The Use of Lemmas in the Model Elimination

Procedure

O.L. Astrachan and D.W. Loveland*
Department of Computer Science
Duke University
Durham, NC 27708-0129
919-660-6500
{ola|dwl}@cs.duke.edu

Abstract

When the Model Elimination (ME) procedure was first proposed, a
notion of lemma was put forth as a promising augmentation to the basic
complete proof procedure. Here the lemmas that are used are also discov-
ered by the procedure in the same proof run. Several implementations of
ME now exist but only a 1970’s implementation explicitly examined this
lemma mechanism, with indifferent results. We report on the successful
use of lemmas using the METEOR implementation of ME. Not only does
the lemma device permit METEOR to obtain proofs not otherwise ob-
tainable by METEOR, or any other ME prover not using lemmas, but
some well-known challenge problems are solved. We discuss several of
these more difficult problems, including two challenge problems for uni-
form general-purpose provers, where METEOR was first in obtaining the
proof. The problems are not selected simply to show off the lemma device,
but rather to understand it better. Thus, we choose problems with widely
different characteristics, including one where very few lemmas are created
automatically, the opposite of normal behavior. This selection points out
the potential of, and the problems with, lemma use. The biggest problem
normally is the selection of appropriate lemmas to retain from the large
number generated.

1 Introduction

The Model Elimination (ME) procedure was defined in the 1960’s [17, 18]
nearly coincident with the Resolution procedure [22]. There was little early

*This work is supported in part by NSF grants CCR-8900383 and CCR-9116203.

experimentation with ME, so the procedure received relatively little attention.
(However, it is the basis of the SL-Resolution procedure which played an his-
torical role in the beginning of Logic Programming). A major implementation
of ME was completed in the early 1970s by Fleisig et al. [14] that did provide
a direct comparison with the Unit Preference — Set-of-Support refinement of
Resolution (Wos et al. [29]), as both procedures were implemented with the
same underlying inference tools. Individual wins were found for both methods
but no evidence to prefer ME over the known refinements of Resolution was
forthcoming. The notion of lemma, introduced in the first papers of ME, was
implemented by Fleisig et al. with a resulting indifference to their usefulness.
The paper included this statement: “The use of lemmas usually was detrimental,
although some short refutations were obtained using lemmas. The poor perfor-
mance is due to the lack of selection rules for lemmas and is aggravated by the
depth-first nature of search.” ([14], p. 135). This paper will strongly refute the
conclusion of that paper regarding the value of lemmas within ME. We report
on results that to date are only obtainable within the ME framework by the use
of lemmas, and the theorems proven include some not yet provable by Resolu-
tion techniques. We now understand that the notion of only direct competition
with Resolution is oversimplistic; this procedure tends to do relatively well on
non-Horn problems where Resolution methods now employed are not focused.
Unlike chess, theorems are a very diverse lot and different proof methods may
excel in different areas.

As is well-known to many in this research area, the idea of ME was kept alive
by the work of Mark Stickel. Most notably, Stickel exploited the fact that ME
is an extension of SLD-Resolution (Prolog) to develop the Prolog Technology
Theorem Prover (PTTP) [24, 25]. In the late 1980’s almost simultaneously three
groups took this one step further, building on the architecture (the Warren Ab-
stract Machine (WAM)) developed for Prolog that the logic programming com-
munity had extended to parallel machines. These projects were PARTHENON
(CMU) [9], PARTHEO (Munich) [23], and METEOR (Duke) [4, 3]. (The Mu-
nich [16] and Duke efforts included sequential provers also.) The work reported
here has been implemented on one of the METEOR family of ME provers.

What has changed in 20 years that makes the lessons of the Fleisig et al.
paper invalid in part? A fair number of things: maybe most important is
the WAM architecture ideas, but also important are use of iterative deepening
(introduced to ME by Stickel), a sophisticated implementation exploiting the
WAM ideas, vastly more powerful yet cheaper computers, and careful use of
techniques to restrict lemma creation and use.

We look in depth at three examples, theorems proven with use of lemmas that
would otherwise not be proved using ME. Two theorems are from the theory of
continuous functions and one is a collection of three challenge problem from the
1960’s not all solved automatically until now. (Two of the three latter challenge
problems were solved in the weak fully automated mode; that is, some initial
restructuring of the problem was done to force generation of lemmas. This

was done by splitting the problems into two and six cases respectively, without
knowledge of the problem solution. The details are presented later. We mention
here that the problem has subsequently been solved in (strong) fully automated
mode by the Semantic Hyper-Linking prover of [11]. To our knowledge no
other prover has succeeded on this problem in non-interactive mode.) Because
the purpose of this paper is to look in-depth at the nature of lemma use, and
because other papers [5, 3], contain results of METEOR on standard problems
of the Automated Theorem proving (ATP) community, we omit such listings
here. For example, the Astrachan and Stickel paper [5] discussing caching in
ME includes two tables of results and a brief discussion on lemma use. (Caching
is not applicable for the examples we treat here.)

The Model Elimination procedure is a linear input procedure; that is, one
parent clause is the preceding clause and the other clause is an input clause.
This is the key property of SLD-resolution that allows compilation of Prolog
programs, elegantly implemented in the WAM architecture. ME can use the
WAM architecture structure and also enjoy a high inference rate. However, like
Prolog, ME does suffer high search redundancy due to the depth-first search
mode of the WAM architecture. (ME does use iterative deepening rather than
pure depth-first search, however.) Lemmas shorten proofs, thus reducing this
redundancy. We show by example that the compression of proof achieved with
lemma use can be striking, and the gain occurs on “real” (vs. toy) problems.
We note that there is a version (restriction) of resolution that is in 1-1 corre-
spondence with ME. The Resolution version is a linear input procedure except
for a restricted “ancestor resolution” operation where resolution between two
deduced clauses is necessary. (See the TOSS procedure in [19] ! .) Thus, the
ME procedure can be regarded as an encoding of the TOSS Resolution restric-
tion using 2-sorted logic (framed and unframed literals), but it should be noted
that ME is not, strictly speaking, a Resolution procedure. This is highlighted
by the fact that Linear Input Resolution is complete only for a small extension
of Horn clause logic whereas ME is complete for all of first-order logic.

This paper is organized as follows: In Sections 2 and 3 we briefly describe
the ME proof procedure and the realization of this procedure in METEOR. In
Section 4, Section 5, and Section 6 we describe the successful application of
lemmas to three theorems none of which can be proved without lemmas using
METEOR 2. We conclude with a short summary in Section 7.

2 The Model Elimination Procedure

Like Resolution, Model Elimination is a refutation procedure, with the for-
mula to be refuted presented in conjunctive normal form. Skolem functions are

IThe TOSS procedure corresponds to a slightly different ME procedure.
2None of these problems yields a proof in less than 24 CPU hours using “vanilla” ME
without lemmas.

used to eliminate existential quantifiers. (See [10] or [19] for details on formula
preparation; [19] contains a full description of the ME procedure.) We view the
clauses as sets of literals and the formula as a set of clauses. The corresponding
entity to a derived clause in Resolution is the (derived) chain, an ordered list
of literals where each literal is of one of two classes, an A-literal or B-literal.
ME, as currently defined, has two basic operations®, extension and reduction.
The basic operation of extension is like the Resolution operation with retention
of one of the literals resolved upon. The retained literal is promoted to a A-
literal. (Intuitively, the A-literal is a type of ancestor literal.) We give a succinct
presentation of the ME operations and lemma mechanism here, followed by an
example. The appendix gives an expanded presentation of the procedure.

