
Application-based Modules
using Apprentice Learning for CS 2 �

Owen Astrachan
Duke University

ola@cs.duke.edu

Robert Smith
North Carolina Central University

rfs@sci.nccu.edu

James Wilkes
Appalachian State University
jtw@shark.cs.appstate.edu

Abstract

A typical Data Structures (CS 2) course covers a wide variety
of topics: elementary algorithm analysis; data structures in-
cluding dynamic structures, trees, tables, graphs,etc.; large
programming projects; and more advanced object-oriented
concepts. Integrating these topics into assignments is a chal-
lenging task; educators often duplicate work done by others
in re-inventing such assignments. At the same time, these as-
signments and large programs take time to develop and are
often changed from semester to semester to preclude cheat-
ing. We report on a project that provides modules contain-
ing many kinds of programming and lab assignments which
can be re-used across semesters with accessible and exciting
application-oriented materials. Our project is a collaboration
between a research and teaching oriented private university,
a teaching oriented public university, and a teaching oriented
historically black university. This helps ensure that the mod-
ules will be accessible to nearly all student populations. The
modules developed are available electronically as hyper-text
documents.

1 Introduction

In this paper we report on collaborative work to develop
learning modules that support an application oriented, ap-
prenticeship learning approach to the CS 2 course. Each
module supports a methodology that is inverted from the
traditional “learn a data structure and use it in a program”
approach. Rather than studying data structures to use in ap-
plications, we use applications to study data structures. Each
module supports an apprentice style of learning wherein stu-
dents use and modify implementations of data structures
and application programs before writing them from scratch.
Modules supply code libraries and frameworks, explanatory
material for students and instructors, and potential program-

ming, lab, and homework exercises. The modules permit
instructors to re-use related assignments from semester to
semester with less worry that students will re-use work from
previous semesters. Although face-to-face grading can alle-
viate this kind of “code re-use”, not all institutions have the
resources for grading assignments in this manner. As an al-
ternative, we have developed modules that allow instructors
to require implementation of different pieces, e.g., classes,
functions, or code frameworks, in different semesters. Large
and captivating assignments require significant resources to
prepare. Our project attempts to address this issue in the
context of CS 2. Similar projects address these issues in a
Compilers Course [2] and an Operating Systems course [5].

Each module supplies a situated learning experience [12]
that engages students from the outset by providing practical
and illuminating examples for how and why data structures
are used. Applications are graphical where appropriate, in-
tegrate several data structures into real-world programs, and
provide a context for studying large-scale programs. Mod-
ules are developed to support object-oriented (using C++ and
Java) design and programs, but each module will be devel-
oped as an Abstract Data Type (using C) to reach as wide an
audience as possible.

1.1 Similar Approaches

The two key components of our project are (1) application-
based learning and (2) apprenticeship learning [4, 3, 13].
Using applications as the context in which data structures
are studied is related to what is termed a “top-down” ap-
proach [15, 10]. The top-down approach has students using
data structures such as stacks and queues before implement-
ing them. The data structures are studied and used from the
specification of their interface. After students have devel-
oped programs using these data structures, different imple-
mentations are studied. Our project is related, but differs in
that students are expected to study an initial application, then
reason about different methods of implementation before de-
veloping a final application. The application domains used
for modules as part of this project are more complex and
use a more mainstream language than that developed and re-

�This work is supported in part by the National Science Foundation
Grant #DUE-9554910



ported in [15].1

Situated and apprentice learning in the CS 1 course is de-
scribed in [12]. Their approach uses an artificial-life micro-
world as a means of introducing students to programming.
In our project, applications are from a broader domain and
are based on exploiting concepts and topics covered in the
CS 2 course. Similar work in the CS 1 course is discussed
in [4].

Apprenticeship learning is related to the idea of a case
study. Case studies have been the principle method of study
for many years in business and law schools and are becoming
more prevalent in Computer Science courses [7]. Defined
there, case studies have the following attributes.

A case study describes a programming problem,
the process used by an expert to solve the prob-
lem, and one or more solutions to the problem.
Case Studies emphasize the decisions encountered
by the programmer and the criteria used to choose
among alternatives.

