
FYI: Objects and Patterns 1

OO Overkill
When Simple is Better than Not

Owen Astrachan
ola@cs.duke.edu

http://www.cs.duke.edu/~ola

NSF Career 9702550

FYI: Objects and Patterns 2

Fundamental Laws

ÿ First do no harm
• Hippocratic Oath

ÿ A robot may not injure a human being, or, through inaction,
allow a human being to come to harm

• First law of Robots (Asimov)

ÿ You know you have achieved perfection in design, not when
you have nothing more to add, but when you have nothing
more to take away.

• Saint-Exupery

ÿ Do the simplest thing that could possibly work
• First Design Principle of Extreme Programming

FYI: Objects and Patterns 3

Where are we going? (when do we get there?)

ÿ Object oriented programming is here to stay (for N years)
� What aspects of OOP and OO Design belong in FYI?
� First Year Instruction must be about trade-offs

• CS2 especially should be about algorithmic and design tradeoffs

ÿ How do we (should we) incorporate design patterns in FYI?
� Solving problems is important, patterns are intended to solve

problems
� We shouldn’t teach patterns, we should teach when they’re

applicable, what the forces are that merit application, and the
tradeoffs in using them

ÿ What’s the right programming and design methodology in FYI?
� It’s not PSP, it’s XP

ÿ Teaching and curriculum design can reflect XP too
� Be ready for change, hard to get it right from the start

FYI: Objects and Patterns 4

Tension in Teaching OO Concepts

ÿ Left to their own devices and designs, students cannot write
correct and well-designed programs
� Solution: Frameworks, Apprentice-Learning, add to

existing code, implement a design-provided
� Solution: Good design comes from experience, experience

comes from bad design

ÿ Students relish creating programs from scratch
� Is it ok to use an API from JDK 1.x, from the book, from

the course, from the assignment?
� There’s no time to create interesting programs from scratch

ÿ OO design patterns and skills don’t necessarily scale down

FYI: Objects and Patterns 5

Relevant Tenets of Extreme Programming

ÿ What parts of embracing change can we embrace in FYI?
� Evolutionary design, small releases, iterative enhancement
� Simple design, don’t build for the future (will you need it?)
� Lots of testing, testing, testing
� Refactoring: change design, not functionality

ÿ What may be hard to embrace in FYI?
� Code the test first
� Pair Programming
� Business aspects: meetings, customers, …

ÿ Links
� http://www.xprogramming.com/what_is_xp.htm
� http://www.extremeprogramming.org/rules.html
� http://c2.com/cgi/wiki?ExtremeProgrammingRoadmap
� http://www.martinfowler.com/articles/designDead.html

FYI: Objects and Patterns 6

Twenty-Questions meets binary trees

ÿ Build a “game tree”, ask
questions, add to knowledge,
play again (later)

ÿ Preliminary to RSG Nifty
Assignment program

ÿ Procedural version used, e.g., in
book by Main and Savitch

ÿ Used as an example of how to do
it better in 1998 patterns paper

FYI: Objects and Patterns 7

Goals of Twenty Questions assignment?

ÿ Familiarity with trees
� Reading, writing, traversing, changing structure

• Preorder (read/write), postorder (cleanup)
� Reinforce concepts with coding practice

ÿ Interesting and (somewhat) intriguing assignment
� Satisfaction higher when no guidance given

• Student satisfaction not always a valid metric, but
satisfaction impacts understanding and internalizing

� Student constructed games shareable with classmates

ÿ Provides context/hook for later refactoring
� Revisit this in OO design course; CS2 introduces ideas and

coding framework for later courses

FYI: Objects and Patterns 8

Twenty Questions: the good, bad, and ugly

ÿ Factory classes
� Singleton?

• Do it right
• Do it simply

ÿ Adding knowledge:
� Internal->Leaf

• Accessor
• Friend
• State Pattern

ÿ Internalize patterns and design?
� Not used in subsequent programs
� Acknowledged in later classes as “connect the dots”

programming

FYI: Objects and Patterns 9

Current version of Twenty Questions

ÿ Provide code that plays one game by reading the file
� No tree explicitly constructed, cannot add knowledge
� Recursive nature of file reading mirrors tree construction

ÿ Provide no other classes/guidance: course covers trees
� Use plain-old-data, public data/struct approach to tree
� Code from book and in class constructs trees, prints them,

copies, finds height, … all using plain-old-data approach

ÿ Revisit program in later course (ideally same course, but …)
� Discuss factory, inheritance hierarchy, other OO concepts
� Show how before/after approach and refactoring leads to

more extendable program, but why do that first?

FYI: Objects and Patterns 10

Trees: As simple as possible or too simple?

ÿ Forces: introduce trees in a sequence of courses that rely on
OO/procedural languages (OO + CS2 = ???), simplicity first
� NO: a course that follows a functional programming course
� YES: to be followed by OO/software design course

ÿ Plain-old-data (Pascal, C, …) : doesn’t extend to abstract syntax
trees, but it’s simple, understandable

� What about “do it right from the start”?
• Is an inheritance hierarchy for two node types right?
• Is visitor warranted here?