The first chain in a deduction is an ordered input clause with all literals
classified as B-literals.

Below and in general we oversimplify the reference to occurrences of literals.
In particular, we refer to a literal in successive chains as the same literal when
in fact the later literal may be an instantiation of its “parent” literal. This
simplification should cause no confusion.

The extension operation glues a (shortened) input clause, ordered by user
choice, to the left of the current chain if the leftmost B-literal of the chain unifies
with the complement of some literal of the input clause. The new chain is the
instantiation of the current chain by the unifier with the unifying literal of the
input clause dropped, and the other unifying literal (the leftmost literal of the
current chain) promoted to A-literal. Newly added literals are B-literals and
other literals retain their classification from the current chain*. All leftmost
A-literals, if any, are removed back to the leftmost B-literal.

The reduction operation removes the leftmost B-literal of the current chain
if it can be unified with the complement of an A-literal of the chain. The new
chain is the instantiation of the current chain by the unifier with the leftmost
B-literal missing. Again, all leftmost A-literals, if any, are removed back to the
leftmost B-literal.

The creation of lemmas occurs when the leftmost A-literals are removed,
at the end of the extension and reduction operations. Here we use only unit
lemmas, although a more general notion of lemma, allowing multiliteral lemmas,
is defined in [19]. The lemma chains are created as the complements of the
removed A-literals, but only some A-literals can produce a lemma. To create
only unit lemmas the eligibility mechanism is simple. In a reduction operation,
the A-literal that complements the leftmost B-literal is the reduction A-literal.
During a reduction step, all A-literals strictly to the left of the reduction A-
literal are marked. Every A-literal in a newly created clause inherits the mark,
if any, of its parent A-literal. Any A-literal unmarked at the time of removal

3Early papers [17, 18] had three operations.

4Traditionally, ME chains grew “to the right” but Prolog conventions of replacing the
leftmost literal have influenced recent implementations. We choose to follow the convention
used in the METEOR implementation.

creates a lemma. Not all generated lemmas are retained; retention depends
on a number of criteria discussed later, some under control of the user. If the
lemma is retained it acts exactly as if it were a unit input clause regarding
extension. (Lemmas are subject to restrictions and modifications not shared by
input clauses, however.)

The ME refutation in Figure 1, adapted from [19, 2], illustrates the ME
mechanisms.

1 p(X) -q(Y) input clause
2 -p(X) r(Y) input clause
3 -p(a) -r(Y) input clause
4 qa(X) p(a) input clause (and goal chain)
begin proof
5. p(Y) [a(X)] p(a) extension with 1
variable renaming, clause 1
6. r(2) [p(Y)] [aX)] p(a) extension with 2
variable renaming, clause 2

7. -p(a) [r(Z2)] [p(Y)] [a(X)] p(a) extension with 3
8. [r()] [p(a)] [a(X)] p(a) prior to removal of A-literals

p(a) reduction

unit lemmas formed

-p(a)

-q(X)
9. i extension with lemma -p(a)

Proof completion if lemma mechanism is not used:

9. -1(Y) [p(a)] extension with 3
10. -p(X) [r(Y)] [p(a)] extension with 2
11. O reduction

Figure 1: ME refutation

In Figure 1 the unit lemmas are created during the final stage of the reduction
that yields chain p(a) at step 8. The reduction creates A-literal p(a) from parent
p(Y) and the subsequent removal of A-literals p(a) and q(X) create the lemmas.
Removal of r(Z) cannot create a unit lemma.

In Figure 2 we present proof trees associated with the example, one proof
tree for the proof without a lemma use and one that incorporates the lemma
use. In a proof tree, each clause used in an extension is represented, here by its
clause number. The goal clause is listed as root of the proof tree. The literals
of a clause are represented by the child nodes of the clause, where the clause
(actually, the appropriate chain of the clause) that is used in the extension
on that literal is named. Reduction is shown by a backwards arrow from a
node labeled Rn, for the nth reduction. The arc to an ancestor node of the
reduction is labeled by the same Rn to indicate which is the A-literal of the
reduction. The proof tree gives sufficient information to reconstruct the proof
without backtracking; the instantiations of the variables are determined during

the tracing of the proof using the proof tree.

The proof tree on the right side of Figure 2 is a method of displaying lemma
use and also representing a proof tree without lemma use. The leftmost box
encloses the subdeduction that defines the lemma and the other occurrences
of that box in the deduction indicate positions where the lemma is used. As
such, the box would be replaced by a single node. The subdeduction in the box
provides a subtree that could occur if the lemma device is not used. (Note that
the tree to the left shows that a slightly different deduction actually occurred
when the lemma device was not used.) This reporting device is used later in the
paper for deductions of considerably larger size, and does give a graphic feeling
of the saving in proof size realized by lemma use.

The reduction arrow in the boxes is somewhat confusing in this instance
because the reduction is to the A-literal that creates or calls the lemma. For
the right side box the reduction arrow refers back to the literal that calls the
lemma, for that is the valid A-literal of reduction if the lemma is replaced by
its deduction.

/ 4RN\ P 4R2\; *****
RL
2

w
=

OV - N <

I
3 L 2
L R"l without lemma

Figure 2: proof trees

3 The METEOR Architecture

We provide here only a brief description of the METEOR architecture. A full
description can be found in [2]. METEOR is written in C and runs on worksta-
tions and in parallel and distributed computing environments. The same search
engine is used in both the sequential and parallel setting. A discussion of the
architecture of METEOR with emphasis on the parallel and distributed modes,
appears in [3]. Iterative deepening is used to ensure completeness of the search
strategy in all cases.

METEOR is designed to conform to the principles of the Warren Abstract
Machine (WAM) [1], the de facto standard for Prolog implementations. How-

ever, clauses are not compiled into WAM code, but into a data structure that
is then interpreted at runtime by either a sequential or parallel search engine.

Several different depth measures can be used in bounding a potential proof
during an iterative deepening search. We report on four measures here, these
are described in Table 1.

measure description

D¢ inference depth — bound total number of inferences in proof tree
D gt A-literal depth — bound depth of proof tree

Dion rollback-reduction — combination of Dj,¢ and Dayt

(preference given to reductions)
Daeight weight depth — weight clauses (per branch of proof tree)

Table 1: depth measures employed in METEOR

The measures Dinr and Da); are commonly used in ME provers and are the
default measures in PTTP and SETHEO respectively. As a bound on the entire
proof tree, the use of Di,r ensures that a minimal-length proof (in terms of
extensions and reductions) is found. Daj;¢ was also used in the first implemen-
tation of ME [14]. At any point in a proof search one can tell the current depth
with respect to the Da);y measure by counting the number of A-literals in the
current chain, whereas for the D;,¢ measure it is the total number of extensions
and reductions needed to derive the current chain. (Of course, one does not
include subsearches removed by backtracking.) Note that the depth of a proof
tree corresponds to the number of A-literals in the longest chain of the proof;
this depth is the minimal D 4);; depth for which this proof tree can be found.

For the example deduction at the end of the last section, when no lemma is
used the Di,¢ is 7 and Dy is 3. By this we mean that the proof can be found
in the depth stated, and that a depth bound less than that stated would not
permit the proof shown to be found. This can be seen from the given derivation
or by consulting the appropriate proof tree. Note that for the proof tree the
D;nr measure is determined by counting the nodes in the proof tree (excluding
the root), and the Daj;q is determined by counting the depth of the proof tree
with the root having depth 0. For the deduction using the lemma the Dj,r is
5 and the Dy is 3. For the latter depth we assume that the left branch is
searched first; if the right branch were searched first then the Daji; is 2.

