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Abstract

Theorem provers based on model elimination have exhibited extremely high in-
ference rates but have lacked a redundancy control mechanism such as subsumption.
In this paper we report on work done to modify a model elimination theorem prover
using two techniques, caching and lemmaizing, that have reduced by more than an
order of magnitude the time required to find proofs of several problems and that
have enabled the prover to prove theorems previously unobtainable by top-down
model elimination theorem provers.

1 Introduction

Model Elimination (ME) [20, 22] is a complete inference procedure for the first-order
predicate calculus. It is the method underlying the Prolog Technology Theorem Prover
(PTTP) [33, 34], the SETHEO prover [19], and several or-parallel theorem provers [31,
8, 2]. The use of model elimination, an input proof procedure, has enabled ME-based
provers to draw on techniques developed by the logic programming community (hence
the name PTTP) that enable the implementations to be very efficient in the use of
space, to have a high inference rate, and to be readily parallelized. METEOR is a high-
performance implementation of ME written in C that runs under the UNIX operating
system. It compiles clauses into a data structure that is then “interpreted” at run-time
by a uniprocessor, a multiprocessor, or a network of uniprocessors. METEOR and PTTP
perform exactly the same number of inferences in solving the problems reported in [34]
when METEOR is run using inference count as the depth measure (see Section 3).

Unfortunately, ME provers are also susceptible to a lack of control in the search mech-
anism and can have highly redundant search spaces. This paper reports on work done
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to modify the sequential version of METEOR [2] in an attempt to address these issues.
We report on two mechanisms—caching and lemma use—that have enabled METEOR to
prove theorems not previously obtainable by top-down ME provers and that can reduce
by more than an order of magnitude the time required to find proofs of some “difficult”
theorems.

In general, the lack of both a redundancy-control mechanism such as subsumption [42]
and a best-first search methodology are severe impediments to finding deep proofs. Many
theorems obtainable by OTTER [25] cannot be proven in our systems because the size
of the search space and the lack of redundancy control quickly overwhelm the inference
rate. We have investigated several methods of changing the search mechanism used in
METEOR in an attempt to redress this lack of control. We use the two-dimensional grid
in Figure 1 to categorize our approaches.

replace search augment search
discovery cost caching

other cost heuristic caching lemmaizing

Figure 1: Changing the search mechanism.

In a broad sense, the cost referred to in Figure 1 is a measure of the computational
resources used to find a solution of a goal. More precisely, METEOR employs an iterated
form of depth-first search called iterative deepening [36, 18] in which the maximum
depth of search is bounded during each iteration. This bound limits the computational
resources available to solve a goal; the resources actually used to find a solution of a goal
constitute the discovery cost of the solution. Details of the search mechanism and the
depth bounds used in METEOR are given in Section 3.

In our terminology, caching refers to a mechanism that optionally replaces the normal
search mechanism at a lower computational cost, but yields essentially identical results
to search. Cached goals are solved by lookup instead of search. Proofs will be found
with the same cost bound as when caching is not used, and no more inferences will be
performed with caching than without (in practice, many fewer inferences are required
when caching is used). Caching reduces the number of inferences because replacing search
for solutions of previously seen (cached) goals by lookup avoids repeating inferences on
“failure branches” of the search tree explored during the search for the cached solution;
lookup ideally will return each distinct solution only once, whereas search may repeatedly
generate the same solution, and fewer more general solutions may be retrieved from the
cache instead of many more specific ones. Whether there is a net performance gain
depends on how efficiently the cache is implemented, i.e., what are the relative costs of
search and cache lookup.

For caching to reproduce essential features of the search and, in particular, to guar-
antee that use of the cache does not result in more rather than fewer inferences being
performed, it is necessary for the cache to return solutions with the same cost bounds as
search would have found. Caching charges discovery cost to reproduce essential features
of search, e.g., the same solutions with the same cost. Charging discovery cost is not the
only option, however. If some solution looks particularly useful, perhaps because of its
generality, it might be desirable to charge less than discovery cost for it, to make it easier



to use. Or if all solutions look alike (e.g., they have only constant arguments and no
function symbols, as in the case with Datalog programs) despite being discovered with
different costs, it may be reasonable to charge a uniform minimum cost for them instead
of distinguishing among them on the basis of how deep their proofs were. Charging some
cost other than discovery cost leads to what we call heuristic caching, which is identi-
cal to caching in concept and implementation except for the cost charged for looked-up
solutions. The guarantee that caching will not result in an increase in the number of
inferences is absent for heuristic caching, but in some domains heuristic caching can be
extremely successful.

The objective of caching is to make effective use of results discovered in past search.
Caching simply stores results of past searches and replaces future searches by cache
lookup. Another way to use results discovered in past searches is to record some seemingly
useful solutions as lemmas and use them in future extension operations in the same way
as input clauses are used. Note that lemmas, unlike caching, can introduce substantial
additional redundancy in the search space, since theorems can then be proved both either
entirely from the input clauses as before or by use of lemmas. Allowing lemmas to be
treated as input clauses thus increases the branching factor of the search space, but use
of lemmas may still shorten the proof enough to compensate for the increased branching
factor. Note that it makes no sense to charge discovery cost for lemmas. This would
result in an increased branching factor and no reduction in proof length—goals would
be solved by both input clauses and lemmas with the same cost. Lemmas (as stored
solutions) can be beneficial only if less is charged for their use than for their solution
from the input clauses and, even then, a lemma must actually be used in the proof of the
top goal for there to be any reduction in the total size of the search space. We use the
word lemma-izing or lemmaizing1 to refer to this mechanism that augments the search
by introducing lemmas that are treated as input clauses .

