
Bubble Sort: An Archaeological Algorithmic Analysis

Owen Astrachan 1

Computer Science Department
Duke University
ola@cs.duke.edu

Abstract

Text books, including books for general audiences, in-
variably mention bubble sort in discussions of elemen-
tary sorting algorithms. We trace the history of bub-
ble sort, its popularity, and its endurance in the face
of pedagogical assertions that code and algorithmic ex-
amples used in early courses should be of high quality
and adhere to established best practices. This paper is
more an historical analysis than a philosophical trea-
tise for the exclusion of bubble sort from books and
courses. However, sentiments for exclusion are sup-
ported by Knuth [17], “In short, the bubble sort seems
to have nothing to recommend it, except a catchy name
and the fact that it leads to some interesting theoreti-
cal problems.” Although bubble sort may not be a best
practice sort, perhaps the weight of history is more than
enough to compensate and provide for its longevity.

Categories and Subject Descriptors K.3.2
[Computers & Education]: Computer & Infor-
mation Science Education — Computer Science
Education

General Terms Algorithms, Measurement, Theory

Keywords Analysis, Performance, Bubble sort

1 This work was supported by NSF grants CAREER
9702550 and CRCD 0088078.

Permission to make digital or hand copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
require prior specific permission and/or a fee.
SIGCSE ’03, February 19-23, Reno, Nevada, USA.
Copyright 2003 ACM 1-58113-648-X/03/0002....$5.00

1 Introduction

What do students remember from their first program-
ming courses after one, five, and ten years? Most stu-
dents will take only a few memories of what they have
studied. As teachers of these students we should ensure
that what they remember will serve them well. More
specifically, if students take only a few memories about
sorting from a first course what do we want these mem-
ories to be? Should the phrase Bubble Sort be the first
that springs to mind at the end of a course or several
years later? There are compelling reasons for excluding
discussion of bubble sort1, but many texts continue to
include discussion of the algorithm after years of warn-
ings from scientists and educators. For example, in a
popular new breadth-first text [6] bubble sort is given
equal footing with selection sort and quicksort in online
student exercises.

Starting with Knuth’s premise that “bubble sort seems
to have nothing to recommend it”[17], we trace the ori-
gins and continued popularity of the algorithm from its
earliest days as an unnamed sort to its current status
as perhaps the most popular O(n2) sort (see below) de-
spite wide-spread ridicule. We began this study with the
intent to document (and ridicule) the continued popu-
larity of bubble sort, but the algorithmic archaeological
investigation has proven more interesting than casting
aspersions.

Our initial premise that bubble sort should not be stud-
ied is reflected in [23] with a warning for potential mis-
use.

For N < 50, roughly, the method of straight inser-
tion is concise and fast enough. We include it with
some trepidation: it is an N2 algorithm, whose po-
tential for misuse (by using it for too large an N) is
great. The resultant waste of computer time is so
awesome, that we were tempted not to include any

1A discussion of bubble sort with warnings that the per-
formance is bad and the code isn’t simple (arguably) is like
telling someone “don’t think about pink elephants.”

N2 routine at all. We will draw the line, however,
at the inefficient N2 algorithm bubble sort. If you
know what bubble sort is, wipe it from your mind;
if you don’t know, make a point of never finding
out!

This sentiment is similar to the reference to bubble sort
found in [1], where it says of bogo sort, “The archetypical
perversely awful algorithm (as opposed to bubble sort,
which is merely the generic bad algorithm).”

In Section 2 we trace the origin of the algorithm, both
in name and in code. In Section 3 we analyze the perfor-
mance of the algorithm and the simplicity of the code.
In Section 4 we summarize our study.

2 Origins of Bubble Sort

In an effort to determine why bubble sort is popular we
traced its origins. Knuth [17] does not provide informa-
tion on the origin of the name, though he does provide
a 1956 reference [10] to an analysis of the algorithm.
That paper refers to “sorting by exchange”, but not to
bubble sort. An extensive bibliography and sequence of
articles from the 1962 ACM Conference on Sorting [11]
do not use the term bubble sort, although the “sorting
by exchange” algorithm is mentioned. With no obvious
definitive origin of the name “bubble sort”, we investi-
gated its origins by consulting early journal articles as
well as professional and pedagogical texts.

An early (1959) book on programming [21] devotes a
chapter to sorting, but uses the term exchange sort-
ing rather than bubble sort. The same term is used
in a 1962 [4] JACM article as well as in the earlier
(1961, submitted 1959) [9] JACM article referenced as
the definitive source. Iverson uses the name “bubble
sort” in 1962 [13]; this appears to be the first use of the
term in print. As we note below, each work cited in [13]
uses a phrase other than “bubble sort” to describe the
algorithm we describe in Section 2.1. This reinforces the
claim that Iverson is the first to use the term, though
obviously not conclusively. However, we could find no
work published after 1962 with a reference to bubble
sort in an earlier publication than Iverson’s.