When D, is employed, depth is calculated as for Djy¢ regarding extension,
but a successful reduction operation results in “rolling back” the depth to that
depth in force when the A-literal of the reduction was introduced to the chain
as a B-literal. The measure was discovered by accident, and has no clear in-
tuition for its definition; we simply noted it worked well in many cases. One
observation regarding its success is that it charges for extension by unit clauses,
e.g. lemmas, (whereas D¢ has no charge) yet gives added resources to explore
the consequences of a reduction as does the Dj);; measure, indeed often more

resources than Dy gives. For the example deductions of the last section the
D.on is 4 for both lemma use and no lemma use. None of these measures is uni-
formly superior to the others nor does it appear that simple syntactic criteria
can be used to determine which measure is more appropriate (see [2]).

Dyeight is used in conjunction with any of these depth measures rather than
as a replacement for them. Input clauses are annotated with an integral weight
that contributes to the weight of a chain when the clause is used. The weight
of a chain is the sum of the weight of all clauses whose literals “appear” in the
chain. When Dyeignt is used it is incremented in an iterative manner just as
other depth bounds are incremented in an iterative deepening search.

4 Minimum Value Theorem

We first consider a problem where the lemmas are very effective. The theorem
we consider is the Minimum Value Theorem (MinVT). This is also known in
the ATP literature as AMS8 [27].

Theorem: (MinVT) A continuous function in a real closed interval [a,b]
attains its minimum in the interval.

In Table 2 we give a readable rendition of the axioms for MinVT. The num-
bers on the left refer to the clause numbers for these axioms as they are given
in [27] and in the order submitted to METEOR.

In Figure 3 we give the axioms as submitted to METEOR. The clause num-
bering relates the input clause to its counterpart in Table 2. The “nocontra”
suppresses the contrapositive of the dichotomy axiom (axiom 1) from being gen-
erated as it is clearly not needed and is a very costly axiom to include, as is the
dichotomy axiom itself. Line 16 is for naming Skolem functions, for which we
do not permit self nesting. The semantics of the problem made it likely that no
function needed to be so nested.

In Figure 4 and Figure 5 we present in proof tree format the proof found by
METEOR. The proof tree is given in a coded form with the lemmas labeled but
unwound so that the full structure of the tree is apparent.

Figure 4 (on the left) shows the proof actually discovered by METEOR. It
is a proof involving seven input clauses and four lemmas. Using depth measure
Dinr, this would be a proof of depth 10. Actually, it took Di,s depth 12 (it
can be done in Dj,¢ depth 11) to discover the proof because some lemmas used
in the proof required that depth to be discovered. Figures 4 (on the right)
and 5 present the full proof, with each inference labeled by a lemma label or
by a clause number. The dotted arrows at the bottom of the proof tree to
the right in Figure 4 link to the appropriate subtrees in Figure 5. The node
labels beginning with “L” refer to lemmas, with the numbering determined by
the proof recovery procedure (not the order of lemma generation); other node
labels refer to the input clauses by number.

the azioms for total order

0. r<zx
1. r<yVy<lz
2 r<yANy<z=>zx<z

Roughly, © =y = f(x) = f(y) because of the symmetry of the antecedent

3. z<yAy<z= f(z) < fy)
l is a minimum point in [a,l]
4. a<l
5. I<b
6. a<z<l=f{) < f(z)

Any point greater than | has a smaller point with smaller f-value.

7-9. a<z<bAlI<z= a<q() <z A flgl®)) < f(z)

For all z, h(x) is the smallest point in [a,b] s.t. f(h(z)) < f(x).

10-13. a<bAha<y<b=[a<hx)<bA f(h(z)) < flx) A (fly)

(z) = h(z) < y)]

<f
For all x, there erists a point k(z) in [a,b] such that f(k(z)) < f(z)
This is the negation of the theorem conclusion

14,15,17. a<z<b= a <k(z) <b A f(k(z)) < f(z)

Table 2: Axioms for Minimum Value Theorem (MinVT)

We made the point previously that lemmas are often discovered in earlier,
“failed” parts of the search tree. That is very evident here from the proof trees.
For example, some top lemmas are used only once in the proof and so, to be
invoked as lemmas, they must have been established before the proof was found.
(In particular, note lemmas L2, L3, and L4, labeled on the trees in Figure 4 with
derivations continuing in Figure 5.) Lemmas used in the proof of these lemmas
were clearly discovered by the time the more complex lemmas were obtained.
Note that this does not mean that they were discovered earlier in the same
proof tree iteration because lemmas are retained through successive iterations.
Thus information from “later” in the tree can be used on early branches of the
succeeding iterate. In general, iterative deepening gives a breadth-first form of
search within which the search is depth-first.

The effectiveness of lemmas is dramatically made by noting that the depth of
the proof given here, when Di,¢ (the depth measure used here) is employed with
no use of lemmas, is over 600! Such search depth is well beyond the capability
of any implementation of ME, or any other prover we know.

It should be pointed out that resolution does exactly this kind of compres-
sion, and that resolvents are lemmas also, in the sense of retaining intermediate
results. Indeed, we noted that unit lemmas are resolvents from tree portions
where reduction is not used. The difference, as noted before, is that our lemmas

0. p(X,x)
nocontra
1. pX,v) | p(Y,X)
2. -p&, NI -p,2) | pX,2)
3. -p(,Y) | -p(¥,X) | p(£(X),£(¥))
4. p(a,l)
5. p(1,b)
6. -p(a,X) | -p(X,1) | p(£(1),£(X))
7. -p(a,X) | -pX,b) | p(a,qX)) | p(X,1)
8. -p(a,X) | -pX,b) | -p(£(X),£(q(X))) | p(X,1)
9. -p(a,X) | -p(X,b) | p(q(X),X) | p(X,1)
10. -p(a,X) | -p(X,b) | p(a,h(X))
11. -p(a,X) | -p(X,b) | p(h(X),b)
12. -p(a,X) | -p(X,b) | p(£(h(X)),f(X))
13. -p(a,X) | -p(X,b) | -p(a,Y) | -p(Y,b) | -p(£(V),£(X)) | p(h(X),Y)
14. -p(a,X) | -pX,b) | p(a,k(X))
15. -p(a,X) | -p(X,b) | p(k(X),b)
16. skolem(h(1),q(1),k(1),£(1))
17. -p(£(X) , £ k(X)) |-p(a,X) |-p(X,b)

Figure 3: Input clauses for Minimum Value Theorem (MinVT)

are optional regarding completeness. That does not mean they are optional
regarding realizing an actual proof, as this case demonstrates. However, not
being a priori concerned about having to retain almost every nonredundant
intermediate result we do achieve much more trimming. In the first proof we
obtained of MinVT, taking 171 secs., we created and retained just 593 lemmas
while making about 393,000 successful inferences. The only constraint we had
(besides the unit lemma constraint, which is universal for us but still a con-
straint) was a term-length stipulation of 10 on the lemmas and a disallowance
of iterative nesting of any function. For speed considerations the term-length
check is done only on the term replacing a variable at a substitution occurrence;
thus the literal may contain many more constant and function letters than the
bound indicates. This check can be done on literals in new chains as well as
on lemmas, but here was applied only to lemmas. Note, by the way, that the
nesting restriction applied here is almost totally safe for a first run as all func-
tions but f are Skolem functions, for which one should never gain by nesting,
and nesting f makes no heuristic sense given the problem nature. The sensi-
tivity to term length is quite modest; if term-length is not limited at all, the
same number of lemmas are retained. For this problem, the limit on nesting
of the same function symbol is necessary in order to constrain the number of
lemmas generated. (That is not always the case, however.) Thus we illustrate
the point that we can trade off more search with input clauses for less retention

10

g0 (17) goal (17)

2 L4 2
A L,
L1 i 1
| ; N |
P AL A
U3 L2 L3 L 4 5 L7 4
N '
L<\4 ¢1° L/Q\LG
| PN
10 5 2 15
™ /T AN
5 2 L5 Le 4 s
PN :
L f Lf .