This paper is organized as follows: In Section 2 we briefly describe the model elimi-
nation proof procedure. In Section 3 we outline the search mechanism used in METEOR
and our modifications to this mechanism. These modifications are further described in
Section 4 and Section 5. In Section 6 we briefly describe the implementation of these
modifications, results generated using this implementation are given in Section 7. Related
work is outlined in Section 8 and conclusions presented in Section 9.

2 Model Elimination

In this section we give a description of the ME extension and reduction inference rules
and other ME terminology sufficient for an understanding of the remaining sections. We
assume familiarity with terminology of resolution proof procedures, e.g., terms, atomic
formulas (atoms), literals, clauses and unification. For a description of these, see [22],
which also gives a complete description of the model elimination procedure. We use Pro-
log notation in which variables are represented by capital letters and functions, constants
and predicates are represented by lowercase letters.

1Although the juxtaposition of vowels in this word may be inharmonious, recall memo-izing [26] used
to mean essentially what we call caching.



The ME proof procedure uses a kind of annotated clause called a chain. Roughly,
the annotations in a chain record previous inferences that have been made in the current
sequence of inference steps and identify information that can be used as the proof is
expanded. Literals in a chain are either B-literals or A-literals. An A-literal has been
used in an extension operation (and is thus in some sense an ancestor literal) and may
participate in the ME reduction operation. Initially all literals are B-literals.

The ME procedure begins with some designated input clause as the initial chain. The
leftmost literal in this chain is unified with a complementary literal of an input clause.
The leftmost literal in the chain is designated as an A-literal (ancestor literal), the other
literals (if any) in the input clause are added to the front of the chain, and the unifying
substitution is applied. This is the ME extension operation. It is the same as the Prolog
inference operation except that it retains the unified literal as an A-literal, which may
then be used in subsequent ME reduction operations. A-literals appear in brackets in the
following descriptions. We assume that all chains and clauses are renamed apart so that
they are variable disjoint as necessary. Formally we have

Definition 2.1 Given chain C1 of the form l1C0 with leftmost B-literal l1 and input
clause C2 with literal l2 complementary to l1 such that the atoms of l1 and l2 are unifiable
with most general unifier (mgu) θ, the ME extension operation of C1 with C2 on l2 yields
the chain {(C2 − l2)[l1]C0}θ where [l1] is an A-literal and the literals in (C2 − l2) may
be reordered. We use the notation extend(C1, l1, C2, l2, θ) to denote the result of the
extension.

Example: If C1 = q(f(X), Y )[r(Y, Z)]p(X, Z) and C2 = ¬q(f(a), c)¬r(c, b) (note
that C1 has one A-literal and two B-literals) then C1 extended with C2 on ¬q(f(a), c) is
¬r(c, b)[q(f(a), c)][r(c, Z)]p(a, Z).

Definition 2.2 Given chain C1 of the form l1C0 with leftmost B-literal l1 and comple-
mentary A-literal l2 such that the atoms of l1 and l2 are unifiable with mgu θ, the ME
reduction operation yields chain C0θ. We use the notation reduce(C1, l1, l2, θ) to denote
the result of the reduction.

Example: In the resultant chain above, ¬r(c, b)[q(f(a), c)][r(c, Z)]p(a, Z), the (only
possible) reduction operation yields [q(f(a), c)][r(c, b)]p(a, b).

Note that both the reduction operation and extension with a unit clause (in which
no literals are added to the chain) can make the leftmost literal of the chain an A-literal.
As the ME inference rules require the leftmost literal to be a B-literal, any leftmost A-
literals are removed after the extension and reduction operations are performed. This is
the contraction operation as defined in [22]. In the chain used in the examples above,
the chain [q(f(a), c)][r(c, b)]p(a, b) is contracted to the chain p(a, b). In practice this
operation is incorporated into the extension and reduction operations. The A-literals
that are removed by contraction represent solved goals or lemmas.

3 Search Mechanism

Although ME is a complete proof procedure in that there is always an ME derivation of
the empty chain from an unsatisfiable set of input clauses, a complete search strategy



must be employed to ensure that such a derivation is found. Prolog, for example, uses
unbounded depth-first search and may fail to find a proof because of infinite branches in
the search tree.

Rather than employ a breadth-first strategy with its exponential storage require-
ments, METEOR and PTTP use iterative deepening [36, 18] to ensure completeness of
the search strategy. Iterative deepening is asymptotically optimal among brute-force
search mechanisms2 and has minimal storage requirements, being in essence a depth-
first strategy. Rather than storing intermediate results as is done in breadth-first search,
results are recomputed at each stage of the iterative deepening search.