Despite these earlier publications the algorithm offi-
cially enters the ACM algorithm repository as Algo-
rithm 175 [25] in 1963 where it is named Shuttle Sort.
Soon thereafter [14] the published algorithm is found to
be “not free from errors”, a gentle way of saying the
published code is wrong. There a modified version of
the code (that stops early when no swaps are made) is
given and the author says that in this form the code
was “studied in this form on the ORDVAC computer,
Aberdeen Proving Ground, in 1955.”

2.1 Bubble Sort, The Code

Taking the description of bubble sort in [17] as definitive
the code below is bubble sort.2 This version “bubbles”
the largest elements to the end of the vector.

void BubbleSort(Vector a, int n)
{

for(int j=n-1; j > 0; j--)
for(int k=0; k < j; k++)

if (a[k+1] < a[k])
Swap(a,k,k+1);

}

Nearly every description of bubble sort describes how
to terminate the sort early if the vector becomes sorted.
This optimization requires checking if any swaps are
made and terminating if no swaps are made after j it-
erations of the inner loop.

Another optimization is to alternate the direction of
bubbling each time the inner loop iterates. This is
shaker sort or cocktail shaker sort (see, e.g., [17, 13]).

2.2 A Sort by Any Other Name . . .

Nomenclature is interesting. An early (1963) Fortran
textbook [22] refers to the following code as “jump-
down” sort.

void JumpDownSort(Vector a, int n)
{

for(int j=n-1; j > 0; j--)
for(int k=0; k < j; k++)

if (a[j] < a[k])
Swap(a,k,j);

}

Bubble sort as we’ve identified it is called a “push-
down” sort. In another early (1962) work [19] the
“jump-down” version is presented first in the book, with
no name. The bubble sort follows also with no name.
In two early works [3, 10] the jump-down sort is referred
to as selection sort. Bubble sort is also covered, but re-
ferred to as sorting by repeated comparison and exchang-
ing, respectively. In the latter paper, one of the earliest
works comparing algorithms, the exchange/bubble sort
is described thus: “Exchanging requires at least twice
as many non-housekeeping comparisons as Inserting and
for most computers will be inferior”.

In moving from bubble sort to jump-down sort the only
change to the code above is that one array index has
been changed from k+1 to j. How does this differ from
bubble sort? After m iterations of the outer loop the
last m elements are in their final position—the same

2This code is close to legal in both C++ and Java and
should be readable by anyone with a working knowledge of
Algol-like languages.

invariant as bubble sort. However, items are not “bub-
bled” to the top; this code implements what is essen-
tially a selection sort, but the current maximal element
is stored/swapped into location a[j] on each pass. We
see why early works sometimes refer to jump-down as
selection sort.

2.3 Origins of Popularity

In a survey article on sorting appearing in 1971 [20] the
first sort discussed is bubble sort. It is endorsed with
the following qualities.

However, the bubble sort is easy to remember and
to program, and little time is required to complete
a single step.

As mentioned above, Knuth [17] belittles bubble sort.
The first edition of this book appeared in 1973, but
perhaps did not have the same influence as did early
textbooks of the same period.3

In [2] (arguably the first “real” textbook on algorithms
and algorithm analysis) we find the following endorse-
ment.

However, we assume that the number of items to
be sorted is moderately large. If one is going to
sort only a handful of items, a simple strategy such
as the O(n2) “bubble sort” is far more expedient.

Perhaps a generation of computer scientists and teach-
ers used this book and the acceptability of bubble sort
began. In the influential 1976 work Software Tools [15]
the first sort mentioned is bubble sort (the second is
Shell sort).

Why is bubble sort popular? In [26] we get an endorse-
ment.

. . . Nevertheless, this sorting algorithm is com-
monly used where the value of n is not too large
and programming effort is to be kept to a mini-
mum. . . . The bubble sort has the additional virtue
that it requires almost no space in addition to that
used to contain the input vector.

Perhaps early concerns with allocating registers and us-
ing memory led to the adoption of bubble sort which
in its primitive form (no early stopping) requires no
storage other than the array and two index variables.
This conclusion is supported by the early explanations

3We are not arguing that Knuth’s work is less substan-
tial, but that it may have had less of a curricular impact
than books specifically designed as textbooks rather than as
works of reference.

of selection sort (e.g., [3, 10]) in which only the ver-
sion described in Section 2.1 as “jump-down” sort is
described, no separate minimum index variable is kept,
and the minimal element selected in each pass of selec-
tion sort is replaced by “a series of 9’s . . . so that said
item will never again be selected.” [10].