Figure 4: top-level proof of AM8 and partial unrolling of proof

of intermediate results than many strategies of resolution employ.

5 Wang Challenge Problem

It is the usual case that we generate too many lemmas and seek ways of trimming
lemmas without removing those helpful to the proof. Therefore, it is an inter-
esting situation to encounter a problem where too few lemmas are produced.
This situation arose when we pursued a challenge problem set that had not
been fully proven by an automated theorem prover, to our knowledge. In 1965,
Hao Wang put forth several challenge problems for automated theorem provers,
problems beyond the capability of theorem provers at that time [26]. Moreover,
they proved difficult for automated provers for some time. The problem set we
consider were labeled ExQ1, ExQ2, and ExQ3 by Wang, and were treated in
the section “Examples from Quantification Theory”. Although Wang suggests
that for a more intuitive understanding of these examples, we should think of
F' as the membership relation e, this suggestion did not achieve its purpose for
us.

We state the three problems, which are formulas to be refuted in Table 3,
followed, in Figure 6, by one set of axioms used by METEOR. In Figure 6,
r(x,y) denotes x = y and b replaces constant n of the axioms (the latter for
purely historical reasons).

Problem ExQ1 has been solved by a number of systems, we suspect, because
it is also known as “Wos 31”7, in [28]. As such it has been solved by OTTER [20],
but because this is one of numerous problems that circulate under labels as
meaningful as “Wos 317, it is not easily determined what provers have solved

11

LS5 L6

v
s 8

4 5 1 L12 L 10
/ I \ L12 L14 L3

3
/{ /K A / \ A
L20 L18 17 L1
L1 Lo L1 Lo i}e L5 - ' 'l
13
L1 L9 L22L23 L24 L13LuLe L6 L2

-5 A /\ N

4 5
L13 L1 L12 L18 L12 L25

Figure 5: proof of AM8, lemmas unrolled

ExQ1: The conjunction of the following formulas is unsatisfiable.
m#mn

n#k

k#m

y=mV [Fym=(32)(z #mAz#yA Fyz A Fzy)]
y=nV[-Fyn=(32)(z #nAz#yA\Fyz A Fzy)]
. y=kVI[Fyk=(y=mVy=n)

ExQ2: Replace (2) and (3) above by

1. (n=kVk=m)

2. y=jVvV({Fyj=y=k)

ExQ3: Remove (1) from ExQ2.

AN

Table 3: Axioms for Ex(Q problems

this first problem. OTTER has not solved ExQ2 or ExQ3 although ITP, in some
sense an ancestor of OTTER, did solve ExQ2.

We have solved it with some preconditioning on the manner of presentation
of the problem; we broke it into cases so as to force generation of lemmas.
As previously mentioned, the semantic hyper-linking theorem prover of Chu
and Plaisted subsequently has provided a fully automated proof, the first to
our knowledge [11]. (This problem is particularly well suited for their prover
because it is highly non-Horn, like a logic puzzle. That is why it turns out to be
poorly structured for us; the high number of reductions blocks the production
of unit lemmas.)

A proof of Wos31 (ExQ1) was obtained using D) without breaking the
theorem into cases; using Dyyeight reduces the time to one-third of that when no
weighting is employed. Note that our Ex(Q3 solution contains the ExQ1 case,
in terms of the inequalities for the three basic constants. As for ExQ1 we again
use Dy for case 6 of ExQ3; for all other cases we use Doy . It is interesting

12

0 -r(m,b) 13 -p(Y,k),r(Y,k),r(¥,m),r(Y,b)
1 r(b,k) 14 -r(Y,m),p(Y,k),r(Y,k)
2 r(Y,j),-r(Y,k),p(Y,j) 15 -r(Y,b),p(Y,k),r(Y¥,k)
3 r(Y,j),xr(Y,k),-p(Y,]) 16 r(X,X)

4 -p(Y,m),-r(£(Y),m),r(Y,m) 17 -r(X,Y),r(Y,X)

5 -p(Y,m),-r(£(Y),Y),r(Y,m) 18 -r(X,Y),-r(Y,Z),r(X,2)
6 -p(Y,m),p(Y,£(Y)),r(Y,m) 19 -r(X,Y),-p(X,2),p(Y,2Z)
7 -p(Y,m),p(£(Y),Y),r(Y,m) 20 -r(X,Y),-p(Z,X),p(Z,Y)
8 -p(Y,V),-p(V,Y),r(Y,m),p(Y,m),r(V,m),r(V,Y) 21 -r(X,Y),r(£(X),f(V))

9 -r(g(Y),b),r(Y,b),p(Y,b) 22 -r(X,Y),r(g(X),g(Y))
10 -r(g(¥),Y),r(¥,b),p(¥,b) 23 lex(b,m,k,j,f(X),g(X))
11 p(Y,g(¥)),r(Y,b),p(Y,b) 24 skolem(£(1),g(1))

12 p(g(¥),¥),r(¥,b),p(¥,b) 25 r(Y,b),-p(¥,b),r(V,b),

r(V,Y),-p(Y,V),-p(V,Y)

Figure 6: Input clauses for ExQ2, case 1

that all other cases are solved using D,,1 and not easily solved (in some cases)
using DAlit-

When we first ran ExQ2, very few lemmas were generated and no proof was
obtained. Indeed, an overnight run (14 hours) yielded only 6 lemmas. In con-
trast, for ExQ1 87 lemmas were created in one successful run. Our experience
with the success of lemmas made us consider immediately how more lemmas
could be generated. Because unit lemma generation is inhibited by reductions
we decided to introduce unit clauses to allow more frequent proof branch termi-
nation by unit extension rather than reduction. Although we did not understand
the proof of the theorem (and still don’t) it did seem apparent that ExQ1 and
ExQ2 were in effect dealing with cases of equality and inequality of three con-
stants; k,m,n. We broke up the problem into the cases listed in Table 4 and
were able to prove each theorem. Note that the case definition for ExQ2 follows
immediately from the axioms added to define ExQ2. Statistics for these cases
are provided in Table 4.

ExQ2 cases problem depth time # inferences # lemmas

PP Ee— measure (secs)
ey h_ ExQ1 Dant 389 670,707 19
ExQ3 cases ExQ2 (case 1) DyonDyeight 4,562 14,462,880 47
—ExQ2 (case 2) Diyon 4.6 12,683 26
case I m#Zn,n=Fkk#Zmm#j p o3 (case 1) Dion 108 170,185 67
case 2. m#mn,n=kk#mm=j p o3 (case2) D 14 19,916 104
case 3 m#Zn,n=kk=mm#j p o3 (case3) Doy 0.14 240 12
cased m#En,n=kk=mm=j p o3 (cased) Doy 0.19 275 15
case 5 m#En,n#kk=m ExQ3 (case 5) Dyon 9 12,741 26
case 6 m En,n £k k#m ExQ3 (case 6) D 408 683,226 49

Table 4: cases and statistics for ExQ1, ExQ2, and ExQ3

13

As reported in Table 4 for ExQ2(case 1), we used Diyeight , although the same
result was obtained by Do alone in twice the time (9784 sec.) and double the
inference total (29,886,276 inferences). The weights are the entries seen at the
end of each input clause. It is interesting to view a case of use of weights; these
weights were entered once prior to any weighted run, using an “algorithm” that
accounts for clause length primarily, but with high penalty for known problem
axioms such as the equality axioms. There is a small adjustment in general for
the number of free variables in a clause. The major gain in using the weights
here is the control of the equality axioms.

