OO Overkill
When Simple is Better than Not

Owen Astrachan
ola@cs.duke.edu
http://www.cs.duke.edu/~ola

NSF Career 9702550

FYI: Objects and Patterns 1

Fundamental Laws

e Firstdo no harm
= Hippocratic Oath

e A robot may not injure a human being, or, through inaction,
allow a human being to come to harm

= First law of Robots (Asimov)

e You know you have achieved perfection in design, not when
you have nothing more to add, but when you have nothing
more to take away.

= Saint-Exupery

e Do the simplest thing that could possibly work
= First Design Principle of Extreme Programming

FYI: Objects and Patterns

Where are we going? (when do we get there?)

e Object oriented programming is here to stay (for N years)
72 What aspects of OOP and OO Design belong in FY1?

7 First Year Instruction must be about trade-offs
e CS2 especially should be about algorithmic and design tradeoffs

e How do we (should we) incorporate design patterns in FY1?

72 Solving problems is important, patterns are intended to solve
problems

72 We shouldn’t teach patterns, we should teach when they’re
applicable, what the forces are that merit application, and the
tradeoffs in using them

e \What's the right programming and design methodology in FYI?
7 It's not PSP, it’s XP

e Teaching and curriculum design can reflect XP too
72 Be ready for change, hard to get it right from the start

FYI: Objects and Patterns

Tension in Teaching OO Concepts

e Leftto their own devices and designs, students cannot write
correct and well-designed programs

72 Solution: Frameworks, Apprentice-Learning, add to
existing code, implement a design-provided

7 Solution: Good design comes from experience, experience
comes from bad design

e Students relish creating programs from scratch

72 Is it ok to use an API from JDK 1.x, from the book, from
the course, from the assignment?

72 There’s no time to create interesting programs from scratch

e OO design patterns and skills don’t necessarily scale down

FYI: Objects and Patterns 4

Relevant Tenets of Extreme Programming

e What parts of embracing change can we embrace in FYI?
7 Evolutionary design, small releases, iterative enhancement
72 Simple design, don’t build for the future (will you need it?)
7 Lots of testing, testing, testing
7 Refactoring: change design, not functionality

e What may be hard to embrace in FYI?
7 Code the test first
2 Pair Programming
7 Business aspects: meetings, customers, ...

e Links

2 http://lwww.xprogramming.com/what is xp.htm

72 http://lwww.extremeprogramming.org/rules.html

72 http://c2.com/cgi/wiki?ExtremeProgrammingRoadmap

2 http://www.martinfowler.com/articles/designDead.html

FYI: Objects and Patterns 5

Twenty-Questions meets binary trees

e Build a “game tree”, ask
questions, add to knowledge,
play again (later)

i

"Does it have feathers™

T

Does it live in a harnyard

Is it a mammal

e Preliminary to RSG Nifty / \\ AN
Assignment program chicken | [Ts 1t wise |'Does 1t have stripes ;?monstﬁ
o Pl
e Procedural version used, e.g., In . \
book by Main and Savitch oul | [Does it gobble figer | [Does It hop
£\ %
e Used as an example of how to do (turkey] Does it say nevernore T e e
It better in 1998 patterns paper g‘ 5§ J F
[\ | |
raven | \eagle

FYI: Objects and Patterns

| S—

Goals of Twenty Questions assignment?

e Familiarity with trees

72 Reading, writing, traversing, changing structure
= Preorder (read/write), postorder (cleanup)
7 Reinforce concepts with coding practice

e Interesting and (somewhat) intriguing assignment

7 Satisfaction higher when no guidance given

= Student satisfaction not always a valid metric, but
satisfaction impacts understanding and internalizing

