Pictures as Invariants

Owen Astrachan
Computer Science Dept.
Duke University
Durham, NC 27706
ola@Qcs.duke.edu

Abstract

The development, specification, and use of a loop
invariant are useful and underutilized tools in
writing code to solve a problem or implement an
algorithm. Invariants are especially useful in in-
troductory courses (CS1 and CS2) but are usu-
ally avoided because of the mathematical nota-
tion associated with them and because most text-
books have brief, if any, coverage of them. Our
intent in this paper is provide several motivating
examples of the use of pictures as loop invari-
ants and to provide pointers to literature that
more fully explores and develops the ideas of us-
ing loop invariants in specifying and developing
programs.

1 Introduction

The development, specification, and use of a loop
invariant are useful and underutilized tools in
writing code to solve a problem or implement
an algorithm. Invariants are especially useful
in introductory courses (CS1 and CS2) but are
usually avoided because of the mathematical no-
tation associated with them and because most
textbooks have brief, if any, coverage of them.

Our intent in this paper is provide several mo-
tivating examples of the use of pictures as loop
invariants and to provide pointers to literature
that more fully explores and develops the ideas
of using loop invariants in specifying and devel-
oping programs.

A loop invariant is a statement that is true

before and after each iteration of a loop. Such
statements can be used to reason formally about
the correctness of a loop and, more to the purpose
of this paper, to help develop a loop to meet a
specification.

There are several fundamentally different
approaches to introductory Computer Science
courses. These approaches differ in languages
used, concepts emphasized, and even in whether
computers are used [Dij89],[DPST90]. We believe
that each of these different camps has something
to learn from the others.

The approach outlined here is far from the
formal approach taken in [DF88], [Dij90] and
[Gri81], but it borrows on many of the concepts
introduced in those works . We hope to make
some of these ideas more accessible and more
palatable to teachers and students of introduc-
tory courses. We hope that some of the joy found
by a programmer when a program runs and by
a mathematician when a proof is complete can
be shared by students in introductory Computer
Science courses.

Invariants can serve as both aids in recalling
the details of an implementation of a particular
algorithm and with the construction of an algo-
rithm to meet a specification.

We hope to show that invariants can be used
in several ways in introductory courses. The first
use might include the presentation of an algo-
rithm (e.g., partition) with a diagram illustrat-
ing a loop invariant. The diagram can be used
to reason about the code that implements the
algorithm and as an aid to reconstructing the
code. Subsequent uses of invariant diagrams can
include the presentation of a problem along with
an invariant that can be used in solving the prob-
lem (e.g., reversing a linked list) and the devel-
opment of an invariant for a specific task.

In this paper we outline several small but

(hopefully) interesting problems. We offer terse
solutions to these problems via the construction
of loops from an invariant presented as a picture.
All the code presented in this paper is written in
Pascal with small liberties taken for purposes of
clarity and succinctness. In many of our exam-
ples we use a Pascal for loop rather than a while
loop. Although formal reasoning about loops re-
quires a while loop (the value of the indexing vari-
able of a Pascal for loop is undefined when the
loop terminates), the for loop makes for more
compact code in several of our examples.

2 Partitioning an Array

Partitioning an array about a pivot element is a
fundamental part of two important algorithms:
Quicksort and Select. Quicksort is an O(nlogn)
expected time algorithm to sort n items and
Select is an O(n) expected time algorithm to
find the k*" largest of n items. Both Quick-
sort and Select are often covered in introduc-
tory courses and are certainly covered in an al-
gorithms course. The terse partition code shown
below comes from [Ben86], a more pedagogical
development of it can be found in [Kru87].

Informally, partitioning an array A involves re-
arranging the elements of A so that all the ele-
ments of A less than or equal to some value x pre-
cede all elements of A greater than x. Typically
x is the first element of A and we will assume
that this is the case in the following exposition.
See [Knu73] for a full discussion about choosing
the “correct” x .

