
OO Overkill: When Simple is Better than Not 1

Owen Astrachan
Computer Science Department

Duke University
ola@cs.duke.edu

Abstract

Object oriented design patterns as popularized
in [GHJV95] are intended to solve common program-
ming problems and to assist the programmer in design-
ing and developing robust systems. As first year courses
increasingly emphasize object orientation, knowledge of
design patterns and when to use them becomes an im-
portant component of the first year curriculum. Re-
cent literature has focused on introducing the patterns
to computer science educators, but not on the situa-
tions and contexts in which the patterns are appropri-
ate. Design patterns and object orientation are parts
of a methodology that scales to large systems. In this
paper we show that these concepts do not always scale
down. We analyze examples from current literature that
would be simpler without patterns, and provide exam-
ples of when the same design patterns do make design
and programs simpler.

1 Introduction

Object oriented design patterns as described
in [GHJV95] have received a great deal of atten-
tion from practicing software designers and engineers,
from academics in software engineering, and from
computer science educators [Wal96, ABCM98, AW98,
GGT98, Ngu98, NW99, NW00].

Software practitioners find these patterns a significant
tool in developing and maintaining code. Since we
started using the “Gang of Four” book [GHJV95] in
1996, the single common theme that students in our

1 This work was supported by NSF grant CAREER
9702550.

program report from job interviews is finding a copy
of it on the desk of someone with whom they inter-
view. The design patterns in this book are meant to
help develop correct, re-usable, and maintainable pro-
grams. Perhaps the most important part of a writ-
ten pattern is the forces that describe when the pat-
tern may be applicable. Unfortunately, some of the
recent work investigating patterns early in the curricu-
lum [GGT98, Ngu98, NW99, NW00, NW01] has ignored
the forces or any discussion of whether a pattern is ap-
propriate in the context in which it is applied.

We do hope that this recent work will succeed in intro-
ducing design patterns to the community chiefly respon-
sible for teaching program design and programming. At
the same time we worry that many educators new to ob-
ject orientation will not see the utility of patterns since
the examples in this recent work are often made more
complicated when patterns are used. In our experience,
finally understanding these patterns after much reading
and thinking causes a profound “aha and eureka” effect.
To paraphrase “give someone a hammer and the whole
world is a nail,” we see “show someone the compos-
ite pattern and the whole world requires a polymorphic
visitor.”

Our primary motivation in introducing design and pro-
gramming concepts is to instill best practices that are
as simple as possible. There is often a tension between
these goals. In this paper we report on an ongoing
project to introduce design patterns into curricula and
on some of the problems we have encountered. We be-
lieve strongly that design patterns are an essential part
of any programming curriculum and we show contexts
in which they yield good designs and programs. We also
report on examples from the literature and in our class-
room that are better and more simply solved without
design patterns.

We first provide background on how beginning students
understand advanced concepts. We then show some
standard design patterns applied to problems from re-
cent literature and how these problems may be better



solved by a more simple approach. Finally, we introduce
a problem whose solution is facilitated by applying these
same design patterns.

2 Novices Work with Expert Code

Until last year we used a 20-questions program with a
design from [Ast98] that uses the Composite and Fac-
tory design patterns. The intent was to supply stu-
dents with a design that exemplifies best practice and
ask them to implement the design. Our students suc-
ceeded in implementing the design, but did not inter-
nalize the benefits that the design patterns—they could
not apply the patterns in a new context. Recently we
changed the assignment to allow students to develop
their own design. Again students succeeded, but they
noticed problems in the design and implementation of
their code. We then introduced the design patterns as a
solution to these struggles. Because students had expe-
rienced problems, the solution engendered by applying
design patterns made sense and was appreciated. Stu-
dents were then able to apply the design patterns in a
new context.

These experiences are mirrored in literature distinguish-
ing between novice and expert understanding of the pro-
gramming process [Fle93]. Introducing new patterns
to solve a new problem was too much for our second
semester students. Instead, the before and after ap-
proach of applying a pattern to a solved problem was
much more successful.1 The code that results from ap-
plying patterns is simpler to someone understanding
the patterns, but not to a novice programmer learn-
ing about the principal data structure of the program:
a binary tree.