Our materials can be used as the basis for case studies,
but the intent of our project is to supply instructors with ma-
terials rather than to supply students with the explanations
behind a full-fledged solution to a problem.

1.2 Project Plans

Early versions of some of our modules were used in the
1995-1996 year at Duke and NCCU. All three institutions
in the project are using drafts of the modules during the Fall
1996 semester. In some cases, described below, the mate-
rial in the modules has been used in previous semesters, and
refined and packaged as modules as part of this project. In-
cremental improvements will be made for use of the mate-
rials in the Spring 1997 semester. All materials are avail-
able, and will continue to be available, via the world-wide
web. We will refine and finalize the modules in the summer
of 1997 based on comments from users at other institutions,
our experiences, and comments from our students. We an-
ticipate that the project will result in seven to ten modules
with web-pages for both students and instructors. Answers
to all assignments will be accessible only to instructors us-
ing a password mechanism. This means, for example, that
header files will be available for classes and ADTs, but that
implementations of each class will be available only tobona
fide instructors.

In this paper we provide an overview of three of the mod-
ules currently accessible and a brief introduction to other
modules and supporting materials. All materials are accessi-
ble via the web athttp://www.cs.duke.edu/ �ola .
All modules are based on an application that uses data struc-
tures rather than on a specific data structure. In Section 2 we
discuss automatic scoring of bowling, in Section 3 solitaire

1Of course using C++ is not without controversy, but many schools cur-
rently use C++ and C, especially in CS 2. The work done in [15] uses Eiffel.
We are porting several of our modules from C++ to Java.

card games form the basis of the module, and in Section 4
data compression is the application. We discuss some of the
other modules in Section 5.

2 Bowling

Most students are familiar with the game of bowling, and
many bowling alleys have automated scoring. A computer
keeps track of whose turn it is to bowl, the score for each
ball, and a cumulative total score and displays this informa-
tion on an overhead screen. Players bowl a ball only when
the computer indicates it is their turn. For a detailed discus-
sion of the different approaches to automatic bowling scor-
ing see [6].

This seemingly simple task provides a wide range of dif-
ficulty levels as a late semester CS 1 or early semester CS
2 assignment. Different institutions cover topics at differ-
ent times in CS 1 and CS 2. In addition, many institutions
introduce C++ in CS 2 after a semester of programming in
another language. As a result, the evolution from arrays of
records to vectors of objects that might mirror a transition
from Pascal to C++ is a topic for discussion in a CS 2 course.
At Duke, for example, we offer a course for students with
programming experience earned at other institutions, in high
school, or as self study, that is a combination of the last part
of our CS 1 course and our CS 2 course.2 The first program-
ming project in this combination course typically uses a vec-
tor of objects to introduce students to the object paradigm
and C++. The bowling module provides ample material for
this kind of project and for projects straddling the fuzzy bor-
der between CS 1 and CS 2.

The approach we use in this module requires one-
dimensional arrays, with the option for two-dimensional ar-
rays, or arrays of objects that include arrays, for multiple-
player automatic scoring. By encapsulating the appropriate
scoring functions as member functions (or functions to ac-
cess ADTs in C) students can be asked to write different
parts of the automatic scorer in different ways from semester
to semester.

We are using this module at two institutions in the Fall of
1996, one using an ADT approach with C, and the other the
aforementioned combined course using C++. We ask stu-
dents to read scores from files and to generate scores on-
the-fly using a skill-level in conjunction with a random num-
ber generator. We provide a high-level design for the pro-
gram and students must determine how to compute cumu-
lative scores in the framework of the design provided. The
object-oriented version of the program uses several design
patterns [9] that we believe will begin to play a more major
role in introductory computer science courses [18]. We use
the observer/observable pattern to show two graphical views
of a bowling match, these are shown in Figure 1.

Other assignments may be based on requiring single or

2The course has a closed lab providing more time for students to master
the extra material. Our CS 2 course does not have a lab whereas our CS 1
course does.



Figure 1: Bowling Observers

multiple-player scoring; providing a scoring solution and
asking students to provide the I/O routines or the random
ball-generating functions; simplifying or complicating the
scoring rules e.g., changing the number of frames or the rules
for balls thrown in the last frame.