More formally, we want to write a procedure
Partition with the header

procedure Partition (var A : ArrayType;
m, n : integer;
var p : integer);

establishing

z=Alp] N Vm<j<p Al S @ A Vpejon © < Alj]

(1)
Although this specifies the problem succinctly, to
most students in introductory courses it does not
specify the problem clearly. Consider the follow-
ing diagram as a specification:

The information conveyed in the diagram is
precisely that which is stated in the more formal
equation 1, but understanding the diagram does
not require an understanding of formal logic.

<z x >z

h

} |
m p
Figure 1: specification of partition

Using the diagram as a starting point, we can
write an invariant for the partition algorithm
that leads to a terse and easily verifiable partition
procedure. Comparison of this code for partition-
ing an array with that found in several textbooks
([CC82],[TA81],[Kof89], [DL85],|[AHU74]) shows
that the code below is shorter (both in state-
ments and number of lines) and clearer (subjec-
tively).

The diagram for the invariant can be derived
using techniques from [Gri81], our purpose in
this paper is to show that the diagram is a useful
tool. Intuitively, however, an invariant can often
be developed from a specification by replacing a
constant (in this case n which does not vary) with
a variable. In this case, we maintain the picture
specification above as an invariant by replacing n
with ¢ and requiring the invariant to hold through
index ¢. The picture invariant is:

| <z > ??

b

Figure 2: partition invariant

=—

where the question marks indicate that elements
in this subsection of the array have values whose
relationship to = are not yet known. The first
element of this subsection is referenced by ¢ in
the diagram. If A[¢{] > z then incrementing i
results in the re-establishment of the invariant
while shrinking the size of the unknown section.
If Ai] <z then A[i] is out of position and needs
to be swapped. A brief reflection should show
that incrementing p and swapping A[i] with A[p]
leads to re-establishment of the invariant.
This results in the following code:

x = A[m];
p = m;
fori:=m + 1tondo
if Afi] < x then begin
p:=p+1
Swap(A[p,A[i]);
end;

To establish the diagram that specifies the
problem (and thus the more formal equation 1)
we need only swap A[p] with A[m] when the loop
has terminated. The picture invariant of Figure 2
is equivalent to the following formula:

2= Alm] A Ymsjzp Al S A Ypejei @ < A[j]

(2)
Note the similarity between this formula and that
of equation 1.

In teaching CS1 and CS2 courses prior to using
the diagrams and code shown in this section we
found that students had difficulty reconstructing
code that implemented the partition algorithm.
Students find it much simpler to derive the code,
however, starting from the diagram of the invari-
ant. Most can reconstruct the diagram once it
has been discussed in class and use it, for exam-
ple, in developing code that implements Select.
It should be noted that the code shown above
can be easily modified to squeeze in on the par-
tition element A[p] from both the right and the
left (as is done in most textbooks) using a single
loop with body of the form

if Alp] <z thenp:=p+1
else if Alg] > z then q:=q-1
else Swap(A[p],A[q])

and an invariant of

| <z 77 >z

=

Wb

Figure 3: invariant for squeezing partition

3 Reversing the Elements of
a Singly-linked list

Reversing the nodes of a singly-linked lists is a
problem typical of the kind given in a CS2 or
data-structures course. This problem appeared
on the 1989 Advanced Placement Exam in Com-
puter Science. Although this problem has a
straightforward O(n) solution for a list of n el-
ements, many students attempted complicated
O(n?) solutions, used auxiliary stacks, and in
general (and not surprisingly) made mistakes ma-
nipulating pointers.

The problem can be specified pictorially by re-
quiring that lists of the form shown in Figure 4

head

11 Iy i3]
= L= 4. '—4

Figure 4: initial list

be transformed into lists of the form shown in
Figure 5.

head

Figure 5: reversed list

We can derive a picture as an invariant with
the insight that after several iterations of the loop
part of the list will be reversed and the remain-
der of the list will be unprocessed. This can be
described pictorially by the lists in Figure 6.

head yndoneList

I~ A I

A—>“\

Figure 6: invariant for reversing a list

At this point, we invite the interested reader
to develop a loop based on the picture invariant
shown above. One need only move one node from
the list referenced by undoneList to the list ref-
erenced by head.