We impose a cost bound on prospective proofs. Our cost bounds are not bounds on
the entire search space (except implicitly), but rather only on each portion of it that forms
a single (partial) proof. Thus, for example, a bound on the number of inference steps in
a proof is a cost measure, but a bound on the total number of inferences performed in
the process of finding the proof, including those on failing branches of the search space, is
not. A finite cost bound d makes the search tree finite while allowing all proofs with cost
bounded by d to be discovered. If no proof is found, the bound is incremented and the
entire search tree is re-explored with the larger bound. When bounded search is used,
each goal has an associated cost bound (derived from the current global bound) that
must not be exceeded during an attempt to solve the goal. We use the notation 〈G,n〉
to refer to a single literal goal G with associated cost bound n. The search mechanism
employed in METEOR is described in Figure 2.

boolean
Solve(chain C,resource n)
[0] if C is the empty chain then

return TRUE
[1] goal G ← leftmost literal in C
[2] R ← A-literals of C potentially unifiable with complement of G (for reductions)
[3] E ← input clauses with literals potentially unifiable with complement of G (for extensions)

/* try to solve 〈G,n〉 */
[4] for each lR in R do
[5] nnew ← resources available if reduction made
[6] if nnew ≥ 0 and lR and complement of G unify with mgu θ then
[7] if Solve(reduce(C, G, lR,θ),nnew) then
[8] return TRUE

endfor (reduction)
[9] for each clause C in E with literal lC do
[10] nnew ← resources available if extension of C with C is made
[11] if nnew ≥ 0 and and lC and complement of G unify with mgu θ then
[12] if Solve(extend(C,G,C,lC,θ), nnew) then
[13] return TRUE

endfor (extension)
[14] return FALSE

Figure 2: The search procedure.

There are several optimizations that can be applied in the search mechanism without
affecting its completeness [34]. Many of these optimizations are implicit in the definition
of an acceptable chain and the accepting transformation that is applied to chains in the
original presentation of ME [20, 21, 22]. The most effective of these tends to be the

2The optimality result applies only in the absence of redundancy control mechanisms such as
subsumption.



identical ancestor pruning rule. Before any reductions or extensions are attempted, the
A-literals in the chain to the right of G are examined to see if any are identical to G. If
this is the case, Solve returns FALSE; it is not necessary to solve a goal in the context
of a previous attempt to solve the same goal. This pruning rule is highly effective but
its use is limited when caching is employed, in a manner described later.

In PTTP, proofs of minimal length (in number of ME inferences) are found since the
total number of nodes in a proof tree is bounded during each stage of iterative deepening
with successively higher resource limits. We call this depth measure inference depth or
Dinf . Alternatively, bounding the depth of the proof tree yields what we call A-literal
depth or DAlit since the depth of a proof tree is the number of A-literals present in
the chain that represents the current state of the deduction. This metric is the default
depth measure used in SETHEO and was used in one of the earliest implementations of
ME [13]. Neither of these measures is clearly superior to the other in that there seems
to be no a priori method for determining which measure yields a proof more quickly for
any particular theorem.

3.1 Modifying the Search Mechanism

The high inference rate and modest storage requirements of PTTP and METEOR make
them attractive inference engines useful for seeking shallow proofs. In some domains,
the high inference rate may overcome the lack of redundancy control and permit the
discovery of hard theorems with deep proofs. For example, using METEOR we are able
to find proofs of two problems [2] from a set of real-analysis challenge problems [5] that
are difficult if not unobtainable for OTTER [25], a prover which employs both subsump-
tion and a notion of best-first search. The proof of the third challenge problem from
this set is too deep for METEOR to obtain without some modification. Parallel imple-
mentations of model elimination theorem provers have resulted in very high performance
provers [31, 8, 2], but none of these provers has yet produced a proof of a theorem pre-
viously unobtainable by running the prover on a single processor. The high inference
rate obtainable with PTTP, METEOR and similar systems cannot overcome the highly
redundant, exponential search space of hard problems with deep proofs. We have modi-
fied the search mechanism used in METEOR by the addition of caching—which replaces
search, and lemmaizing—which augments search. Our goal has been to implement these
modifications with minimal degradation of the high inference rate.

4 Caching

By caching we mean the use of a device (the cache) that on occasion replaces the reg-
ular search mechanism and yields substantially identical results to search. This means
that solutions should be retrieved from the cache only when it is known that the cache
contains complete information, i.e., it contains all solutions that would be generated by
search. When the cache is complete in this sense its use can replace the normal search
mechanism. To this end, the cache consists of two logical parts: the cache directory,
which stores information about which goals have solutions stored in the cache, and the
cache store, which contains the solutions. When a goal and its associated resource bound



are submitted to the Solve procedure (see Figure 2), the directory is consulted and the
cache store used, if possible, before line 4. If the cache store is used, procedure Solve is
exited (with success or failure) before lines 4–14 are executed. If the cache store is not
used, lines 4–14 are executed as in the regular search procedure. The cache is intended
to be a more efficient mechanism than the normal search procedure. Its effectiveness
in decreasing the time to find a proof depends on the efficiency with which it is im-
plemented, the number of cache “hits” that occur, and on other costs (e.g., increased
storage) incurred by its use.

The caching method we describe here is applicable only to cases of model elimination
in which the reduction operation is not used; this includes problems expressed in Horn
clauses. For such problems all solutions of the pair g1 =〈G,n〉 are also solutions of the
pair g2 =〈G,m〉 if n ≤ m since the sequence of inferences that solve G in g1 will also solve
G in g2 provided the identical-ancestor pruning rule is partially disabled.