We comment on other aspects of the METEOR listing of the axiom set
in Figure 6. The lex predicate is used to order constant symbols for use in
demodulation, and the skolem predicate lists the Skolem functions as mentioned
in the previous section. Neither restriction was used in the runs reported in
this section; demodulation was not used at all in these reported runs. (We
obtained so few lemmas that use of demodulation was not a useful option, but
the problem was initially specified so that demodulation could be used.) The
input axioms are seen to differ in small ways from the natural translation of the
Wang problem specification. Besides the replacement of b for n, there is the
appearance everywhere of m = k instead of £ = m, for example. We had done
our experiments with the axiom set obtained from [27] before tracing the origin
of the problem in preparation for this paper. We have chosen to accept the
variance from the original problem statement since [27] has become a standard
source for problems, including this problem set.

We now feel that we have discovered a new technique for ME, that of break-
ing problems into cases to generate useful lemmas. It may even pay to do this
when many lemmas are generated, by severely limiting the natural lemmas be-
ing produced if they do not yield a proof, and trying to generate new lemmas by
the case method. It is clear that this is not (yet) an automatable technique, as
other tries at this have not been useful. That is, we tried to see if the discovery
of a proof for ExQ1 could be speeded up by introduction of cases. However,
all runs of ExQ1 using added cases resulted in increased time to proof. But we
have seen that the technique of forcing lemma creation is fruitful. How widely
applicable the idea is awaits further experience.

6 Bledsoe Challenge Problem

The third problem we consider is actually a collection of variants on a problem
investigated by Bledsoe starting in the early 1970’s. Using a natural deduction
style theorem prover with some special heuristics for limit theorems, Bledsoe
and Boyer [7] proved that the sum of two continuous functions at a limit point
is the limit of the sums at that point. They assigned the label LIM+ to this
problem. The theorem has since been proven on the STR+4VE prover of Hines
and Bledsoe [8, 15], a general theorem prover with some special devices for

14

handling inequalities on the real line. Bledsoe recognized the difficulty of the
theorem for the uniform provers and issued a challenge set of problems based
on the LIM+ problem [6]. There are five different first-order axiom sets desig-
nated as the challenge set; two make explicit use of the equality predicate with
one formulation requiring use of paramodulation or another rule that builds-in
equality.

Using METEOR we have been able to prove the first three formulations of
the challenge problem. The lack of a full built-in equality mechanism (no mech-
anism such as paramodulation) precludes an attempt on the fifth formulation of
the problem. The fourth formulation, using equality without any strong equality
restriction or simplification mechanism stronger than the unadorned demodu-
lation mechanism for lemmas that we do have, is too much for METEOR at
this point. The first three formulations use the single predicate < (also used in
the MinVT theorem discussed in Section 4). Several uniform provers have now
obtained the third formulation of the challenge problem but METEOR was the
first to achieve success at this level to our knowledge. (See Digricoli [13, 12] re-
garding proofs of the fourth and fifth formulations done in a partially interactive
mode.)

Our purpose here is to report on the experience of METEOR with lemma
use on this problem set. The third formulation is the hardest problem where
METEOR has succeeded, where by “hardest” we mean that the strongest set of
restrictions we have ever used were needed to obtain a proof. One proof requires
over 20 hours on a SUN SparcStation 2; shorter proofs required some insight as
to the proof so do not count as legitimate datapoints regarding the capability
of METEOR as a fully automated theorem prover. Proof attempts using proof
knowledge are used to test various constraints in shorter time periods. We will
make clear which experiments use proof insight when such results are presented.

In Figure 7 we give the clauses used in the three formulations, in roughly
the order that METEOR took them as input (read from left-to-right and top-to-
bottom). The clause numbers are those of the original presentation by Bledsoe
in [6]. METEOR normally re-orders clauses by number of literals (with pref-
erence for unit clauses), with attention to degree of generality also considered.
The item \n at the end of each clause assigns a clause weight n, as discussed
later.

We do not give the original non-clausal formulation of the clause set because
the meaning of most clauses is self-evident, once the constants are interpreted.
The predicate It denotes <, the function ab denotes absolute value, d1 and and
d2 are Skolem functions for delta regions (see below), ha is one-half, pl is +, ng
is negative, xs is a Skolem function for exception points in the delta regions,
and min is, of course, minimum. Clauses 3 and 4 give the continuity condition
for function f and g respectively. For example, clause 3 is a direct translation
of Equation 1

Ve>0,30>0st.e>0A |z—a|<d =] f(z)— fla)]| <e (1)

15

%clause 5
-1t (e0,0)\1

% clause 12
1t(X,0),-1t(ha(X),0)\3

% clauses 3,4

% clause 6
1t (ab(pl(xs(D),ng(a))),D),1t(D,0)\2

% clause 9.1

1t (min(X,Y),X)\6

% clause 9.2
—1t(X,Y),1t(X,min(X,Y))\8

% clause 9.11
-1t(Z,min(X,Y)),1t(Z,X)\8

% clause 10.3
1t(X,0),1t(Y,0),-1t(min(X,Y),0)\6

% clause 14
16(X,Y),1t(Y,X)\12

% clause 7.1

% clause 7.2

% clauses 1,2
1t(E,0),-1t(d1(E),0)\3
1t(E,0),-1t(d2(E),0)\3

% clause 8

1t (ab(pl(X,Y)),pl(ab(X),ab(¥Y)))\2

% clause 8.1

-1t (pl(ab(X),ab(Y¥)),Z), 1lt(ab(pl(X,Y)),Z)\2

1t(E,0),-1t(ab(pl(Z,ng(a))),d1(E)), 1lt(ab(pl(£(Z),ng(£f(a)))),E)\8
1t(E,0),-1t(ab(pl(Z,ng(a))),d2(E)), 1lt(ab(pl(g(Z),ngl(g(a)))),E)\8

% clause 10.1

1t (min(X,Y),Y)\6

% clause 10.2
-1t(Y,X),1t(Y,min(X,Y))\8

% clause 10.11
-1t(Z,min(X,Y)),1t(Z,Y)\8

% clause 11.3
-1t(X,ha(Z)), -1t(Y,ha(Z)), 1t(pl(X,Y),Z)\6

% clause 15
-1t(X,Y),-1t(Y,Z),1t(X,Z)\12

-1t (ab(pl(pl(f(xs(D)),ng(f(a))),pl(g(xs(D)),ngl(g(a))))),e0), 1t(D,0)\1

-1t (pl(ab(pl(f(xs(D)),ng(f(a)))),ab(pl(g(xs(D)),ng(g(a))))),e0), 1t(D,0)\1

Figure 7: clauses for Bledsoe challenge problems

The goal clauses, 7.1 and 7.2, give the negation of the theorem we assert (in
conjunction with clause 6). For example, clause 7.1 states

6>0 = | [f(Xs5) = fla)] + [9(Xs —g(a)] | > eo (2)

Clause 7.1 is a more difficult goal to achieve because of the need to use the
triangle inequality. However, that change and the related need for clause 8.1,
are not significant changes. Formulation 2 is not much harder than formulation
1. The introduction of the dichotomy axiom (axiom 14) and especially the tran-
sitivity axiom (axiom 15) along with axiom changes for min makes formulation

3 a considerably harder problem.