The statements that accomplish this move-
ment are

temp := undoneList{.next;
undoneList?T.next := head;
head := undoneList;
undonelList := temp;

By enclosing these statements in a loop with
appropriate initialization and termination state-
ments we will have finished this problem. The
appropriate initialization involves assigning val-
ues to undonelList and head so that the invari-
ant is true before the loop iterates the first time.
The termination statements may be necessary to
achieve the state specified by the diagram that
describes the problem.

Initially, the entire list remains to be processed
(and, symmetrically, none of the list has been
processed). The statements:

undonelList := head,;
head := nil;

achieve this state. This results in the following fi-
nal solution to the problem of reversing the nodes
of a linked list.

undoneList := head;

head := nil;

while undoneList <> nil do begin
temp := undoneList{.next;
undoneListt.next := head;
head := undoneList;
undoneList := temp;

end;

3

Note that in this problem no termination state-
ments are necessary since head references the
first node of the reversed list as required by
the picture specification of this problem. This
might not have been the case, for example, if
head had been used to point to that part of
the list remaining to be processed and a pointer
alreadyDoneList been used as a pointer to that
part of the list already reversed. In this case head
would not need to be initialized but would need
to be reset when the loop terminates.

4 Compacting an Array

Consider the problem of removing the zeros from
an array of n integers while leaving the order of
the non-zero elements unchanged. It is similar
to the more practical problem of replacing se-
quences of blanks by a single blank in a line of
text or using run-length encoding for data com-
pression. Removing zeros from an array was
given on the 1987 Advanced Placement exam in
Computer Science. There is a straightforward
solution using an auxiliary array that is of com-
plexity O(n), but on the AP exam students were
prohibited from using such an auxiliary struc-
ture. Even so, there is a simple O(n) solution.
In fact, the inplace solution requires at most n
assignments to array elements as opposed to the
solution using an auxiliary structure which may
require 2n (to copy back to the original array).
Nevertheless, most students attempted O(n?) so-
lutions or tried to process runs of consecutive ze-
ros and missed special cases.

The simple observation that during the con-
struction of the compacted array part of the ar-
ray will be compacted and part of the array will
remain unprocessed leads to the picture shown in
Figure 7 as an invariant.

already prgcessed 77?7

last nomziu ? i n
Figure 7: invariant for compacting an array

The picture illustrates that in the section of the
array already processed, an index referencing the
last non-zero element is maintained. As in the
partition problem, we need only decide how to
process an unknown element while maintaining
the invariant. As in that problem there are two
cases. In the first case, array element A[i] is zero.
In this case no array elements need be moved;
incrementing ¢ results in the re-establishment of
the invariant while decreasing the size of the un-
known section. In the second case, a non-zero
element must be moved. The reference to the
last non-zero element will be updated to reflect
that this array element is the new last non-zero
element. In addition, incrementing ¢ results in
re-establishment of the invariant as in the first
case.

The code implementing this idea is

lastNonzero := 0; {no non-zero elements yet}

for i := 1 to n do begin
if A[i] <> 0 then begin
lastNonzero := lastNonzero + 1;
AllastNonzero] := Ali]
end;

5 Convex Hull

Pictures as invariants are often useful in the de-
velopment of code as was observed when revers-
ing a linked list. Pictures can also serve as an
aid to students in recalling the details of how an
algorithm is implemented as was seen in the par-
tition example. The partition algorithm is rel-
atively simple in contrast to some of the more
complex algorithms encountered in CS2 courses.
Pictures as invariants can be particularly useful
in helping to recall the details of these more com-
plicated algorithms.

Many interesting examples from computa-
tional geometry can be adapted for use in in-
troductory courses [DeP88] [DBKL90]. Many
of the problems from computational geometry
are based on efficient sorting and searching tech-
niques and provide contexts for studying these
techniques that are interesting, novel, and visual.