7 Student constructed games shareable with classmates

e Provides context/hook for later refactoring

7 Revisit this in OO design course; CS2 introduces ideas and
coding framework for later courses

FYI: Objects and Patterns 7

Twenty Questions: the good, bad, and ugly

creates a ------------------
contains a pointer to a ——=

derivesfinherits from —& %

e [actory classes

2 Singleton? Came GamePactory
- - plawl) oo ___ | makeGame)
e Do itright cave) 1 saveGame()
e Do it simply /
- AnimalNede TreeFactory
e Adding knowledge R | makeT ree)
72 Internal->Leaf arintlostramm)
- ACCESSOf /\ this is the tree for the game
e Friend InternalNode LeafNode
® State Pattern aﬂ@ueﬁim() askJuestion()
print{ ost rearm) print ot rearm)

e Internalize patterns and design?
72 Not used in subsequent programs

72 Acknowledged in later classes as “connect the dots”
programming

FYI: Objects and Patterns

Current version of Twenty Questions

e Provide code that plays one game by reading the file
72 No tree explicitly constructed, cannot add knowledge
7 Recursive nature of file reading mirrors tree construction

e Provide no other classes/guidance: course covers trees
72 Use plain-old-data, public data/struct approach to tree

72 Code from book and in class constructs trees, prints them,
copies, finds height, ... all using plain-old-data approach

e Revisit program in later course (ideally same course, but ...)
7 Discuss factory, inheritance hierarchy, other OO concepts
72 Show how before/after approach and refactoring leads to
more extendable program, but why do that first?

FYI: Objects and Patterns 9

Trees: As simple as possible or too simple?

e F[orces: introduce trees in a sequence of courses that rely on
OO/procedural languages (OO + CS2 = ???), simplicity first

72 NO: a course that follows a functional programming course
72 YES: to be followed by OO/software design course

e Plain-old-data (Pascal, C, ...) : doesn’t extend to abstract syntax
trees, but it’s simple, understandable

72 What about “do it right from the start”?
= Is an inheritance hierarchy for two node types right?
= |s visitor warranted here?

e Distributed computing/control is hard
72 Two cases for recursion in one function vs in two classes
72 No study on this, but intuition and experience say harder

FYI: Objects and Patterns 10

Trees: the old approach (but still new)

public class TreeFunctions
{ bl (PI d) m
public static int count(PlainNode root
i oot = nun e rok
If (root == null) return O;
return 1 + count(root.myLeft) +
count(root.myRight); ®
)) PlainNode
public class Printer myInfo
{ myLeft
public static void myRight
{ inOrder(PlainNode root) +PlainNode ,
if (root == null) return; +tostring
iInOrder(root.myLeft); 2

System.out.printin(root.mylInfo);
iInOrder(root.myRight);

} FYI: Objects and Patterns

java.util. TreeMap, understanding the source

static class Entry {

Object key; 4)
Object value; Can search for
Entry left = null; a null key,

Entry right = null; special case
Entry parent;

boolean color = BLACK; 9%

}

public boolean containsValue(Object value) {

return (value==null ? valueSearchNull(root)

. valueSearchNonNull(root, value));

}
private boolean valueSearchNonNull(Entry n, Object value) {

if (value.equals(n.value)) return true;

return

(n.left = null && valueSearchNonNull(n.left,value))
|| (n.right = null && valueSearchNonNull(n.right,value));

}

FYI: Objects and Patterns 12

Trees + Null-object + visitor = CS2 OO Overkill

e A Node is either
72 Empty or Internal

7 Leaf (not shown here, but e e -
is in code online/handout) ... e [—
+tostring : - & +vigitEmpty
e Empty Node /\ P \
7| Singleton Iiz:fzrnamude c:;u;::trzld; i EizeY¥igitor InFrintVigitor
+Em :’iff’j‘_ +vigitInternal| |+vieitInternel
7 Response to getLeft() |meem "1 Jrvisumpry | |wasscmupey
- EXCG I +Interns ﬂ:tszzzgnce e e - :r___ -__-:_d.;;;;_' i
ptlon +qetmandE Lﬂ | | -
e NO-Op +qetIeft . E i
+getRight L] T '
teetleft [T TTmtTTmmommmmmms cumem |
.. +getRight *- - cTTTTTToTTTTToTTTToTTTToT T mTm AT
e \Visitor faceept
72 Encapsulate new
operations over structures
72 Structure built from static
set of types (e.g., nodes)
FYI: Objects and Patterns 13

Trees + Null-object + visitor = CS2 OO Overkill

e Visitor simulates double-
dispatch

72 Polymorphism on operation

and element

e Distributed recursion
72 Control not centralized

72 Demonstrably difficult for

students

e \Writing copy/clone is trivial
with plain-old data, harder with

visitor
7 Is difficulty relevant?