3 Solitaire

One of the richer domains we use for modules is solitaire
card games. There are hundreds of different versions of the
same simple idea [14], each providing a new programming
problem using the same set of primitives. Solitaire, in some
form, is familiar to almost every student. Given some degree
of common background, new forms of solitaire can easily
be explained. Furthermore, there are versions of solitaire
that employ lists, stacks, trees, and graphs. Students can be
asked to design and implement a game using classes supplied
with the module or to implement one or more of the classes
needed as determined by the goals of the instructor. Finally,
when the student finishes a project, the game they’ve cre-
ated is fun to play.3 In related work, a case study describing
solitaire and programs for playing solitaire well is included
in [8]. A module for the card game War is described in [3].

3.1 Development of the Module

The concepts and original programs that form the basis of
this module were originally written in Turbo Pascal, without
objects, as part of a collection of tools used to motivate CS
2 students [16]. The code was updated to use classes and
objects in Turbo Pascal the following year. Students were
excited enough about writing games to request the next as-
signment before it was time to be given, an extraordinary
request. Comprehension of the topics covered by the assign-
ment was good.

The programs have now been redesigned and imple-
mented using C++ as part of this project and will be used
in class in the Fall of 1996. The graphical components of
the software are currently text-based, but encapsulated in a

3Given the addictive nature of games, some instructors might see this as
a disadvantage rather than an asset.

few methods. The classes have been designed to be platform
independent and will be used by all institutions that are part
of the project in the Spring of 1997. The container classes
(described below) are implemented using standard stack and
vector classes that are part of the materials available for use
in Advanced Placement Computer Science courses and pub-
licly available [1].

3.2 Class Design

The basic class used in all solitaire games isPlayingCard.
The container classes includeDisplayStackandSpreadList.

A PlayingCardhas instance variables that describe its lo-
cation, suit and value, and whether it is face up or face down.
Methods forPlayingCardinclude functions for moving, dis-
playing, flipping, and operators for equality, predecessor,
and successor.

The classDisplayStackuses a stack for storing objects; the
class is used in the solitaire application to represent a deck
of cards, a discard pile, or the face-down stacks of cards that
sometimes occur in solitaire. It has instance variables to hold
its location and methods to display the top card of the stack
as well as standard stack operations. The class is templated
so that any object that has location and display capabilities
can be stored in aDisplayStack.

The classSpreadListuses a vector4 for storing objects; the
class is used wherever cards are “fanned out”. For example,
in the tableau of a solitaire game the Ten of Diamonds is
placed on the Jack of Clubs which is on the Queen of Hearts,
so that the top of each card is visible. The class has in-
stance variables to represent its location, and its orientation
(whether the contained objects are spread out to the right,
left, up, or down). Methods include display, move, append
new elements, append a secondSpreadList, retrieve an ele-
ment, retrieve a subSpreadList, and determine if an element
is a member of aSpreadList. This container class also uses
templates in the implementation so that any object that can
be displayed and moved can be stored.

Two complete implementations of solitaire games are
provided with the module:Up and Down the Riverand
Klondike. These two games exercise all the capabilities of
the classes described above. Instructions for these games are
included with the module. Although these two implementa-
tions use only augmented stacks and vectors, solitaire games
exist that map nicely to trees or graphs.

4 Data Compression

In Duke’s CS 2 course CPS 100, the culminating project for
the past two and half years has been a data compression pro-
gram using Huffman coding [11]. Although some CS 2 texts
cover Huffman coding (e.g., see [19]) we have not found
supporting materials for reading and writing bits-at-a-time
which is required for data compression. We provide stu-
dents with two stream classes:ibstreamandobstream, for

4The standard class-based implementation of arrays in C++ is called a
vector.