The problem of finding the smallest convex
polygon containing n specified points is the con-
vex hull problem from computational geometry.
Treatment of this problem can be found in several
algorithms texts [Man89],[Sed88]. In this section
we develop a version of the Graham Scan solu-
tion to the convex hull problem given in [PS85].
We show in Figure 8 a set of points on the left
and the convex hull of these points on the right.

o7 3
2

Figure 8: set of points and their convex hull

The first step of the Graham scan algorithm
is to sort the points whose convex hull is being
sought. The points are sorted with respect to
their polar coordinates relative to a point known
to be on the convex hull (or, alternatively, rela-
tive to a point known to be in the interior of the
hull). We choose to sort relative to the point with
smallest y-coordinate (and greatest x-coordinate
if there are several points with the same small-
est y-coordinate) first by angle § and then, for
points with equal values of 8, by distance. In
our presentation we will assume that the sorted
points are stored in a doubly-linked circular list
whose first element is the point with smallest y-
coordinate with respect to which the other points
are sorted. Such a list is shown in Figure 9

This list is then processed using a three node
“window” to determine which points are in the
convex hull. As an aid to reconstructing the algo-
rithm, the invariant shown in Figure 10 includes
both the constructed hull and the window. The
nodes that are labeled as “part of the convex hull
so far” may or may not be part of the final convex
hull as will be seen. Note that the first two nodes
in the window are also part of the convex hull ac-

Figure 9: linked list for Graham scan

cording to the picture. We will refer to the first
node in the window as the anchor node. Note also
that the invariant is initially true since by sorting
the points we ensure that the first two points in
the initial window are part of the convex hull (by
proper initialization as shown below). The point
to be considered for inclusion in the hull is the
third point of the window.

== window -}

e FE R T

=~ convex hull so far —>|

Figure 10: invariant for Graham scan

As in the other examples we have presented,
the essential part of the Graham scan algorithm
is developing the step that re-establishes the in-
variant while ensuring termination. The three
points in the window (considered in order from
the anchor node’s point) have two possible con-
figurations:

e they form a convex angle

e they form a reflex (non-convex) angle

In the first case (illustrated by nodes 1, 2, and
3 in Figure 9), the anchor node is advanced by
one node. Since the points in the window form
a convex angle, the invariant is maintained. In
the second case (illustrated by nodes 2, 3, and
4 in Figure 9), the second node of the window
cannot be part of the convex hull and is deleted.
The anchor node is also moved back one node so
that the invariant is re-established. If the anchor
node is not moved back, the invariant will not
necessarily remain true. The first two nodes of

the window cannot be guaranteed to be part of
the convex hull of the points considered.

To see that the anchor node must be moved
back, consider the points shown in Figure 11.

Figure 11: moving the anchor node back

When the anchor node is point 4, the invariant
ensures that points 1 through 5 are part of the
convex hull so far. Since points 4, 5, and 6 fall
into the second category above (they form a re-
flex angle), point 5 will be removed from the list.
If the anchor point is not moved back, node 7
will be the next node considered as it will be the
third point of the window anchored at point 4.
Note that the invariant will not be true since the
first two points of the window — points 4 and
6 — are not part of the convex hull of points 1
through 6.

If, however, the anchor node is moved back
to point 3, the invariant will be re-established.
Note that the next step of the Graham scan will
remove point 4 and move the anchor to point 2.

The Graham scan algorithm will terminate
when all points of the list are known to be in the
convex hull. The picture invariant shows that
this will occur when the third node of the win-
dow is the first node of the linked list. This leads
to the following implementation of the Graham
scan.

{sort points into list as outlined above }
{let the first node of the list be denoted by first }

anchor := first
while anchort.nezt <> first do begin
if IsReflex(anchor, anchort.next,
anchort.nextt.next)
then
anchor := anchorf.next,
else begin
RemoveNode(anchort.newt);
anchor := anchorf.previous;
end;
end;

Since each iteration of the loop advances the win-
dow or removes a point from the list, the loop
above runs in O(n) time for a list of n points.
This makes the sorting of the points the bottle-
neck for this problem and the complexity for the
entire algorithm is then O(nlogn).