Another early work [7] is referenced in [18] with the
following warning.

From a mathematical standpoint, Demuth’s thesis
was a beautiful piece of work. . . . But from a prac-
tical standpoint, the thesis was of no help. In fact,
one of Demuth’s main results was that in a cer-
tain sense “bubble sorting” is the optimum way to
sort. . . . It turns out that [all other sorting meth-
ods studied] are always better in practice, in spite
of the fact that Demuth has proved the optimal-
ity of bubble sorting on a certain peculiar type of
machine.

Demuth’s work was published 29 years after he wrote
it, and he does not recall using the term “bubble sort”
in his studies. [8].

2.4 Measures of Popularity

A 1988 SIGCSE paper [16] notes that bubble sort “while
once the best known sort, seems relegated to the status
of an example of inefficiency”. Fifteen years later this
sort is still with us, and students continue to use it.

Bubble sort is covered in many texts, occasionally as the
only O(n2) sort, but often compared to another sort like
insertion or selection. Rarely are its bad features em-
phasized. This may lead students to think that bubble
sort is acceptable when it has provably bad performance
and is arguably not the simplest sort to learn.

As unscientific albeit interesting evidence of popularity,
on August 1, 2000 we searched the Internet for different
sorts using the search engine Google. We repeated this
search in August of 2002. For each method we used the
name with and without a space, e.g., “bubblesort” and
“bubble sort”. Table 1 shows the results.

sort # hits 2000 # hits 2002
Quick 26,780 80,200
Merge 13,330 33,500
Heap 9,830 22,960

Bubble 12,400 33,800
Insertion 8,450 21,870
Selection 6,720 20,600

Shell 4,540 8,620

Table 1: Web-based popularity of sorts

The good news is that Quicksort is by far the most-
referenced sort on the web. The bad news is that bubble
sort is the second or third most popular sort and is by
far the most cited O(n2) sort.4 Hopefully the situation
is somewhat mitigated by the greater rate of increase in
hits for selection sort compared to bubble sort.

3 Performance Characteristics

Here we show that by several measures bubble sort is
not simpler to code than other sorts and that its perfor-
mance is terrible. We worry about bubble sort because
of its inexplicable popularity. We view the use of bubble
sort as an instance of a larger problem: choosing exam-
ples that are not exemplars of accepted best-practices.
Such examples invariably must be unlearned later which
is often an impossible task.

3.1 Ease of Coding

Conventional wisdom holds that bubble sort is simple
to program. For example, in [5] we find: “The bubble
sort is worse than selection sort for a jumbled array—it
will require many more component exchanges—but it’s
just as good as insertion sort for a pretty well-ordered
array. More important, it’s usually the easiest one to
write correctly.”

However, in [24] we find a weak rebuttal.

Bubble sort’s prime virtue is that it is easy to im-
plement, but whether it is actually easier to imple-
ment than insertion or selection sort is arguable.

This rebuttal is stated more forcefully in [27].

The bubble sort algorithm is not very useful in
practice, since it runs more slowly than insertion
sort and selection sort, yet is more complicated to
program.

Measuring Ease of Coding Software metrics are
controversial. However, perhaps the most-cited metrics
based on a static analysis of code (no control-flow paths)
are the Halstead Metrics [12]. These metrics are based
on counts of operators and operands, though symbols
such as a semi-colon are interpreted as operators. Ta-
ble 2 gives the Difficulty and Effort measures for several
sorts.5

4It is possible though unlikely that every web page refer-
ring to bubble sorts extols its bad qualities.

5These metrics were calculated automatically from
the code given in this paper using a tool from www.
powersoftware.com and verified as accurate using the Unix
program npath.

Difficulty purports to measure how hard it is to cre-
ate the program. Effort purports to measure the effort
required to convert an algorithm into a program.

sort D E
Bubble 17.25 4165

Jump-down 14.38 3828
Select 15.95 4242
Insert 23.20 6652
Quick 7.88 3157

Partition 12.07 1522

Table 2: Halstead Complexity of Sorts

For some perspective on these numbers consider an im-
plementation of selection divided into two parts: a func-
tion to return the index of the minimal element and the
sorting function below.

void SelectSort(Vector a, int n)
{

for(int j=0; j< n-1;j++) {
Swap(a, minIndex(a,j,n), j);

}
}

This version of selection sort has a difficulty of 7.88 and
an effort of 966; the minimal index function has D=14
and E=2247.