3 Implementing Binary Trees

Implementing binary trees using object oriented tech-
niques has been covered in several papers[BD96, Ada96,
NW99]. These papers show several techniques that are
far from simple. In [NW99] the design patterns Com-
posite, Null Object [Woo98], and Visitor make binary
trees object oriented, but more difficult to understand
than using a simple approach. If students already un-
derstand trees, and have covered basic tree implementa-
tions in either a functional language or in a more imper-
ative style as shown below, these design patterns may
be appropriate. The patterns would introduce a new
implementation of a familiar concept, the same before
and after technique outlined in Section 2. However,
as a first introduction to trees the added complexity
from using patterns makes the code more difficult to

1In hindsight, and after reviewing literature such
as [Fle93, KR91], this should have been obvious, but it was
not.

understand and extend than when a simple approach is
used. This is the antithesis of of the purpose of object
oriented design patterns as “simple and elegant solu-
tions to specific problems in object oriented software
design” [GHJV95]. As we show in this paper, there
are many problems that are better solved by the appro-
priate design patterns than when the patterns are not
applied. Binary tree implementations as reported in the
literature are best coded with simpler techniques.

3.1 Trees: Simple and Standard

Consider a binary tree node defined using what is called
a plain old data approach.2 This basic approach is used
in both the Java Generic Library (JGL, objectspace.
com) and the Java Collections Framework (java.sun.
com).

public class PlainNode
{

Object info;
PlainNode myLeft, myRight;

}

We define a binary tree as either empty or a three-
tuple/node containing information and left and right
subtrees. This leads to simple code to count the number
of nodes in a tree and and print the tree with an inorder
traversal. Both functions have two cases reflecting the
definition of a tree: one case for an empty tree and one
for a non-empty tree.

public class TreeFunctions
{

public static int count(PlainNode root)
{

if (root == null) return 0;
return 1 + count(root.myLeft)

+ count(root.myRight);
}
public static void print(PlainNode root)
{

if (root == null) return;
print(root.myLeft);
System.out.println(root.info);
print(root.myRight);

}
}

Classes for binary trees are diagrammed in Figure 1.

3.2 Critiquing the Simple Approach

The functions in the class TreeFunctions have three
characteristics that are typically criticized when object
orientation is advocated. We elaborate on these criti-
cisms below.

2We use Java code in this paper, but the same issues
apply when C++ is used.



PlainNode

+toString
+PlainNode

info
myLeft
myRight

<< >>uses
+count
+inPrint

2

TreeFunctions

Figure 1: plain old data approach to trees

1. These functions should be methods of the tree-node
classes rather than external functions.

2. Using null to indicate an empty tree is not as good as
using a null object [Woo98].

3. Selecting which of two (or more) cases applies using
control flow (the if statement) is not as good as using
polymorphism to differentiate cases.

These can be valid criticisms of code in general, but they
cannot necessarily be applied to the code and design for
binary trees shown here. The application of a generally
sound heuristic to each specific instance of the general
problem is called dicto simpliciter, a common mistake
in logical reasoning.

One tenet of object oriented programming is succinctly
described as “ask not what you can do to an object,
ask what an object can do to itself.” In an ideal de-
sign, a binary tree would respond to a nodeCount mes-
sage. However, it is not possible to anticipate every
potentially useful function that might be applied to a
tree and include that function in the tree-node interface.
There is a documented tension in designing a class that
is simple to use yet minimally complete [Rie96]. Thus
the classes comprising a binary tree framework/module
must include some operations on trees, but permit oth-
ers to be added later. As we’ll see, the approach of
using static functions in a class TreeFunctions is sim-
ilar to the approach with the Visitor pattern as shown
in Section 4.

3.3 Forces and Patterns

Using null to represent an empty tree runs counter to
an approach espoused in [Car98, Car00] where a null
object is used. The forces describing when null object
is appropriate [Woo98] include:

• Some instances from collaborating classes should re-
spond to messages by doing nothing.

• The client does not have to check for nil or some other
special value.

In the design outlined in Section 4 the null object class
EmptyNode does not respond to messages and the cor-
responding Visitor class must include a check for the
null object. In implementing binary trees the forces for
null object do not apply.

As we see in the next section, the if statements dis-
tinguishing between empty and non-empty are not the
kinds of selection statement eliminated by polymor-
phism. The Visitor pattern does select polymorphically,
but it cannot be used unless the classes being visited are
stable, that is no new classes are added to the hierar-
chy of visitable classes. In such a situation selecting by
an if statement is nearly the same as using the Visitor
pattern, both are subject to the same limitations.