If during the search for solutions of some goal 〈G,n〉 a branch of the search tree below G
is pruned using identical-ancestor pruning with an ancestor AG of G, a solution might be
missed that would be found in another context in which AG did not appear as an ancestor.
To prevent such inconsistencies, and to avoid the need for storing an environment of
ancestor literals, identical-ancestor pruning of subgoals of cacheable goals is disabled.
More precisely, a goal cannot be pruned by any ancestor of a cacheable goal. Pruning
is permitted if the pruning goal is not being stored in the cache, or its descendants are
not.

For non-Horn problems the sequence of deductions that solve G in g1 may include
reductions with ancestors of G. This same sequence of deductions will solve G in g2 only
if the same reductions are possible, i.e., only if the necessary A-literals are present in
the chain. Thus caching with non-Horn problems would seem to require that a cached
solution contain some record of the A-literals present when the solution is generated.

Although a modification of ME has been proposed [29] that can decrease the number
of A-literals that are stored with a cached solution (at the expense of potentially longer
proofs), and a method of generalized A-literals is addressed in [1], in this paper we do
not address the issue of caching with non-Horn problems. We do, however, note several
successful applications of lemmaizing to non-Horn problems in Section 7.

4.1 The Cache Mechanism

The cache store contains all the cached solutions. A cached solution consists of a substi-
tution instance of the subgoal and the resource bound used in obtaining the solution as
defined in Definition 4.1.

Definition 4.1 A cached solution is a pair 〈G′,nG′〉 where G′ is Gθ for some goal G, θ
is the composition of unifiers used in solving G, and nG′ is the measure of the resources
used in producing G′.
A cached solution stores only the instantiation G′—nothing to identify the goal G it was
used to solve. Thus, the cache store contains solutions (provable literals) divorced from
the goals during whose proof they were found.

The cache directory, which is consulted to determine if the cache store of solutions
should be used, consists of cache templates defined in Definition 4.2.



Definition 4.2 A cache template or template is a triple 〈G,m,mS〉 that indicates that
the cache is m-complete for goal G. If mS ≤ m, then mS is the smallest resource needed
to solve G; if mS > m, then G has no solution with cost ≤ m.

The templates in the cache directory are used to determine when the solutions in the
cache store include a complete set of solutions for any particular goal.

Definition 4.3 A cache is complete for 〈G,n〉 if all solutions of (sub)goal G that can be
obtained with a resource bound of at most n are in the cache store. In this case we say
that the cache is n-complete for G.

Given a goal pair 〈G,n〉, the cache directory is searched to see if G appears as the
first component of a template (there may be more than one applicable template if we
are using template-subsumption, see Section 4.2). If a template is found and it indicates
that the cache is m-complete for G with m ≥ n then the cache can be used in lieu of
the regular search mechanism. As an optimized special case, we note that if m ≥ n
and mS > n then there are no solutions bounded by n, so further cache lookup to find
solutions is unnecessary. This use of the cache directory to indicate failure corresponds
to the failure cache outlined in [12]; when templates are used in this way we call them
failure templates.

If the cache is complete for a goal, solutions to the goal can be found by retrieving
from the cache store all cached solutions that are instances of the goal. If subsumption
of cached solutions is employed, however, unifiable solutions rather than instances must
be retrieved from the cache store.

Our cache differs in use from the cache described in [28] in which the cache may
be used even when it is not complete. It is similar to an unimplemented modification
developed for iterative deepening of the ET ∗ algorithm for Datalog programs outlined
in [11].

When caching is used, the modifications indicated in Figure 3 are made to the search
routine of Figure 2.

/* added before line 4 in Figure 2 */
[3.1] 〈G,m,mS〉 ← template corresponding to 〈G,n〉

/* more than one template may be applicable
if template-subsumption is being used */

[3.2] if m ≥ n then
[3.3] if n ≥ mS then
[3.4] return CacheSolve(C,n)
[3.5] else
[3.6] return FALSE

/* if we reach here then use regular search mechanism */

Figure 3: Determining if the cache should be used.

The procedure CacheSolve called in Figure 3 is shown in Figure 4.
In its implementation in METEOR, the code in Figure 3 is guarded by a statement

that enables cache use only when n, the resource available, is above some user-specified
threshold value. In the current implementation, the same threshold is used to guard both



boolean
CacheSolve(C,n)

{G is the leftmost literal in C}
[1] L ← all solution pairs 〈G′,nG′ 〉 such that G′ is potentially unifiable with G and

such that nG′ ≤ n

[2] for each 〈G′,nG′ 〉 in L do
[3] if G and G′ unify with mgu θ then
[4] nnew ← n− nG′
[5] if Solve(extend(C,G,G′,G′, θ), nnew) then
[6] return TRUE

end for
[7] return FALSE

Figure 4: Using an m-complete cache.

solution storage and template retrieval. Cache use is limited by a threshold for several
reasons:

• The cost of retrieving cache templates and solutions may exceed the cost of the
regular search mechanism for small n.

• The identical ancestor pruning rule, whose use often results in large decreases in
search space size, must be at least partially disabled when caching is used (see
Section 4).

• The efficiency of the cache tends to decrease as the number of entries in it increases.

Because the identical-ancestor pruning rule is so effective and because the normal
inference rate in METEOR is high enough that using the cache for shallow searches
is counterproductive cache use is prevented when the global cost bound is below the
threshold. We present data in Section 7 showing how different threshold values affect the
performance of the prover; in general, low thresholds severely degrade cache performance.

