use of C++ and an object-based approach al-
lows us to address the need for these skills in courses
later in our curricula. Roberts [Rob93, Rob95] discusses
using instructor-provided packages for the purpose of
hiding the complexity of C in a first course. C++ is
a much better solution since it is a (relatively) stan-
dardized language, provides call-by-reference, an I/O
stream package that is extensible to user-defined ob-
jects, and the ability to use classes for encapsulation
and data abstraction. As simple a feature as automatic
calls of constructors/destructors can make student pro-
gramming much simpler. At least one C++ text adopts
this approach [Mer95].

The AAA project is based on a different philoso-
phy of computer science. This holds that programming
should be viewed as a means of linking together dif-
ferent branches of Computer Science and related dis-
ciplines. A quote from Hoare explains this philosophy
quite well [Hoa89]:

Having surveyed the relationships of computer science
with other disciplines, it remains to answer the ba-
sic questions: What is the central core of the sub-
ject? What is it that distinguishes it from the sep-
arate subjects with which it is related? What is the
linking thread which gathers these disparate branches
into a single discipline? My answer to these questions
is simple — it is the art of programming a computer.
It is the art of designing efficient and elegant meth-
ods of getting a computer to solve problems, theoreti-
cal or practical, small or large, simple or complex. It
is the art of translating this design into an effective
and accurate computer program. This is the art that
must be mastered by a practising computer scientist;
the skill that is sought by numerous advertisements in
the general and technical press; the ability that must
be fostered and developed by computer science courses
in universities.

3 Application Examples

In our courses, students are provided with C++ classes
for implementing “real-world” applications. These serve

2 1995 SIGCSE

4 AN EARLY EXAMPLE OF RE-USE

as the basis for several programming assignments in-
cluding:

• A cardioverter-defibrillator (pacemaker) that sim-
ulates the monitoring of a heart and administers
appropriate treatment when the heart beats irreg-
ularly. This program is adapted from one presented
in [Pat91].

• A database program designed to keep track of mul-
tiple libraries of books and/or Compact Disks. In a
recent class more than 3,000 entries were included
in the database culled from an electronically admin-
istered student survey and from internet resources.

• Simulations of stochastic processes including exam-
ples drawn from the theory of random walks, queu-
ing theory and the card game War (some of these
examples are discussed in depth in [AB94]).

• Arbitrary precision integer arithmetic used, for
example, in implementing certain cryptograph-
ic/encryption algorithms.

• A program to manipulate bit-mapped graphic im-
ages. This program involves elementary data com-
pression as well as manipulations such as the inver-
sion and enlargement of images.

Each of these assignments is an exemplar of the kind
of student project envisioned as part of our approach.
The assignments would not be approachable by students
in a first course without the design, use, and re-use
of C++ classes provided and studied throughout the
course. The assignments are engaging as well as rep-
resentative of real-world applications (especially from a
student point-of-view).

3.1 Language Details: Control and Data

We do require students to master the rudiments of dif-
ferent control constructs and data types. However,
rather than asking for a program that reads 10 numbers
entered by the user and then extending this to read-
ing strings entered by the user; we use the same idea
but read from data files containing Shakespeare’s plays.
Students solve problems that require a computer: find-
ing the average length of the words in Hamlet or, later
in the course, the most frequently occurring word. The
concepts used are the same as in a traditional “add ten
numbers” program, but the application is more moti-
vating. This approach is emblematic of the manner in
which we use an application (counting words) to mo-
tivate the study of language details. Conceptual reuse
occurs when we return to the program when studying
arrays. Tracking all character or all word occurrences
easily leads into sorting and searching providing a fa-
miliar context for studying these subjects.

4 An Early Example of Re-use
As an example of code and concept reuse, we begin with
the program below early in the semester.

#include <iostream.h>

// print a head

main()
{

cout << " |||||||||||||||| " << endl;
cout << " | | " << endl;
cout << " | o o | " << endl;
cout << " _| |_ " << endl;
cout << "|_ _|" << endl;
cout << " | |______| | " << endl;
cout << " | | " << endl;

}

We have found that introducing user-defined func-
tions early in the course is important in order to be
able to use classes in C++. We have adopted a view
from [Pat93].

It is disingenuous to extol the advantages of
subprograms to our students, when they find
it harder to write simple programs using sub-
programs — because they are not familiar with
abstraction, but more importantly because us-
ing subprograms truly makes simple programs
harder to write.

Building on early programs that force students to use
functions in order to print different verses of songs such
as Old-Macdonald and Happy Birthday, we ask students
to modify the head-drawing program above so that it
can draw different heads as shown below.