4 A Principled but Flawed Approach to Implement-
ing Trees with Patterns

In this section we discuss an implementation of binary
trees using patterns from [NW99].3 The resulting code
is certainly elegant from an object oriented aesthetic,
but it is more difficult to understand and extend than
the simple single-node approach outlined in Section 3.

InternalNode

info
myLeft
myRight

+getInfo
+InternalNode

+getLeft
+getRight
+setLeft
+setRight

+toString
+accept

EmptyNode

+EmptyNode
ourInstance

+accept
+toString
+getInstance

>>interface<<

Node

+accept

+toString

>>interface<<

+visitInternal

+visitEmpty

Visitor

<< >>uses

<< >>uses

+visitInternal

+visitEmpty

SizeVisitor

+visitInternal

+visitEmpty

InPrintVisitor

<< >>uses

<< >>uses

<< >>uses

1

2

Figure 2: composite/visitor approach to trees

Our purpose in this paper is not to explain in detail
how these patterns work together to implement binary
trees (e.g., see [NW99] for this), but to show that this
approach is not appropriate for most courses when bi-
nary trees are introduced. A simple glance at the class
diagram in Figure 2 shows that the classes and their
inter-relationships are much more complex than those
of the plain old data approach.

4.1 The Visitor Pattern

The Visitor pattern has received attention via recent
publications [NW99, NW00] and at workshops on CS2

3The complete code for this example is on the website
that supplements this paper: http://www.cs.duke.edu/
csed/patterns. It uses Composite, Singleton, Visitor, and
Null Object patterns.



and the first year of computer science [Car98, Car00].
From [GHJV95] we find the following forces indicating
the pattern may be useful.

• An object structure contains many classes of objects
with differing interfaces, and you want to perform
operations on these objects that depend on their con-
crete classes.

• The classes defining the object structure rarely
change, but you often want to define new operations
over the structure.

In the case of a binary tree there are only two classes:
Empty and Internal/NonEmpty. A node does not re-
spond to messages other than to access state since tree
operations have been factored into Visitor classes. For
binary trees many visitors are stateless, but for gen-
erality Visitor methods cannot be static so clients are
forced to instantiate objects simply to pass a message
and receive a returned value (e.g., for the size of a tree
as shown below.)

Contrast the Visitor code below for counting nodes in a
tree with the three-line function in Section 3.

public Object visitInternal(InternalNode node)
{
Integer lcount =

(Integer) node.getLeft().accept(this);
Integer rcount =

(Integer) node.getRight().accept(this);
return new Integer(1 + lcount.intValue()

+ rcount.intValue());
}

Figure 3 provides an interaction diagram for counting
the number of nodes in a binary tree using a Visitor
pattern when the tree has one non-empty node.

accept(visitor)
visitInternal(this)

anEmptyNode

accept(this)

getInfo()

accept(this)

visitEmpty(this)

visitEmpty(this)

anInternalNodeaClient aPrintVisitor

Figure 3: printing a single-node tree

Introducing binary trees using visitors is certainly
overkill, visitors are more appropriately used with more
complex tree-like structures as shown in Section 5.

5 A Compelling Example

The website of material used in this project contains
a running example showing design patterns used in an
implementation of the game Hangman. In this section
we briefly discuss a more complex example that uses
the Visitor pattern described earlier. Consider evaluat-
ing boolean expressions as part of implementing a toy
programming language or simulating electronic circuits
and gates.

Figure 4 shows an inheritance hierarchy for classes that
build boolean expressions. The classes naturally illus-
trate the Composite design pattern where, for example,
an and expression consists of two boolean expressions.

Constant Variable Not And Or

BoolExpr

+ evaluate()
+ toString()
+ accept()

1 2 2

Figure 4: composite/visitor and boolean expressions

In this example, each class is responsible for evaluating
itself in a context that assigns boolean values to vari-
ables (e.g., x = true).

class Not extends BoolExpr
{

// some methods not shown
public boolean evaluate(Context c)
{

return ! myExpr.getValue(c);
}
private BoolExpr myExpr

}

The interface for a BoolExpr is minimal, but the respon-
sibility for evaluating an expression could have been fac-
tored into a visitor. Because the interface is minimal,
a visitor is required, for example, to substitute an ex-
pression for a variable in a larger expression. Consider,
for example, substituting (x AND y) for z in (z AND w)
or (!z AND y) yielding ((x AND y) AND w) or (!(x
AND y) AND y). A visitor is appropriate since the re-
sponsibility for replacing a variable in each kind of ex-
pression will be in a function associated with the expres-
sion, but residing in a visitor. It’s difficult to completely



understand this function without seeing all the code,4

but the flavor for the simplicity comes through.