4.2 Storing Templates and Solutions

To conserve cache storage and to minimize the effective branching factor of the search
space, a solution subsumed by an entry already in the cache store is not entered in the
store. Subsumption of solution pairs is defined in Definition 4.4.

Definition 4.4 If S1 = 〈H,nH〉 and S2 = 〈G,nG〉 are solution pairs then the pair S1
subsumes the pair S2 if and only if H subsumes G (there exists a substitution σ with
Hσ = G) and nH ≤ nG.

The resource bound of a potentially subsumed solution pair must be compared with the
resource bound of the subsuming pair to ensure that the subsuming pair is at least as
general, e.g., that it will be retrieved from the cache in every context that the subsumed
solution pair would be retrieved. If the resource bound nH of a pair 〈H,nH〉 is greater
than the resource bound nG of a pair 〈G,nG〉 then both pairs must be stored in the cache



even if H subsumes G since the solution G might be usable when H is not due to its lower
resource requirements.

Goal templates must be provided for each goal seen in a deduction and updated
when new information is obtained concerning a goal’s completeness level or when a new
(potentially minimal) solution is found. When a goal template is retrieved (line 3.1
in Figure 3) for a goal G that has not previously been seen, a template 〈G,-1,∞〉 is
created and stored in the cache directory. Previously unseen goals must be solved by
search. Each time a solution to the goal is found, the template is updated if the new
solution requires fewer resources than the minimum currently registered in the template.
The initial value ∞ ensures that the resources of the first solution found will be used
correctly to update the template. When the Solve routine returns FALSE for a pair
〈G,n〉 (line 14 in Figure 2), a call is made to a cache directory updating procedure which
registers that the template corresponding to G is now n-complete. The initial value −1
ensures that the cache store will not be used (line 3.2 in Figure 3).

Since the cache replaces search with a (hopefully) more efficient mechanism, and since
previously unseen goals cannot use the cache, it is worth investigating methods that allow
the search for solutions of an unseen goal to be replaced with a cache lookup. This is the
motivation for the concept of template-subsumption (defined in Definition 4.5): to allow
the cache to be used when a specific goal is encountered for the first time with a given
resource bound.

When a goal pair 〈G,n〉 is encountered for the first time, it is possible that the cache
is m-complete for a more general goal with m ≥ n. In this case the cache may be used
instead of the regular search mechanism; we say that the pair 〈G,n〉 is template-subsumed
as defined in Definition 4.5.

Definition 4.5 If cache template T = 〈H,m,mS〉 and goal pair G = 〈G,n〉 then T
template-subsumes G if and only if H subsumes G and m ≥ n.

If such a goal pair 〈G,n〉 is template-subsumed by a cache template 〈H,m,mS〉, then since
the cache is m-complete for the more general goal H all solutions of H are stored in the
cache. These solutions are a superset of the solutions of G given that H subsumes G and
that the resource bounds m and n satisfy the constraints of Definition 4.5. Thus the
cache is m-complete for the goal pair as well and the cache replaces search.

In practice there may be more than one subsuming template for a given goal pair
〈G,n〉. In METEOR (potentially) all such subsuming templates are examined and the
template with the largest mS (minimal solution depth) is returned as the applicable
template on line 3.1 of Figure 3. This ensures that if a subsuming template can serve as
a failure template such a template is used. Since failure templates enable a branch of the
search tree to be pruned without making any inferences, they allow a potentially greater
saving than results from using the cache in lieu of the normal search mechanism.

The use of template-subsumption in the cache is a parameter that the user of the
system can set. Results in Section 7 indicate that the more frequent cache access enabled
by template subsumption more than compensates for the increased lookup time of a
subsuming template.



4.3 Heuristic Caching

As indicated in Figure 1, we have investigated an alternative to caching in which a cost
other than discovery cost is incurred when a cached solution is used. We call the method
heuristic caching and as shown in Section 7 we have found a domain in which its use
yields substantial performance gains over the normal caching mechanism.

When a solution is retrieved from the cache, a cost is incurred as shown on line 4 of
Figure 4. When caching recreates the search space this cost reflects the resources used
in creating the solution. It is possible, however, to reduce the available resource by less
than the creation cost for certain solutions. Using such a solution in effect permits a
search beyond that constrained by the current resource bound. Thus deep proofs may be
found at shallow depths. Of course charging less than the discovery cost can also permit
many deep but fruitless paths to be searched as well. In general, it is difficult to identify
those solutions that should be stored with a resource less than the discovery cost. In
certain domains, however, it may be possible to treat all solutions uniformly and realize
a substantial performance gain over caching.

We report on such a domain—function-free Datalog—in Section 7. Great care must
be taken, however, when there is no bound on the number of solutions as there is in
this domain since the increasing number of solutions generated by heuristic caching can
overwhelm cache storage and increase the branching factor to the point that a proof may
not be found.

5 Lemmaizing

The difficulties of caching for non-Horn problems and the potential for large caches for
deep Horn problems have led us to investigate alternatives to caching that can decrease
the storage requirements inherent in caching all solutions and that can allow deep proofs
to be discovered at shallow depths. In this section we investigate one such approach char-
acterized by the lower right corner of Figure 1, an approach we have called lemmaizing.