						/////////																															
		__ __																																			
___ ___		! ! __ ! !																																			
---	o	--	o	---		!o !/ \!o !																															
--- ---		!__! !__!		o o																																	

| | | | _| |_
| _ _| | ///|\\\ | | _ _|

| |______| | \ / | |
| | \ o / | |______| |

________/ | |

If different functions such as Hair, Eyes, Neck, etc.
are not used, this program becomes much more diffi-
cult. Students quickly see this and come to good design
principles on their own.

We continue with this example later as a means of
introducing control constructs. Students re-use the code
from the program described above in the context of a
rudimentary “police-sketch” program.
prompt> sketch
Choices of hair style follow

(1) parted
(2) brush cut
(3) balding

enter choice: 1
Choices of eye style follow

(1) beady eyed
(2) wide eyed
(3) wears glasses

enter choice: 3
Choices of mouth style follow

3 1995 SIGCSE

5.3 Dynamic Data

(1) smiling
(2) straight-faced
(3) surprised

enter choice: 3
|||||||/////////
| |
| ___ ___ |
|---|o|--|o|---|
| --- --- |

| |
|_ _|

| o |
| |

Still later in the course we ask students to use a sup-
plied graphics class/package to draw these figures using
line and circle drawing primitives. This leads to a dis-
cussion of good class design since the police-sketch pro-
gram can be re-implemented to use graphics most easily
if the drawing routines have been encapsulated into a
“head” class.

5 Database Example

To illustrate and motivate more advanced programming
constructs, as well as concepts such as design, effi-
ciency, searching and sorting, and object-oriented pro-
gramming; we have successfully used the database ex-
ample described in this section.

We begin this project each semester by requir-
ing students to submit, via e-mail, a list of twenty
books/authors or musical artists/CD titles. We in-
corporate these into one large file (with 100 stu-
dents/semester in our CS 1 course this file grows
rapidly). During the past semester, we incorporated
data culled from the internet to add to this file.

5.1 The First Step

We begin by discussing how to store information about a
collection of CDs. The type of data that must be stored
(e.g., artist, title, music category) is determined, as well
as the types of operations that might be performed (e.g.,
display a database, load/store the database from/to
a text file, add/delete an item, search for a specific
artist/title).

In the past, we have had students implement these
operations using a traditional top-down approach, with-
out using C++ classes. With this approach, the next
assignment involves re-implementing the program using
a DataBase class. In our current use of this assignment,
we supply students with the definitions of the class at
the outset and ask them to implement the member func-
tions as well as extending a menu-driven client program.

5.2 Improvements

We come back to this program in discussing the trade-
offs of storing data in a fixed order. Structuring the
data provides ample opportunities for design and effi-
ciency discussions. For example, if listing all CDs by

a given artist is a common task, it might make more
sense to structure the database as a list of artist entries,
with each entry storing all of the CDs by that artist.
Given an array implementation, deleting a CD can be
implemented in different ways, with various efficiency
trade-offs. For example, array elements can be shifted
to fill the space left by a deleted CD entry. Or, a special
marker can be placed in the deleted entry location, so
that the entry is not printed and can be reclaimed when
a new CD is added.

We introduce searching and sorting in the context of
this example as well. Students explore the tradeoffs of
binary/sequential search and the need to sort or main-
tain the list in sorted order for different operations. The
advantages of good design are especially apparent here,
since the inclusion of sorting can be localized to those
methods involved with adding and finding CDs. Be-
cause the database is large, efficient methods have im-
mediate “tactile” results for students. Waiting for en-
tries to be ordered using bubble-sort, for example, gives
students a real feel for what slow means.

Sorting and comparing CD records leads to a dis-
cussion of operator overloading. Students re-implement
comparisons of records by overloading the < and == re-
lational operators for an individual CD record. This
permits further optimizations to be localized: ignoring
case in comparisons or, for an advanced topic, looking
for “close” matches rather than exact matches.

5.3 Dynamic Data

After working with the various database programs, stu-
dents begin to see the limits of a static array imple-
mentation. To avoid the problem of a full database, a
natural extension (which is often suggested by students)
is to use “grow-able” arrays. We supply such an array
class (complete with array-bound checking) that uses a
default array-size and, if that becomes full, simply allo-
cates a new, larger array. Students must modify their
code to be based on this new array implementation. The
use of C++ makes this particularly simple since the in-
dexing operator [] is overloaded for the new array class
making the syntactic shift very simple.