We list the three formulations by clause set, but will here only study the third
formulation. The first two problem variations METEOR. could handle relatively

16

straightforwardly. The clauses for all three formulations are:

formulation 1 clauses 1, 2, 3, 4, 5, 6, 7.2, 9.11, 10.11, 10.3, 11.3, 12. The goal
is clause 7.2.

formulation 2 clauses 1, 2, 3, 4, 5, 6, 7.1, 8.1, 9.11, 10.11, 10.3, 11.3, 12. The
goal is clause 7.1.

formulation 3 clauses 1, 2, 3, 4, 5, 6, 7.1, 8, 9.1, 9.2, 10.1, 10.2, 11.3, 12, 14,
15. The goal is clause 7.1.

We include some data on runs for the first two formulations with little dis-
cussion; see Table 5. In the lemmaizing run, only ground lemmas are stored and
only ground subgoals are extended by lemmas. For reasons not important here
these combined restrictions are labeled “ground generalizations only”.

thm search parameters
time (secs) and number of inferences
Dt Daeigns ' lemmaizing*
one | 1222.7 2,854,399 | 3.94 14,682 26.37 36,232
two | 3859.8 12,294,133 | 9.76 43,980 | 10242.9 11,682,410

fusing Dajs and Diyeight
tground generalizations only

Table 5: time and inferences for formulations one and two

We also give the proof tree for the second and third formulations in Fig-
ure 8 with the proof of the second formulation on the left. The dotted boxes
surrounding subtrees denote lemma occurrences as discussed below.

6.1 The Third Formulation

We now list the proof devices and restrictions used to tackle the third formula-
tion. Many have been used here only, so our experience with them is limited.
Others are more common, and we can comment on our more general experience
with them.

1. We use a combination of depth measures, Daji; and Dyeigh. This has been
tried often, usually obtaining considerably improved performance. This is
one of the few times that the proof has not been obtained without this
device. (This is an oversimplification in that a proof has been obtained
using a combination of Dyon and Dyeighy but only under optimal limits
on other parameters. It was considerably more time-consuming than with
D it and Dyeight, 50 more general attempts were not tried.)

2. Only ground lemmas are stored, and these are only used when no instan-
tiation of the calling goal occurs. This trims the branching factor to one
at this node.

17

81 i 10377771 15 [I

. R e N
- Lo T y b

| i | Lo b L
5 5 6 91 101 ! 5

,,,,,, | I T e | . :

] 103 v 103 PTTas T TS 3 R3 23

P i AN

I I A

| R

RS AR ° s w02 | 5 102

P P
WA W
b |
Lo
Figure 8: proof trees for second and third formulations

3. Lemma literals are limited in number of symbols allowed.

4. The number of occurrences of any specific input clause allowed in a proof
is controlled. METEOR is very sensitive to this parameter, so we could
not set it by uninformed guess and realize a proof. For our no-proof-
knowledge proofs METEOR increments the upper bound on the clause
occurrence count as a function of current depth according to a ratio set
by the user. The ratio needed is moderately insensitive to user setting in
terms of obtaining a proof at all, but the time needed to realize the proof
is strongly sensitive to that ratio.

5. Literals containing terms of certain forms are not retained. The exclusions
range from obvious redundancies to possibly strong exclusions. We have
results for several combinations of exclusions.

6. Reduction is restricted to B-literals whose source is the transitivity axiom.
This restriction is more natural than it sounds, for reasons stated below.

7. The goal clause is reordered from the usual rule of ordering. There are

only two literals so there is a binary choice, but normally we would expand
the more constrained literal first. This is a significant deviation, because
we rarely had to have to rotate through the literals of the goal clause, yet
in this case no proof has been obtained using the usual literal as the literal
first expanded.

18

We now expand on some of the above.

The depth measure Dyeight utilizes the clause weight that appears appended
at the end of each input clause. The depth measure functions as does Dajj
except the clause weight is used to increment the count instead of the unit
increase used by Dajs. This depth measure may be used in conjunction with
each of the other measures; the proof development terminates appropriately
when any depth count is exceeded, so one gets the conjunction of the depth
criteria.

The weights used in the clauses were guessed once and not changed, following
a prescribed pattern. Some adjustment from a strict formula occurred. For
example, the min axioms constitute one-third of the axioms, but are not likely
to constitute one-third of the clauses used in a proof, so are weighted higher.
The initial “guess” did not use proof knowledge, so is considered a non-sensitive
constraint.

Controlling the number of occurrences of each input clause was necessary for
the any proof to succeed. In actuality it is control of dichotomy and transitivity
that is crucial; experiments show that we can make quite safe guesses about
upper bounds for all other axioms if the transitivity and dichotomy axioms
are limited to the optimal count. We have solved the problem with iterative
incrementing on all clauses, but this is effectively equivalent to binding only
dichotomy and transitivity (clauses 14 and 15) as shown in Line 6 of Table 7
which indicates limits on clause use of optimal plus twenty except for dichotomy
and transitivity. When iterative deepening on clause limits is employed the user
still must pick a ratio of clause-limit increment to depth bound increment, but
this is less sensitive than guessing the clause count. Data on Line 7 of Table 7
increases the count by one for every two levels of increase in the D4y count.

Literals can be excluded from retention when certain terms are created upon
unification. This is an action at the chain level, not just at the lemma level.
Thus this can effect completeness “in the small”. This avenue is taken because
of the large number of proof branches explored that seem to expand from along
very questionable routes, dealing with terms that are either unlikely to occur in
the proof or are redundant with other terms. The terms excluded range from
clearly safe for exclusion to perhaps quite risky. We stress that we do obtain
proofs of the theorem excluding only the very safe exclusions, but performance is
definitely enhanced with more risky exclusions. In Table 6 we list the exclusions
used.

1. d1(d2(X)) 2. d2(d1(X)) 3. d1(d1(X)) 4. d2(d2(X))

5. d1(pl(X,Y)) 6. d2(pl(X,Y)) 7. min(min(X,Y),Z) 8. min(X,min(Y,Z))
9. di(ab(X)) 10. d2(ab(X)) 11. ha(pl(X,Y)) 12. min(X,ab(Y))
13. min(ab(X),Y) 14. min(pl(X,Y),Z) 15. min(X,pl(Y,Z)) 16. min(X,X)

17. ha(ab(X)) 18. min(0,X) 19. min(X,0)

Table 6: terms excluded in Bledsoe challenge problems

19

We used four classes of risk in the exclusion heuristic: very safe, safe, some
risk, more risk. In the very safe category are the nested Skolem functions, terms
such as d1(d2(X)). Also included is the term min(X,X). Still considered
safe is the term ha(ab(X)), because ab(ha(X)) is not excluded. Likewise for
ha(pl(X,Y)), because pl(ha(X), ha(Y")) is still included. That is slightly riskier
perhaps because the symbol count has increased and there is a limit on the
total number of symbols allowed per literal. (The limit used was either 11 or
15, about equally used, but 20 symbols still allowed a proof.) Others in Table 6
are riskier; we discuss this further in the next paragraph. Line 3 of Table 7 gives
data for a run using very safe exclusions only. (The phrase “ex. 1-4, 16” means
that terms 1-4 and 16 are excluded terms for that run.) Lines 4 and 5 provide
data using other subsets of the terms in Table 6. The column labeled att.infs
gives attempted inferences, which are potential inferences identified prior to the
unification attempt.