Lemmaizing differs from heuristic caching in that not all solutions are stored for a
given goal, but only some (it is hoped relevant) solutions are stored thus augmenting
rather than replacing search. Since lemmas are not needed for completeness, we may
impose syntactic and semantic criteria in deciding which lemmas to retain. The idea is
to store lemmas that are used to eliminate repeated subdeductions. In this sense the
use of lemmas allows us to combine an aspect of bottom-up reasoning with the top-
down reasoning in METEOR. By imposing strict criteria on lemmas we retain a complete
inference theorem that will hopefully allow us to prove theorems otherwise unobtainable.
In one of the first implementations of ME [13], this kind of lemma use was explored in
an ad-hoc manner. No notion of lemma cost was explored and lemmas were not found
to be useful in general since the potential for a shorter proof was not realized due to the
increased branching factor induced by allowing lemmas as alternatives for extension.

5.1 Lemma Storage and Retrieval

If (repeated) stored solutions used in the proof of a goal incur a smaller cost than other
solutions, the proof might be found more quickly. The intuition here is that these repeated



solutions function as lemmas, they reflect useful information to be used without requiring
that the information be rederived each time it is used and whose use can make a proof
easier to understand as well as shorter. Identifying useful lemmas is a non-trivial task
and an important one in automated reasoning systems [6]. We are only beginning to
explore this use of stored solutions and report on several successful uses of lemmaizing
in Section 7.

Consider treating lemmas as input clauses. If only “good” lemmas are placed in the
lemma store, a proof may be found quickly. However, if all solutions are treated as input
clauses the lemma store may be quickly overwhelmed with irrelevant lemmas whose use
may generate still more irrelevant lemmas. We have used several syntactic and semantic
criteria in determining what lemmas to store. The primary criterion we have employed
is to limit the nesting depth of terms that may appear in lemmas. This is done in an
attempt to circumvent the kind of combinatorial explosion in the number of lemmas and
their size that the use of arbitrary lemmas permits.

In some domains (e.g., group theory) demodulators may be used to rewrite solutions
to a canonical form. This reduces redundancy since subsumption checks permit rewrit-
ten solutions to be discarded that might otherwise appear (redundantly) in the lemma
store. Demodulation also permits terms that might violate a syntactic criterion such as
nesting depth to be rewritten to a form that does not violate the criterion. Although
demodulation and resolution may not, in general, result in a complete proof procedure,
we can impose any restrictions on lemmas (including demodulating them) and retain
completeness in ME. We have experimented with demodulating lemmas in group and
ring problems by including the complete set of rewrite rules as demodulators as well
as using demodulators generated during the search to rewrite all lemmas; we report on
several successful applications in this area in Section 7.

In the current system we use lexicographic recursive path ordering [10] based on
a user-specified total ordering of symbols to determine if a rewrite rule applies. The
lexicographic order is also used to rewrite orientable instances of unorientable rules such
as f(xy) = f(yx). This system is similar to the LEX demodulators used in OTTER [25]
and is a feature of the unfailing Knuth-Bendix procedure [10]. The user may specify if
a set of rewrite rules is to be used in addition to or independently of any dynamically
generated demodulators.

6 Implementation

Because cache templates and solutions must be added at runtime, it is not feasible to
compile cache entries in the same way that input clauses are compiled in PTTP. In
METEOR, however, input clauses are compiled into a data structure that is subsequently
interpreted by the theorem-proving engine(s). The cache can be compiled into a similar
structure so that once a cached solution is retrieved, making an inference with it is no
more expensive than making an inference with an input clause.

Despite this efficiency, some pruning of the solutions retrieved from the cache must
be made or the normally high inference rate obtainable in METEOR would decrease
due to a large number of unsuccessful attempts to unify goals with cached solutions.
Caching and lemmaizing both require fast associative retrieval of terms suitably related



to goals to achieve this efficiency. This necessitates some type of term indexing as is
often employed in Prolog implementations and other theorem proving systems [35]. In
our system we employ a modified trie [17]. When used to store terms and expressions in
this manner, tries are often referred to as discrimination trees or nets; variations of these
structures have been employed in many different theorem proving systems [24, 14, 9].
Discrimination trees are especially good for retrieving generalizations [24, 35].

In our system we have employed compression techniques similar to those used in a
PATRICIA trie [17]. In addition, many runtime parameters can be used to experiment
with different cache structures. In the results reported in this paper the default set-
tings are used except as noted in Section 7. For a complete description of our cache
implementation see [1].

7 Results

In this section we include results for a variety of problems we have run using the caching
and lemmaizing methods outlined in the previous sections. Rather than give an ex-
haustive set of results based, for example, on the problems reported in [34]; we include
problems that have been historically difficult for ME based provers.

We have used heuristic caching in proving SAM’s lemma [41] and achieved spectacular
results for top-down or ME theorem provers. Although Otter solves the same formulation
of SAM’s lemma in about seven seconds, it has been an intractable problem for provers
not employing some form of redundancy control. In the formulation we use, the input
clauses for this problem are from the domain of function free Datalog problems. For
this and other Datalog-like problems storing all solutions but charging unit retrieval cost
seems a promising method.

We have also experimented with lemmas in several group theory problems. By im-
posing limits on the nesting depth of function symbols that appear in lemma terms (and
by use of demodulation) we have been able to prove both the commutator problem and
the theorem that if x2 = x in a ring then the ring is commutative [41] whose proofs have,
heretofore, been unobtainable by top-down ME theorem provers.