An investigation of this dynamic array class leads to a
discussion of pointers and dynamic allocation, but their
introduction is eased by their presentation in a familiar
context. This then leads seamlessly to a linked list im-
plementation. Again, the clean separation between in-
terface and implementation in object-oriented program-
ming helps to localize the changes that must be made,
and permits students to focus on concepts in a familiar
setting.

4 1995 SIGCSE

REFERENCES REFERENCES

6 Summary

Our experience in teaching CS 1 to both non-majors and
majors is that focusing on applications eases the task
of assimilating and understanding programming con-
structs and concepts. Students seem to appreciate in-
teresting applications, and the incremental development
of the applications allows for understanding each new
construct in a familiar context. Returning to previous
examples and modifying code also sends the right mes-
sage to students concerning design: that a well-designed
program can be more easily understood and re-used.

The examples presented in this paper are by no
means definitive, nor is the choice of language par-
ticularly important. These examples were chosen be-
cause they have been effective in practice and they il-
lustrate well the manner in which programming con-
structs can be motivated by applications, and not
the other way around. All these materials, as well
as other classes, assignments, and other support-
ing material are accessible via anonymous ftp from
cs.duke.edu in the directory pub/ola/apprentice
and via the World-Wide Web (e.g., via Mosaic) from
http://www.cs.duke.edu/˜ola/apprentice.

References

[AB94] Owen Astrachan and Claire Bono. Using
simulation in an objects-early approach to
CS1 and CS2. In OOPSLA: Object Oriented
Programming Systems, Languages, and Ap-
plications: Educator’s Forum, October 1994.
Portland, Oregon.

[AS85] Harold Abelson and Gerald Jay Sussman.
Structure and Interpretation of Computer
Programs. MIT Press, McGraw Hill Book
Company, 1985.

[BSK94] Doug Baldwin, Greg Scragg, and Hans
Koomen. A three-fold introduction to com-
puter science. In The Papers of the Twenty-
Fifth SIGCSE Technical Symposium on Com-
puter Science Education, pages 290–294.
ACM Press, March 1994. SIGCSE Bulletin
V. 26 N 1.

[Hoa89] C.A.R. Hoare. Essays in Computing Science.
Prentice-Hall, 1989. (editor) C.B. Jones.

[HW94] Brian Harvey and Matthew Wright. Simply
Scheme: Introducing Computer Science. MIT
Press, 1994.

[KPW94] John C. Knight, Jane C. Prey, and Wm. A.
Wulf. Undergraduate computer science ed-
ucation: A new curriculum and overview.

In The Papers of the Twenty-Fifth SIGCSE
Technical Symposium on Computer Sci-
ence Education, pages 155–159. ACM Press,
March 1994. SIGCSE Bulletin V. 26 N 1.

[LC92] Marcia C. Linn and Michael J. Clancy.
The case for case studies of programming
problems. Communications of the ACM,
35(3):121–132, March 1992.

[Mer95] Rick Mercer. Computing Fundamentals with
C++ Franklin, Beedle & Associates, 1995.

[Pat91] Richard E. Pattis. A Philosophy and Exam-
ple of CS-1 Programming Projects. In The
Papers of the Twenty-first SIGCSE Techni-
cal Symposium on Computer Science Edu-
cation, pages 34–39. ACM Press, February
1991. SIGCSE Bulletin V. 23 N. 1.

[Pat93] Richard E. Pattis. The “procedures early”
approach in CS1: A heresy. In The Papers of
the Twenty-fourth SIGCSE Technical Sympo-
sium on Computer Science Education, pages
122–126. ACM Press, March 1993. SIGCSE
Bulletin V. 25 N. 1.

[Rob93] Eric S. Roberts. Using C in CS1 evaluating
the Stanford experience. In The Papers of
the Twenty-Fourth Technical Symposium on
Computer Science Education, pages 117–121.
ACM Press, March 1993. SIGCSE Bulletin
V. 25, N. 1.

[Rob95] Eric S. Roberts. The Art and Science of C.
Addison-Wesley, 1995.

[SBK94] Greg Scragg, Doug Baldwin, and Hans
Koomen. Computer science needs an insight-
based curriculum. In The Papers of the
Twenty-Fifth SIGCSE Technical Symposium
on Computer Science Education, pages 150–
154. ACM Press, March 1994. SIGCSE Bul-
letin V. 26 N 1.

[SLC93] Patricia K. Schank, Marcia C. Linn, and
Michael J. Clancy. Supporting Pascal pro-
gramming with an on-line template library
and case studies. International Journal
of Man-Machine Studies, 38(6):1031–1048,
June 1993.

5 1995 SIGCSE