input and output bit streams, respectively, to isolate I/O of
single and multiple bits. In some semesters we have stu-
dents write the complete program from scratch except for
the I/O classes. In 1994 the program was implemented in
C using ADTs as a means of encapsulation. In the past
four semesters it has been implemented using an object-
oriented approach. Students are required to write re-usable
C++ classes to implement the various pieces of the program.
In addition, classes used throughout the semester are re-used
in implementing the compression program. These classes in-
clude: a templated priority queue class, a binary tree class,
a list class, and a histogram class. As one use of the mod-
ule approach, we have given students a na¨ıve implementa-
tion of a priority queue (an unsorted array) and asked them
to re-implement the class using heaps. Using this kind of
modular/class approach allows students to focus debugging
attention on specific parts of the program. Class diagrams
from one student solution written from scratch are shown in
Figure 2.

bitops.h

Openibstream

ReadBits

bitops.h

obstream Open

WriteBits

FlushBits

Close

freq.h

Init

ComputeSize

Read

FreqVector

pqueue.h

PQueue<Kind,Prio> Insert

MinElt

DeleteMin

IsEmpty

operator []

Init

hufftree.h

HuffTree

Expand

ReadCode

SetInitial

hufftable.h

HuffTable Init

OutputCode

Close

Rewind

ResetBits

operator []

Figure 2: Class Diagrams for Huffman Coding

Student enthusiasm for this project is extremely high. The
resulting program can compress any file: both text and bi-
nary (executable) programs. Students know about data com-
pression and are amazed that they have written a complete
program that compresses reasonably well. End of semester
evaluations consistently praise this assignment and students
do well on test material associated with the assignment, e.g.,
construction and traversal of binary trees.

5 Additional Modules

The modules we have described have been tested in previous
semesters and are now available with supporting materials
in module form. We have also developed several new mod-
ules that we will test in the Fall of 1996. Materials for these
modules are also available on the web including all code, but
with less written supporting material than the other modules.

5.1 Navigator

Several car models can be purchased with on-board navi-
gation systems that rely on the Global Positioning System
(GPS) for location and mapping. We have written an as-

signment, based on a class assignment developed at Carnegie
Mellon, that can be used to navigate pedestrian and vehicle
travel. Three data files are used for each navigable region
processed by the program. In addition to simple location
queries, e.g., “Where is the restaurant Neo-China?”, travel
queries can also be answered by providing directional clues
based on locational information maintained by the program.
below (output from the program)

Go for 370 feet, turn right onto Oak Drive
Go for 250 feet, and stop at number 299
Total distance traveled: 620 feet

Classes used in this module include queues, priority
queues, hash tables, and graphs. Classes and algorithm sup-
port are provided for breadth-first search and for Dijkstra’s
shortest path algorithm. Data files available from Carnegie
Mellon include thousands of locations in Pittsburgh. A plot
of the locations, generated by an animator we have devel-
oped for this project5 is reproduced in Figure 3.

Figure 3: City Map of Pittsburgh (realized in Lambada)

5.2 Interactive Graphics

We have developed several detailed modules that support an-
imations and interactive graphics for use in CS 2. We provide
a brief synopsis of these, detailed descriptions may be found
on our web pages.

One module is for discrete-event simulations from queu-
ing theory. We include support for traditional single/multiple
server queues that show customer arrivals and departures
graphically. We also include a detailed simulation of mul-
tiple elevators that provides a fertile framework for experi-
menting with control strategies and for using inheritance in
many classes.

5Our animator is calledLambadaand is written in Java. It supports a su-
perset of the commands available in the Xtango and Samba animators [17].



We have a module for the game of TETRIS, that we call
MINT (Mint Is Not Tetris). This module uses one- and two-
dimensional arrays, and inheritance.

We also have a module for simulation that has the fla-
vor of artificial-life games. This simulation, calledDarwin,
is modeled after an assignment given at Stanford Univer-
sity. Creatures roam a rectangular world behaving accord-
ing to a species-specific program written in a BASIC-like
language. We used this module successfully in the summer
of 1996 with a group of summer students participating in
a workshop for women and minorities. We anticipate that
this module will be quite successful with our classes be-
cause of the graphics, the biology connection, and the meta-
programming nature of the assignment wherein students in
essence write a small interpreter.