We also note a successful proof of the intermediate value theorem of calculus (as
formulated in [40]). This non-Horn problem is proved using lemmaizing and retaining all
lemmas with a nesting depth of less than six. To our knowledge, this problem has been
beyond the capabilities of linear provers.

All the results in this section are based on running an unoptimized version of METEOR
(in the sense that the compiler debug rather than optimize flags were set) on a Sun
SPARC-station 2 with 64 megabytes of memory.

In Figure 5 the label “fail.temp.” means that the cache was used only for prun-
ing using failure templates (with template subsumption used); “cache” is based on the
best cache threshold over several runs (see Figure 6) with template subsumption used;
“unit lemma” indicates that only solutions with function symbols nested at most 1 were
stored and retrieved with unit cost; and “demod” indicates the same run but with lem-
mas rewritten using the complete set of reductions for free groups as well as with any
demodulators meeting the nesting criterion generated during the proof.



Each run indicates the number of seconds needed to find the proof (the top number)
and the number of successful inferences made.

fail. unit demod.
problem Dinf temp. cache lemma

wos10 13.06 26.51 3.72 6.40 2.73
78,669 129,643 10,714 19,562 7,979

wos 1 19.64 35.96 6.39 316 0.48
139,068 223,455 10,551 1,221,686 1,273

wos21 283.43 840.2 85.51 584 39.73
2,200,583 5,397,293 368,426 2,134,087 132,307

wos15 13,841 1,356 29.8 4.37
91,879,275 5,399,388 104,883 15,701

sam 1014‡ 280.37 40.83†
5(1017)‡ 948,444 155,480

wos22 11,388 1,565
71,143,961 7,217,820

†heuristic caching
‡projected measure

Figure 5: Results of caching.

In Figure 6 results are given using different cache thresholds, i.e., varying the mini-
mum level at which the cache is consulted rather than relying solely on the normal search
mechanism. Statistics are given in seconds and number of inferences. These results show
that a low threshold uniformly degrades cache performance; the higher inference rate
of the normal search procedure more than compensates for the reduction in inferences.
Note that low thresholds also preclude the use of the identical ancestor pruning rule in
more cases (see above). When these results are examined in light of the depth of search
needed to find a proof (the number of steps in a proof found using Dinf) we see that
there is a threshold window such that for runs made within the window performance
increases as the threshold increases (note, for example, that for wos21 a threshold of 8
results in a 540,000 inference proof found in 93 seconds and a threshold of 9 results in a
1 million inference proof found in 154 seconds). Although the user can set the threshold,
the default threshold used in METEOR is five.

Cache Threshold Level
problem 1 2 3 4 5 6 7

wos10 4.87 4.66 4.12 3.72 4.45 6.54 8.83
8,482 8,482 8,482 10,714 17,563 31,698 46,561

wos 1 11.57 9.43 7.12 6.39 6.68 7.96 13.11
8,499 8,499 8,499 10,551 14,136 23,059 49,582

wos21 492 483 358 226 133 96 86
133,536 133,536 139,843 156,766 203,618 292,732 368,426

wos15 31,822 31,043 16,203 5,720 2,141 1,515 1,356
1,507,114 1,507,114 1,509,839 1,721,907 2,413,466 3,765,384 5,399,388

sam† 42 42 41 41 43 52
126,650 126,650 127,451 130,328 156,433 242,347

wos22 36,078 35,009 17,288 6,075 2,504 1,686 1,565
1,846,619 1,846,619 1,921,009 2,280,075 3,231,997 4,942,331 7,217,820

†heuristic caching

Figure 6: Using different cache thresholds.

When template subsumption is not employed, the cache stores exactly the same



number of solutions, but is accessed less frequently. In addition the number of templates
stored greatly increases further degrading performance. Figure 7 gives statistics for the
same problems and parameters as given in Figure 6, but without employing template
subsumption.

Cache Threshold Level (no template subsumption)
problem 2 3 4 5 6

wos10 25.39 21.21 15.72 13.83 14.85
39,036 39,032 42,570 51,293 68,088

wos 1 25.77 16.83 11.49 10.44 10.61
15,953 15,953 18,576 27,330 35,964

wos21 937 727 455 285 184
275,448 284,512 319,149 392,029 510,506

sam† 70 71.7 72 64 67.7
239,251 240,044 254,946 268,438 355,197

wos22 51,403 18,823 8,398
8,452,066 9,966,389 14,083,812‡

†heuristic caching
‡4,754 secs. and 17,191,011 inferences at threshold 7

Figure 7: Different cache thresholds (no template subsumption).

Figure 8 shows results from running several group theory problems using demodula-
tors generated during the proof in addition to using the standard demodulators for free
groups. No back demodulation was employed and all terms appearing in lemmas were
restricted by limiting the level to which function symbols could be nested.

Dynamic Demodulation
time # proof steps # stored lemmas

problem (secs) inferences proof depth lemmas generated
wos10 2.73 7,979 7/8 38 7,101
wos 1 0.48 1,273 7/7 10 1,585
wos21 39.73 132,307 9/9 33 92,640
wos15 4.37 15,701 7/9 21 12,872

commutator 430.7 1,281,052 7/9 417 611,148
x2 = x ring 1,495 4,763,795 5/10 170 2,349,653

Figure 8: Using demodulation with lemma generation.