ÿ Distributed computing/control is hard
� Two cases for recursion in one function vs in two classes
� No study on this, but intuition and experience say harder

FYI: Objects and Patterns 11

Trees: the old approach (but still new)
public class TreeFunctions
{

public static int count(PlainNode root)
{

if (root == null) return 0;
return 1 + count(root.myLeft) +

count(root.myRight);
}

}
public class Printer
{

public static void
inOrder(PlainNode root)

{
if (root == null) return;
inOrder(root.myLeft);
System.out.println(root.myInfo);
inOrder(root.myRight);

}
}

I

E L

M

S

P

R

myInfo
myLeft
myRight

PlainNode

+PlainNode
+toString

2

FYI: Objects and Patterns 12

java.util.TreeMap, understanding the source
static class Entry {

Object key;
Object value;
Entry left = null;
Entry right = null;
Entry parent;
boolean color = BLACK;

…
}
public boolean containsValue(Object value) {

return (value==null ? valueSearchNull(root)
: valueSearchNonNull(root, value));

}
private boolean valueSearchNonNull(Entry n, Object value) {

if (value.equals(n.value)) return true;
return

(n.left != null && valueSearchNonNull(n.left,value))
|| (n.right != null && valueSearchNonNull(n.right,value));

}

Can search for
a null key,
special case

FYI: Objects and Patterns 13

Trees + Null-object + visitor = CS2 OO Overkill

ÿ A Node is either
� Empty or Internal
� Leaf (not shown here, but

is in code online/handout)

ÿ Empty Node
� Singleton
� Response to getLeft()

• Exception
• No-op

ÿ Visitor
� Encapsulate new

operations over structures
� Structure built from static

set of types (e.g., nodes)

FYI: Objects and Patterns 14

Trees + Null-object + visitor = CS2 OO Overkill

ÿ Visitor simulates double-
dispatch
� Polymorphism on operation

and element

ÿ Distributed recursion
� Control not centralized
� Demonstrably difficult for

students

ÿ Writing copy/clone is trivial
with plain-old data, harder with
visitor
� Is difficulty relevant?
� Why do we study trees?

• Different goals lead to
different solutions

FYI: Objects and Patterns 15

OO Overkill in a CS2 course
public class InternalNode extends Node {

public Object accept(Visitor v, Object o) {
v.visitInternal(this,o);

}
}
public class SizeVisitor extends Visitor {

public Object visitInternal(InternalNode node, Object o) {
Integer lcount = (Integer) node.getLeft().accept(this,o);
Integer rcount = (Integer) node.getRight().accept(this,o);
return new Integer(1 + lcount.intValue() +

rcount.intValue());
}
public Object visitEmpty(EmptyNode node, Object o){

return ourZero;
}
private static Integer ourZero = new Integer(0);

}
System.out.println("# nodes = " +

root.accept(SizeVisitor.getInstance(),null));

FYI: Objects and Patterns 16

Hangman: two case studies of OO in FYI

ÿ Contrasting goals and methodologies of studying design patterns
using a Java program to play Hangman
� Duke: http://www.cs.duke.edu/csed/patterns/oofirstyear
� Oberlin: http://exciton.cs.oberlin.edu/cs151/labs/lab01/
� Rice: http://www.owlnet.rice.edu/~comp212/01-spring/assignments/hangman/

ÿ Different goals and different audiences
� Duke: 3rd course (or later): software design, and CS educators
� Oberlin/Rice: 2nd course: data structures(?) and CS educators

ÿ Before and after: study a program that doesn’t use design patterns
and/or object orientation, refactor into a program that does
� Why refactor? Must be to solve a problem
� My goal: simplest program possible to be flexible, mirror

(naïve?) view of what the objects are

FYI: Objects and Patterns 17

Contributions and Differences

ÿ Designers wear different glasses
� Visitor, Composite, MVC glasses (Rice, Oberlin)
� Wrapper/Adapter, MVC, XP glasses (Duke)

ÿ Each provides a software cadaver for study
� Usable in different contexts, e.g., study details of language

in first pass, design details in second (Duke at ESCC)

ÿ What problems do design patterns solve?
� Why is aWord a composite, why is Word an adapter?

• Hook for string traversal vs. hook for string

ÿ Well-implemented uses of patterns that can be used in
before/after mode are worthy of study

FYI: Objects and Patterns 18

Rice UML

Hangman

FYI: Objects and Patterns 19

Oberlin UML

Hangman

FYI: Objects and Patterns 20

Duke UML for Hangman

FYI: Objects and Patterns 21

Summary

ÿ Design patterns are as important in FYI (and later) as lists,
recursion, stacks, trees, maps, …
� There’s no room for new material, what goes?

ÿ Embracing some of the XP change provides a context for
studying and using design patterns
� Simplicity and refactoring are embraceable early

ÿ Not all design patterns and concepts scale down
� Be aware of potential for OO Overkill, simplicity first

ÿ We need more software cadavers with code and questions
� Before and after are essential elements in using patterns