6 Conclusion

We hope that interested readers will pursue the
use of picture invariants and, perhaps, more for-
mal invariants in introductory courses. When
used as an aid in the development of algorithms
and to remember details of algorithms rather
than as a chore to develop after a loop is writ-
ten, picture invariants can be made accessible
to students without formal training. A compre-
hensive introduction to the use of more formal
techniques can be found in [Gri81]. The author
gives many examples, uses diagrams as invari-
ants, and offers useful techniques for developing
invariants. Invariants are used in a lower-level
text in [Dro82] which is also a source of many
useful examples. Finally, we urge all teachers of
introductory courses to read [Har87] which covers
(briefly) invariants as well as many of the most
fundamental concepts of Computer Science in a
manner accessible to beginning students.

References

[AHU74] Alfred V. Aho, John E. Hopcroft,
and Jeffrey D. Ullman. The De-
sign and Analysis of Computer Algo-
rithms. Addison-Wesley, 1974.

[Ben86] Jon Bentley. Programming Pearls.
Addison-Wesley, 1986.

[CC82] Doug Cooper and Michael Clancy.
Oh! Pascal!l W. W. Norton & Co.,
second edition, 1982.

[DBKL90] N. Adlai A. DePano, Rarinaz D.

[DeP83]

[DFS3]

[Dij89)]

[Dij90]

[DLS5]

[DPS+90]

[Dro82]

[Grig1]

[Har87]

[Knu73]

Boudreau, Philip Katner, and Brian
Li. Algorithmic Paradigms: Exam-
ples in Computational Geometry II.
In SIGSCE Technical Symposium on
Computer Science Education, pages
186-191, 1990.

N. A. A. DePano. Algorithmic
Paradigms: Examples in Computa-
tional Geometry. In SIGSCE Techni-
cal Symposium on Computer Science
FEducation, pages 8387, 1988.

Edsger W. Dijkstra and W.H.J. Fei-
jen. A Method of Programming.
Addison-Wesley, 1988.

Edsger W. Dijkstra. On the Cruelty
of Really Teaching Computer Science.
In SIGSCE Technical Symposium on
Computer Science Education, pages
xxv-xxxix, 1989.

Edsger W. Dijkstra, editor. Formal
Development of Programs and Proofs.
Addison-Wesley, 1990.

Nell Dale and Susan C. Lilly. Pas-
cal plus Data Structures, Algorithms,
and Advanced Programming. D.C.
Heath and Company, 1985.

Edsger Dijkstra, David Parnas,
William Scherlis, M.H. van Emden,
Jacques Cohen, Richard Ham-
ming, Richard M. Karp, and Terry
Winograd. A Debate on Teaching
Computer Science. Communications
of the ACM, 32(12):1397-1414,
December 1990.

R.G. Dromey. How To Solve it
by Computer. Prentice-Hall Interna-
tional, 1982.

David Gries. The Science of Program-
ming. Springer-Verlag, 1981.

David Harel. Algorithmics The Spirit
of Computing. Addison-Wesley, 1987.

Donald E. Knuth. The Art of
Computer Programming, volume 3.
Addison-Wesley, 1973.

[Kof89]

[Kru87]

[Mang9)

[PS85)

[Sed88]

[TAS1]

Elliot B. Koffman. Turbo Pas-
cal. Addison-Wesley, second edition,
1989.

Robert L. Kruse. Data Structures &
Program Design. Prentice Hall, sec-
ond edition, 1987.

Udi Manber. Introduction to Al-
gorithms: A Creative Approach.
Addison-Wesley, 1989.

Franco P. Preparata and Michael Tan
Shamos. Computational Geometry
An Introduction. Springer-Verlag,
1985.

Robert Sedgewick.
Addison-Wesley,
1988.

Algorithms.
second edition,

Aaron M. Tenenbaum and Moshe J.
Augenstein. Data Structures Using
Pascal. Prentice Hall, 1981.