72 Why do we study trees?
e Different goals lead to

different solutions

FYI: Objects and Patterns

aclient

anInternalioeda ‘

afizeVigitor

anEmptyiods ‘

accent [Timitor])

_________________.|

wimitInternal (thin]

1
I
—

getInfo(]

C

accept (thin]

| wimitEmpty (thia]

accept (thin) E

winitEmpty (thin]

14

OO Overkill iIn a CS2 course

public class InternalNode extends Node {
public Object accept(Visitor v, Object 0) {
v.visitinternal(this,0);
}
}

public class SizeVisitor extends Visitor {
public Object visitinternal(InternalNode node, Object 0) {
Integer Icount = (Integer) node.getLeft().accept(this,o);

Integer rcount = (Integer) node.getRight().accept(this,o);
return new Integer(1 + lcount.intValue() +

rcount.intValue()):

}
public Object visitEmpty(EmptyNode node, Object 0){
return ourZero;

}

private static Integer ourZero = new Integer(0);

}

System.out.printin("# nodes = " +
root.accept(SizeVisitor.getinstance(),null));

FYI: Objects and Patterns 15

Hangman: two case studies of OO in FYI

Contrasting goals and methodologies of studying design patterns
using a Java program to play Hangman

72 Duke: http://www.cs.duke.edu/csed/patterns/oofirstyear

2 Oberlin: http://exciton.cs.oberlin.edu/cs151/labs/lab01/

72 Rice: http://www.owlnet.rice.edu/~comp212/01-spring/assignments/hangman/

Different goals and different audiences
72 Duke: 3" course (or later): software design, and CS educators
72 Oberlin/Rice: 2"d course: data structures(?) and CS educators

Before and after: study a program that doesn’t use design patterns
and/or object orientation, refactor into a program that does

2 Why refactor? Must be to solve a problem

2 My goal: simplest program possible to be flexible, mirror
(natve?) view of what the objects are

FYI: Objects and Patterns 16

Contributions and Differences

e Designers wear different glasses
72 Visitor, Composite, MVC glasses (Rice, Oberlin)
72 Wrapper/Adapter, MVC, XP glasses (Duke)

e Each provides a software cadaver for study

72 Usable in different contexts, e.g., study details of language
In first pass, design details in second (Duke at ESCC)

e What problems do design patterns solve?

2 Why i1s aWord a composite, why is Word an adapter?
« Hook for string traversal vs. hook for string

e Well-implemented uses of patterns that can be used Iin
before/after mode are worthy of study

FYI: Objects and Patterns 17

AHard

ré=t

+ hoolean : maichAllichar)
H boolean : helpMatchAllfchar ¢, boolean b)
+ boolean isARVisible)

i

MNonEmpiyWord

= WordChar : wordChar
= AWord : _rest

+ MNonEmptyWord{char c, &AWord restWord)
+ String : toString)

+ boolean : =810 Visthle()

+ boolean : match& I char)

H boolean : helphdatehs U char o, boolean b)

wiord character
Word Char
= char: _walue
= ACharState : _state
+ WordChar(char)
+ String : toString()
boolean : compare{char ¢, boolean k)
boolean : i=sVishle() =~
w0id : setStatel & CharState state)

tosStrng (..
{retwrn String sealueOf (_walue);}

context sta%e

EmpiyWord

+ EmptyWord : Singleton

— EraptyrWord()

+ String - toStringf)

+ boolean : s 11Visthle)

+ hoolean : rmatchbllichar o)

B boolean : helpbdatchs Wichar o, boolean b)

Rice UML

Hangman

ATharShate

Boolaan : isVisible(Word Char onwner)

String - folStringichar ¢, WordChar owner)
boolean | comparefchar ¢, boolean b, char value, WordChar owner)

-
-
-
-
-
-

State Pattern: delegate all calls to state,
passing the context and recuired data.