run statistics
description time infs. att.infs. # of lem.infs.
of run (sec) (x10%) (x10%) lemmas (x10%)
1. | optimal (termsize=15) 27858 23,146 66,485 115 590
2. optimal (termsize=20) 23095 23,052 66,346 153 601
3.t very safe (ex. 1-4,16) 66609 65,871 196,968 186 1,136
4.4 ex. 1-4,7-10,12,14,16 49206 47,861 143,409 133 1,037
5.1 ex. 1-4,9,10,16 64368 61,499 186,207 180 1,124
6. | limits 4+ 20 (not 14,15) 75066 75,243 198,660 131 1,291
7. iter. deep.f 152077 129,419 355,250 181 2,443

ttermsize limit of 15 symbols
{Sparc ELC, increase all limits by 1 every other stage

Table 7: altering limits on extensions for third Bledsoe problem

We now briefly consider some of the riskier exclusions we considered. Ex-
cluding min(min(X,Y), Z) and similar terms may seem very risky, but we no-
ticed a proliferation of such terms and it led to asking if they were needed.
Note that terms of this type could still arise through instantiation of variables.
Here exclusion means that unification cannot instantiate a variable with an ex-
cluded term. To illustrate this, the goal —lt(min(e0,e0), min(X,e0)) can be
refuted with the exclusion of all terms in Table 6. In obtaining the proof the
term min(min(e0, e0),e0) is generated when X in the goal is instantiated to
min(e0,e0). Thus, an excluded term’s appearance is not forbidden, just the
use of a term that embeds the excluded term as a substitution instance. The
reader can see this by first extending with clause 9.2 followed by extension with
clause 9.1. Even though completeness is endangered this is a reasonable action
to take and this type of step may be needed to get very difficult theorems. We
are adverse to this not because it endangers completeness if the exclusions are
risky, but because we have been developing the thesis that basic ME should be

20

hidden and the user should play with the lemmas. We give in Table 8 data on
runs with exclusions, and note again that the exclusions are not needed for the
proof.

run statistics
description time infs. att.infs. # of lem.infs. % succ.
of run (sec) (x10%) (x10%) lemmas (x103) lem. infs
1 all limits 23324 23,144 66,994 65 590 33
2 Dyoul, all limits 38663 37,928 116,069 71 1,081 33
3. ex. 1-17 38144 38,450 116,421 71 987 20
4. ex. 1-10,12-16,18 23533 23,709 68,196 65 590 33
5 ex. 1-8,18 43228 38,601 110,147 75 664 22
6 ex. 1-4,7,8,16-18 42101 37,633 107,665 75 659 22
7. ex. min terms 26529 31,290 89,898 65 661 31
8.1 | ex. 1-4,7-10,12,14,16 49206 47,861 143,409 133 1,037 21
9.4 ex. 1-4,9,10,16 64368 61,499 186,207 180 1,124 12
10.1 ex. 1-4,16 66609 65,871 196,968 186 1,136 12
14.1 trm.size=15 27858 23,146 66,485 115 590 48
15.1 trm.size=20 23095 23,052 66,346 153 601 48

tterm-size limit = 15
totherwise as in line 1

Table 8: performance characteristics for the third formulation

That reductions are restricted to B-literals from the transitivity axiom actu-
ally came from noting that the simpler proofs for formulations 1 and 2 did not
use reductions. That puts this in the category of “cheating” by our standards.
Even though it was not based on knowing the proof of formulation three, it is
not likely in the real world that simpler versions of the problem are around to
break in our heuristics. Even though that is how we arrived at this guess, there
is reason to guess that way again in similar situations. That is, it is a guess
we would make in other similar situations. The reason is that we have seen
many proofs having some non-Horn clauses where nevertheless reduction is not
needed. So, after our initial tries that tells us the problem is hard, we would
first try without reduction. Then we would try as here, allowing it on transi-
tivity, because they often do use it. This is the first time that a problem has
strongly benefited from this restriction; we have simply made the observation
about when reduction occurs in other problems. More experience is needed to
tell whether the pattern we just have suggested really holds.

The interchange of literal order within the goal is the hardest to justify on
uniform grounds. It works this way and not the other way. Usually, starting
with the more instantiated literal first is the winning strategy. The normal
ordering works in the first two formulations; the proof can be obtained without
lemma use starting with the more instantiated literal. The proof is impossible
to find without lemmas when the literal [¢(D,0) is expanded first. The situation
reverses even for these easier formulations when lemmas are tried. The reason

21

is clear from the proof tree. In Figure 8 we see that if one follows the second
literal (the right branch) then the key lemma, in the dotted line box, is reached
in D a4 depth 8 while pursuit down the other branch requires depth 13. (Recall
that Dy is proof tree depth, so the reader can check this directly by counting
branch lengths in the proof trees of Figure 8).

We note that the variable D in the goal is instantiated by the key lemma
as follows: —lt(min(d1l(ha(e0)),d2(ha(E0))),0). This instantiation gives the
delta found in the typical proof found in analysis texts: for a given epsilon (eg)
the corresponding delta is the minimum of the deltas (4; and d2) corresponding
to half of the given epsilon. The min axioms are necessary for discovering
this instantiation. However (and somewhat surprisingly), if the min axioms
are removed from the input clause set a proof is obtained in less than 600
seconds with no limits on clause use. However, in this case “It(d1(ha(e0)),0) or
1t(d2(ha(e0)),0)” is deduced, giving less information than is provided when the
min axioms are included, but in significantly less time.

7 Summary

Plaisted [21] has shown that ME with unit lemmas and caching is one of the few
goal-sensitive procedures that has a polynomial search time within the propo-
sitional Horn clause setting in a suitable sense. The result assumes that ME is
used with iterative deepening search, the normal mode for METEOR. Elsewhere
(see Astrachan and Stickel [5]) data is given on use of unit lemmas and caching
in the Horn clause domain. Here we have presented examples in the non-Horn
setting (where caching is not implemented nor easily designed) but where we
have demonstrated that unit lemmas are still very effective. We have considered
examples illustrating very different situations: the nearly ideal, the insufficient
lemma supply situation (where case analysis provided the needed lemmas), and
a barely adequate lemma supply (where only one deep lemma is used and not
even created until the correct proof is under development). This wide scope
of situations we believe demonstrates the usefulness of unit lemma addition to
the Model Elimination procedure. We hope to achieve enough knowledge about
lemma, use that henceforth we will view the basic ME procedure as a black box
and the collection of lemmas as the data the user views and manipulates.

8 Appendix

We give a more formal definition of the Model Elimination(ME) procedure as
used by METEOR. A fuller treatment of the ME procedure(s) is given in [19].
A chain is a sequence of literals, each literal an A-literal or a B-literal. (That
is, a chain is an ordered clause with two types of literals.)
An input chain is a chain of B-literals, obtained by placing an ordering

22

on a clause from a conjunctive normal form (CNF) formula to be tested for
unsatisfiability. Clauses from the CNF formula are called input clauses. A
input clause of n literals from the CNF formula must be represented by at least
n chains, where each literal of the input clause is leftmost in at least one input
chain.

The empty chain is denoted by O.

If I is the leftmost literal in chain C' we write (C' — {l}) to represent the
chain C' with the leftmost occurrence of [removed. There will be no occasion to
remove a literal other than the leftmost literal, or a sequence of literals leftmost.
In the latter case we regard the literals as being removed one at a time as the
literal becomes leftmost in an intermediate chain.

A chain is preadmissible iff

1. complementary literals are separated by an A-literal;
2. no B-literal is to the left of an identical A-literal;
3. no A-literal is identical or complementary to another A-literal.

A chain is admissible iff it is preadmissible and the leftmost literal is a B-
literal. In practice we will sometimes not enforce condition (2); that can be a
user option.