Note that the implementation of quick sort is divided
into two functions, one recursive (Quick in Table 2) and
one with a single loop (Partition).

3.2 Performance

Although popular, bubble sort is nearly universally de-
rided for its poor performance on random data. This
derision is justified as shown in Figure 1 where bubble
sort is nearly three times as slow as insertion sort.

Figure 1: Sorting Strings in Java

3.3 Good on Nearly-Sorted Data

Some books laud bubble sort because it runs in O(n)
time on sorted data and works well on “nearly sorted”
data. In [24] this is qualified in slightly more detail with
the conclusion that insertion sort is better than bubble
sort, is stable, and is the basis for the more efficient
Shell sort.

This leaves little to recommend bubble sort. In any
situation in which it does well insertion sort does as
well and is better by other criteria. Insertion sort is
used to sort small (sub) arrays in standard Java and
C++ libraries.

4 Conclusion

In most practical situations the best sort to use is the
one provided by the standard (e.g., Java, C, or C++)
libraries. However, we study sorts because general sorts
do not work in all situations and because sorting is a
simple illustration of algorithmic techniques. Although
examples used in first year courses must be simple
enough to be understandable and complex enough to
be useful in a variety of situations, they should also
exemplify best practices so that these practices endure
after many of the details of a course have been forgot-
ten. In this paper we have investigated the origins of
bubble sort and its enduring popularity despite warn-
ings against its use by many experts. We confirm the
warnings by analyzing its complexity both in coding and
runtime.

References

[1] The jargon file. http://www.jargon.net/
jargonfile/b/bogo-sort.html.

[2] Aho, A. V., Hopcroft, J. E., and Ullman, J. D.
The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

[3] Bell, D. The principles of sorting. The Computer
Journal 1 (1958), 71–77.

[4] Bose, R. C., and Nelson, R. J. A sorting problem.
Journal of the ACM (JACM) 9, 2 (1962), 282–296.

[5] Cooper, D. Oh My! Modula-2! W.W. Norton,
1990.

[6] Dale, N., and Lewis, J. Computer Science Illumi-
nated. Jones and Bartlett, 2002.

[7] Demuth, H. Electronic Data Sorting. PhD thesis,
Stanford University, 1956.

[8] Demuth, H. personal communication. 2000.

[9] Flores, I. Analysis of internal computer sorting.
Journal of the ACM (JACM) 8, 1.

[10] Friend, E. Sorting on electronic computer systems.
J. ACM 3 (1956), 134–168.

[11] Gotlieb, C. Sorting on computers. Communica-
tions of the ACM 6, 5 (May 1963), 194–201.

[12] Halstead, M. H. Elements of Software Science, Op-
erating, and Programming Systems Series, vol. 7.
Elsevier, 1977.

[13] Iverson, K. A Programming Language. John Wiley,
1962.

[14] Juelich, O. Remark on algoirthm 175 shuttle sort.
Communications of the ACM 6, 12 (December
1963), 739.

[15] Kernighan, B. W., and Plauger, P. Software Tools.
Addison-Wesley, 1976.

[16] Klerlein, J. B., and Fullbright, C. A transition from
bubble sort to shell sort. In The Papers of the Nine-
teenth Technical Symposium on Computer Science
Eduction (February 1988), ACM Press, pp. 183–
184. SIGCSE Bulletin V. 20 N. 1.

[17] Knuth, D. The Art of Computer Programming:
Sorting and Searching, 2 ed., vol. 3. Addison-
Wesley, 1998.

[18] Knuth, D. E. The dangers of computer science the-
ory. Logic, Methodology and Philosophy of Science
4 (1973). Also in Selected Papers on Analysis of
Algorithms, CLSI, 2000.

[19] Ledley, R. Programming and Utilizing Digital
Computers. McGraw-Hill, 1962.

[20] Martin, W. A. Sorting. ACM Computing Surveys
3, 4 (1971), 147–174.

[21] McCracken, D., Weiss, H., and Lee, T. Program-
ming Business Computers. John Wiley, 1959.

[22] Organick, E. I. A Fortran Primer. Addison-Wesley,
1963.

[23] Press, W. H., Flannery, B. P., Teukolsky, S. A.,
and Vetterling, W. T. Numerical Recipes in C: The
Art of Scientific Computing. Cambridge University
Press, 1988.

[24] Sedgewick, R. Algorithms in C++, 3 ed. Addison-
Wesley, 1998.

[25] Shaw, C., and Trimble, T. Algorithm 175: Shut-
tle sort. Communications of the ACM 6, 6 (June
1963), 312–313.