6 Support and Summary

The modules we have developed will be refined next sum-
mer by a cadre of undergraduates. These students were of
immeasurable help developing initial versions of the mod-
ules. All the modules support apprentice-style learning us-
ing applications. We have tried to provide materials so that
educators can make effective use of the modules over several
semesters. We hope that as the modules are used, feedback
from students and instructors will help improve the modules
and add more material to them. Information on how to help
with the project is accessible from our web pages.

References

[1] A DVANCED PLACEMENT COMPUTER

SCIENCE DEVELOPMENT COMMITTEE.
Classes for the ap computer science course.
http://www.cs.duke.edu/�ola/ap.html, 1996.

[2] A IKEN, A. Cool: A portable project for teaching com-
piler construction.SIGPLAN Notices 31, 7 (July 1996),
19–24.

[3] A STRACHAN, O., AND BONO, C. Using simulation
in an objects-early approach to cs1 and cs2. InOOP-
SLA: Object Oriented Programming Systems, Lan-
guages, and Applications: Educator’s Symposium(Oc-
tober 1994), pp. 1–8. Portland, Oregon.

[4] A STRACHAN, O., AND REED, D. AAA and CS-1:
The applied apprenticeship approach to CS 1. InThe
Papers of the Twenty-Sixth SIGCSE Technical Sympo-
sium on Computer Science Education(March 1995),
ACM Press, pp. 1–5. SIGCSE Bulletin V. 27 N 1.

[5] CHRISTOPHER, W., PROCTER, S., AND ANDERSON,
T. The Nachos instructional operating system.1993
Winter USENIX Conference(January 1993), 479–488.

[6] CLANCY, M., AND LINN, M. Bowling scores. Used
in College Board training classes, 1989.

[7] CLANCY, M. J., AND LINN, M. C. The case for case
studies of programming problems.Communications of
the CACM 35, 3 (1992), 121–132.

[8] CLANCY, M. J., AND LINN, M. C. Designing Pascal
Solutions: Case Studies with Data Structures. W.H.
Freeman and Company, 1996.

[9] GAMMA , E., HELM, R., JOHNSON, R., AND VLIS-
SIDES, J. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[10] HILBURN, T. A top-down approach to teaching an
introductory computer science course. InThe Papers
of the Twenty-Fourth SIGCSE Technical Symposium
on Computer Science Education(March 1993), ACM
Press, pp. 58–62. SIGCSE Bulletin V. 25 N 1.

[11] HUFFMAN, D. A method for the contruction of mini-
mum redundancy codes. InProceedings IRE 40(1951),
pp. 1098–1101.

[12] METER, G., AND MILLER, P. Engaging students and
teaching modern concepts: Literate, situated, object-
oriented programming. InThe Papers of the Twenty-
Fifth SIGCSE Technical Symposium on Computer Sci-
ence Education(March 1994), ACM Press, pp. 329–
333. SIGCSE Bulletin V. 26 N 1.

[13] MEYER, B. Toward an object-oriented curriculum.
Journal of Object Oriented Programming(May 1993),
76–81.

[14] MOREHEAD, A. H., AND MOTT-SMITH , G. The
Complete Book of Solitaire and Patience Games. Ban-
tam Books, 1977.

[15] REEK, M. M. A top-down approach to teaching pro-
gramming. InThe Papers of the Twenty-Sixth SIGCSE
Technical Symposium on Computer Science Education
(March 1995), ACM Press, pp. 6–9. SIGCSE Bulletin
V. 27 N 1.

[16] SMITH , R. Video games challenge and motivate data
structure students. InProceedings of 30th Annual
Southeast Conference of the ACM(1992), pp. 11–14.

[17] STASKO, J., BADRE, A., AND LEWIS, C. Do algo-
rithm animations assist learning? An empirical study
and analysis. InINTERCHI 93 Conference Proceed-
ings: Human Factors in Computing Systems(April
1993), ACM Press, pp. 61–66.

[18] WALLINGFORD, E. Toward a first course based on
object-oriented patterns. InThe Papers of the Twenty-
Seventh SIGCSE Technical Symposium on Computer
Science Education(1996), ACM Press, pp. 27–31.

[19] WEISS, M. A. Algorithms, Data Structures, and Prob-
lem Solving With C++. Addison Wesley, 1996.