Let C be an admissible chain and let C5 be a variable-disjoint input chain.
If there exists a most-general-unifier(mgu) o of the leftmost literal I; of C; and
the complement of the leftmost literal Iy of Cy, then the eztension operation
extends Cy by C3 to form chain C5 by promoting the leftmost literal of Cyo
to an A-literal and placing (Cs — {l2})o to the left, the literals of (Cy — {l2})o
arranged in any order the user chooses. All literals in Cso inherit the type
of their parent literal in €y and Cs with the noted exception of the promoted
A-literal. If the chain that results is not preadmissible then the extension is
not defined. If the chain that results is a preadmissible chain with an A-literal
leftmost (i.e., nonadmissible) then the leftmost A-literals are removed back to
the leftmost B-literal, which yields an admissible chain.

Let C' be an admissible chain. If there exists a mgu o of the leftmost literal [
of C and an A-literal of C, then the reduction operation yields chain (C' —{l})o.
If the chain that results is not preadmissible then the reduction operation is not
defined. If the chain that results is a nonadmissible preadmissible chain then
the A-literals to the left of the leftmost B-literal are removed.

An ME derivation is a sequence of chains composed of an input chain as
first (goal) chain, followed by derived chains, each either an extension of the
preceding chain by some input chain or a reduction of the preceding chain.

An ME refutation is an ME deduction of the empty chain.

Lemmas, an optional property of ME, are created when A-literals are re-
moved in the transformation from preadmissible to admissible chain. A lemma
is an informal label for either a lemma clause that results from the process of

23

lemma creation, or the chains that are created from the clause. Here we consider
only unit lemmas so the distinction is pedantic. From the lemma clause only
one chain is created, consisting of the single B-literal and regarded as an ordered
clause. A lemma chain is treated as an input chain after generation (if it passes
filters that may eliminate it; these are generally user-controlled options).

The lemma clause is the complement of the A-literal removed when the A-
literal is eligible to create a lemma. The eligibility criterion is exactly as stated
in the body of the paper but repeated here for completeness. This definition
is only correct for unit lemmas. In a reduction operation, the A-literal that
complements the leftmost B-literal is the reduction A-literal. During a reduction
step, all A-literals strictly to the left of the reduction A-literal are marked.
Every A-literal in a newly created clause inherits the mark, if any, of its parent
A-literal. Any A-literal unmarked at the time of removal creates a lemma clause.

References

[1] H. Ait-Kaci. Warren’s Abstract Machine A Tutorial Reconstruction. MIT
Press, 1991.

[2] O.L. Astrachan. Investigations in Model Elimination Based Theorem Prov-
ing. PhD thesis, Duke University, 1992. (also technical report CS-1992-21).

[3] O.L. Astrachan. METEOR: Exploring model elimination theorem proving.
Journal of Automated Reasoning, 13(2):283-296, 1994.

[4] O.L. Astrachan and D.W. Loveland. METEORs: High performance the-
orem provers using model elimination. In R.S. Boyer, editor, Automated
Reasoning: Essays in Honor of Woody Bledsoe. Kluwer Academic Publish-
ers, 1991.

[5] O.L. Astrachan and M.E. Stickel. Caching and lemmaizing in model elim-
ination theorem provers. In Deepak Kapur, editor, Proceedings of the
Eleventh International Conference on Automated Deduction. Springer Ver-
lag, 1992.

[6] W.W. Bledsoe. Challenge problems in elementary calculus. Journal of
Automated Reasoning, 6(3):341-359, 1990.

[7] W.W. Bledsoe, R. Boyer, and W. Henneman. Computer proofs of limit
theorems. Artificial Intelligence, 3:27-60, 1972.

[8] W.W. Bledsoe and L. Hines. Variable elimination and chaining in a
resolution-based prover for inequalities. In Proceedings of the Fifth Con-
ference on Automated Deduction, pages 281-292. Springer-Verlag, 1980.

24

[9]

[10]

[11]

[19]

[20]

S. Bose, E. Clarke, D.E. Long, and S. Michaylov. Parthenon: A parallel
theorem prover for non-Horn clauses. Journal of Automated Reasoning, 8,
1992.

C. Chang and R. Lee. Symbolic Logic and Mechanical Theorem Proving.
Academic Press, 1973.

H. Chu and D. A. Plaisted. Semantically guided first-order theorem proving
using Hyper-linking. In A. Bundy, editor, Proceedings of the Twelfth Con-
ference on Automated Deduct ion, Lecture Notes in Artificial Intelligence
814, pages 192-238. Springer-Verlag, Berlin, June 1994.

V. J. Digricoli. The Rue theorem-proving system: the complete set of
LIM+-challenge problems. Journal of Automated Reasoning, 12:241-264,
1994.

V.J. Digricoli and E. Kochendorfer. Lim+ challenge problems by rue hyper-
resolution. In Deepak Kapur, editor, Proceedings of the Eleventh Interna-
tional Conference on Automated Deduction, pages 239-252. Springer Ver-
lag, 1992.

S. Fleisig, D. Loveland, A. Smiley, and D. Yarmash. An implementation
of the model elimination proof procedure. Journal of the Association for
Computing Machinery, 21:124-139, January 1974.

L.M. Hines. The central variable strategy of str4+ve. In Deepak Kapur,
editor, Proceedings of the Eleventh International Conference on Automated
Deduction. Springer Verlag, 1992.

R. Letz, S. Bayerl, J. Schumann, and W. Bibel. SETHEO—a high-
performance theorem prover. Journal of Automated Reasoning, 8:183-212,
1992.

D.W. Loveland. Mechanical theorem proving by model elimination. Journal
of the Association for Computing Machinery, 15(2):236-251, April 1968.

D.W. Loveland. A simplified format for the model elimination procedure.
Journal of the Association for Computing Machinery, 16(3):349-363, July
1969.

D.W. Loveland. Automated Theorem Proving: A Logical Basis. North-
Holland, 1978.

W. McCune. Otter 2.0. In Mark Stickel, editor, Proceedings of the Tenth In-
ternational Conference on Automated Deduction, pages 663—-664. Springer
Verlag, 1990.

25

[21]

[25]

D.A. Plaisted. The search efficiency of theorem proving strategies. In
Alan Bundy, editor, Proceedings of the Twelfth International Conference
on Automated Deduction. Springer Verlag, 1994.

J.A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the Association for Computing Machinery, 12(1):23-41, January
1965.

J. Schumann and R. Letz. PARTHEO: A high performance parallel theorem
prover. In Proceedings of the Tenth International Conference on Automated
Deduction, pages 40-56, 1990.

M.E. Stickel. A Prolog technology theorem prover: Implementation by an
extended Prolog compiler. In Proceedings of the Eighth International Con-
ference on Automated Deduction, pages 573-587. Springer-Verlag, 1986.

M.E. Stickel. A Prolog technology theorem prover: Implementation by an
extended Prolog compiler. Journal of Automated Reasoning, 4:343-380,
1988.

H. Wang. Formalization and automatic theorem-proving. In Proceedings
of IFIP Congress 65, pages 51-58, 1965. Washington, D.C.

T.C. Wang and W.W. Bledsoe. Hierarchical deduction. Journal of Auto-
mated Reasoning, 3:35-77, 1987.

G.A. Wilson and J. Minker. Resolution, refinements, and search strategies:
A comparative study. IEEE Transactions on Computers, C-25(8):782-801,
August 1976.

L. Wos, G.A. Robinson, and D. Carson. Efficiency and completeness of the
set of support strategy in theorem proving. Journal of the Association for
Computing Machinery, 12, 1965.

26