public class Replacer implements ExprVisitor
{ // methods not shown

public Object visitOr(OrExpr or, Object o)
{

return new OrExpr(
(BoolExpr) or.getLeft().accept(this,o),
(BoolExpr) or.getRight().accept(this,o));

}

6 Summary

Our project to introduce design patterns has had some
success. Our greatest successes arise from showing a
solution that uses patterns to a problem students have
already solved. Design patterns and object orientation
do not always scale down, care in choosing examples
will help ensure that educators and students appreciate
the power of design patterns.

References

[ABCM98] Owen Astrachan, Geoffrey Berry, Landon
Cox, and Garrett Mitchener. Design pat-
terns: An essential component of cs cur-
ricula. In Twenty-ninth SIGCSE Techni-
cal Symposium on Computer Science Edu-
cation, pages 153–160. ACM Press, Febru-
ary 1998.

[Ada96] Joel Adams. Knowing your roots: Object-
oriented binary search trees revisited.
SIGCSE Bulletin, 28(4):36–40, 1996.

[Ast98] Owen Astrachan. Twenty questions/animal
game. SIGCSE Symposium Presentation,
1998. http://www.cs.duke.edu/csed/
patterns/animal/.

[AW98] Owen Astrachan and Eugene Wallingford.
Loop patterns. In Proceedings of PLoP:
Pattern languages of Programming, August
1998. Allerton Park, IL.

[BD96] A. Michael Berman and Robert Duvall.
Thinking about binary trees in an object
oriented world. In Twenty-Seventh SIGCSE
Technical Symposium on Computer Sci-
ence Education, pages 185–189. ACM Press,
1996.

[Car98] Robert (Corky) Cartwright. Design pat-
terns in cs2. OOPSLA Workshop on CS2,
1998.

4The code is available on the website that accompanies
the paper.

[Car00] Robert (Corky) Cartwright. Using design
patterns early. FYI 2000: Workshop on
First Year Instruction, 2000.

[Fle93] Ann Fleury. Student beliefs about pascal
programming. Journal of Educational Com-
puting Research, 9:355–371, 1993.

[GGT98] Natasha Gelfand, Michael T. Goodrich, and
Roberto Tamassia. Teaching data struc-
tures design patterns. In Twenty-Ninth
SIGCSE Technical Symposium on Com-
puter Science Education. ACM Press, 1998.

[GHJV95] Erich Gamma, Richard Helm, Ralph John-
son, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, 1995.

[KR91] J. Koenemann and S. Robertson. Expert
problem solving strategies for program com-
prehension. CHI Proceedings, pages 125–
130, 1991.

[Ngu98] Dung Nguyen. Design patterns for data
structures. In Twenty-Ninth SIGCSE Tech-
nical Symposium on Computer Science Ed-
ucation, pages 336–340. ACM Press, 1998.

[NW99] Dung Nguyen and Stephen B. Wong. Pat-
terns for decoupling data structures and
algorithms. In Thirtieth SIGCSE Techni-
cal Symposium on Computer Science Edu-
cation, pages 87–91. ACM Press, 1999.

[NW00] Dung Nguyen and Stephen B. Wong. Design
patterns for lazy evaluation. In Thirty-First
SIGCSE Technical Symposium on Com-
puter Science Education, pages 21–25. ACM
Press, 2000.

[NW01] Dung Nguyen and Stephen B. Wong. Design
patterns for sorting. In Thirty-first SIGCSE
Technical Symposium on Computer Science
Education. ACM Press, 2001.

[Rie96] Arthur Riel. Object-Oriented Design
Heuristics. Addison-Wesley, 1996.

[Wal96] Eugene Wallingford. Toward a first course
based on object-oriented patterns. In
Twenty-Seventh SIGCSE Technical Sym-
posium on Computer Science Education,
pages 27–31. ACM Press, 1996.

[Woo98] Bobby Woolf. The null object pattern.
In Robert Martin, Dirk Riehle, and Frank
Buschmann, editors, Pattern Languages of
Program Design 3. Addison-Wesley, 1998.