In Figure 9 results are given for lemmaizing with several non-Horn problems. The
results are given as number of seconds and number of inferences needed to solve the
problems. The problem labeled ivt is the intermediate value theorem. As noted above,
this problem has been beyond the range of top-down, linear provers. It is proved by the
STR+VE prover [7] and the HD-PROVER in [40]. With the addition of several non-
automatically constructed rewrite rules it is proved by the prover in [30]. The problem
labeled nonobv is a problem given in [27] and subsequently cited in [23]. We should note
that when DAlit is used as the depth measure METEOR solves this problem in under one
second. The problem labeled salt is Lewis Carrol’s salt and mustard logic puzzle.

METEOR and PTTP are attractive inference engines because of minimal memory
requirements and because of the high inference rate. One of the potential drawbacks
incurred by caching and lemmaizing is the (potentially large) size of the cache and lemma
store. Figure 10 shows the memory requirements for the problems reported in this section.

For problems that are solved quickly, the requirements are quite modest which makes



problem normal search lemmaizing
ivt DAlit 915

3,216,208
nonobv Dinf 657 1.42

6,526,914 12,071
salt DAlit 60.3 35.7

660,774 309,434

Figure 9: Lemmaizing with non-Horn problems.

problem # solutions # trie nodes size (Mbytes)
wos10 473 1,300 0.05
wos1 2,301 7,269 0.38

wos21 8,867 28,428 1.5
sam† 143 407 0.013

wos15 55,076 176,037 10.2
wos22 79,871 243,227 15.38

commutator‡ 417 1,094 0.48
x2 = x ring‡ 170 469 0.19

ivt‡ 91 289 0.14
nonobv‡ 31 80 0.002

†heuristic caching
‡lemmaizing

Figure 10: Memory requirements for several problems.

caching and lemmaizing attractive methods for this class of problem. For hard prob-
lems, the memory requirements needed to store all solutions as is done in caching makes
lemmaizing an attractive alternative. Of course lemmaizing requires the identification of
useful lemmas which is a difficult task itself.

8 Related Work

Much work has been done in the area of query optimization for deductive databases [3].
This work tends to focus on reducing redundant (recursive) derivations by program trans-
formation techniques [4], by introducing a control language [15, 16], and by run-time
analysis [38]. In general, these techniques are designed to work with function-free, Horn
(Datalog) programs. As our results with SAM’s lemma indicate, caching and heuristic
caching can work well for this class of problem. The framework of SLD-AL resolution [39]
is closely related to our framework, the concept of a lemma in SLD-AL resolution cor-
responds exactly to (and is antedated by) the use of lemmas in model elimination; the
QSQR implementation [38] of SLD-AL resolution also uses iterative deepening. The
OLDT resolution procedure [37] is very closely related and involves an iterative deepen-
ing search of Datalog programs. As database optimizations, these methods concentrate
on reducing redundancy when all solutions to a goal are desired; in a theorem proving
context we (usually) only search for one proof.

Extension tables as used in [11] are closely related to the OLDT procedure. Although
an outline of an iterative deepening prover is given there, no empirical data is given and it
appears that the method has not yet been implemented. Plaisted [29] has implemented a
theorem prover in which solved goals are stored although no notion of cache completeness
is used. Although he reports some favorable results, caching in his prover could lead



to longer proofs, did not work for the same class of problems we report on here, and
did not admit proofs for problems previously unprovable in his system. In fairness,
his implementation was not optimized and access to the store of solved goals can be
particularly slow in the system employed in the prover.

Elkan [12] reports on the idea of caching to reduce redundancy in a resolution based
prover for Horn problems, but only reports on the use of caching to solve one problem.
His prover has been used in the realm of explanation based learning and the use of the
prover with what we call lemmaizing is reported in [32]. The EBL domain is slightly
different since the principle aim is to “train” the prover by storing solutions for a class
of problems and then use these solutions to solve other problems of the same type. The
only kinds of lemmas stored in the system are generalizations of goals. This makes it
possible to prune the search with success when a match is found with a stored solution.
Our work indicates that this methodology is of limited success for the kinds of problems
traditionally addressed in theorem proving domains.

9 Conclusions

We have outlined two modifications to the ME search mechanism used in METEOR.
These modifications, caching and lemmaizing, have enabled METEOR to prove theorems
previously unobtainable by top-down model elimination theorem provers and have re-
duced by more than an order of magnitude the time required to prove some typically
difficult theorems.

Other work in this area has focused almost exclusively on lemmaizing. We have
studied, and shown to be successful, a method (caching) that consciously replaces search
rather than augmenting it. In our implementation we have succeeded not only in reducing
the number of inferences (which is easy and guaranteed for exhaustive searches), but in
reducing the time required to find reduced-inference proofs, which is not so easy. The
volume of data caching and lemmaizing uses demands indexing schemes unnecessary for
ordinary ME; adding and using such schemes in an already fast theorem prover indicates
not only the promise of the methods, but the versatility of our prover.

In the future we hope to address optimizations to the caching mechanism that will
increase its efficiency both in terms of storage requirements and in its redundancy re-
ducing capabilities thus permitting caching to be applicable to a larger class of problem.
We also plan to investigate methods for identifying useful lemmas that will allow us to
combine aspects of bottom-up reasoning with the goal-directedness of top-down provers
in solving both Horn and non-Horn problems.
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