i)

| toStringl) {retum " "} I_\]

-~
-~
Es

Hidden

Hidden : 51 tom

= Hiddend()

boolean : isVisble{WordChar owmer)

+ String : toString{char ¢, WordChar owmner)
boolean : compare(char ¢, boolean b, char walue, WordChar owner)

Visihle
Vizible : Singleton
= Wisihle)

+ String : toString{char ¢, WordChar owner)

boolean : compareichar ¢, boolean b, char wralue, WordChar owner)

hoolean : isVisible! WordChar owmner)

18

WordFactory
= WordFactory : nstance statict
= WordFactory()

+ WordFactory - singlstan)
+ LRStrust : rabe Word{String word)

| 1 |—-|
| mstantiates
|
LRSt\rjm o - eetly

WondChar

+ [VishleState

= char ; value

= WordChar [VishleState : visthleState
= WordChar [VishleState : ivisthleState
= WordChar [VishleState : iVishleState

) <<WorlChar} VisihleState=>

- (et - exacute(TWordChardlgo aleo, Ohject param)
| veid: fogpleltatef)

+ WordChar(char value)

+ char: gotVeluel)

+ Chjeot : execute(WordCharlzn algo, Chject parara)
*+ yoid - togeleStatel)

T
|ses

y

<:IWord CharAlgo:»

Oberlin UML

+ Chjeat : vishleCase({WordChar wordHast, Oljeot para)
+ Chject : imvisthleCase{ WardChar wordHost, Object psaa)

Il
Hangman w
uses | | uses |
| | |
WCGuesslzo W(ToStringAlze WClsAllVisible Alo

+ (et - il ase(LRStruct hast, Chjeet para)
+ (et : nonbullCase{final LRStruct host, Olject pasa)

+ Chjeat : nllC'ase(LRStruct host, Chject parama)
+ Chjeet : nonbullCase(final LRStruct host, Ot parar)

+ Chjeot - nllC'ase(LRStruct hast, Chject parama)
+ Ozt : nonbullCase{final LRStruct host, Olject pasa)

FYI: Objects and Patterns

19

Duke UML for Hangman

DefaultWordFactory Hangman
BoString[] : ravList S WordFactory : myWordFactory
Boint - myIndex @ CrarmeController : myController

“Default WordFactory() “Hangman/ WordFactary wi)
“Word : makeWord) Smid : play)

“Pyoid © mainStringl] args)

“rnid © main{String[] ares)

|
Vol

==WordFactory==

SWord - makeWord))

1

—_

Game Controller

@b Iphahet Display | oyt IphDisplay
@ WordDisplay © myWordDisplay

@b phabet | rogrl Iphabet
@ Crallows © myCallows

“ameController! & lphabet Display ad, WordDisplay wd, Gallows £)

“vnid © playCrarme Word w)

1

1

Gallows

Word

==WordDisplay==

== AlphaheiDisplay-=

Alphahet

Epchar : PLANE

EAotiing | mrstiing
achar]] : meDisplay

“nid ; displayt Word w)

Svoid © displayi Alphabet &)

@rboolean[] : myletters

i

S Word/String &)
%%tring : toString)
Svoid ; reveal()
Shoolean - sCuessed))

Shoolean - doGuess(char ch)

I

TextWordDisplay

TextAlphaheDisplay

Svoid - cisplayi Word w)

“nid ; displayt Alphsbet a)

% 4 phahet()

“void : clear()

haglean : isUsed{char ch)
haglean : doCruess{char ch)

gpint : EASY

gaint : RIEDITR

it HARD
Eont[] MISSES
@pint © yhiisses
@pint © yhladvlisses

FYI: Objects and Patterns

Stallows(int degres)
Snid : addPart()
Svoid : display?)
“hoolean : isHung()
bvvoid ; resetl)

20

Summary

e Design patterns are as important in FYI (and later) as lists,
recursion, stacks, trees, maps, ...

72 There’s no room for new material, what goes?

e Embracing some of the XP change provides a context for
studying and using design patterns

2 Simplicity and refactoring are embraceable early

e Not all design patterns and concepts scale down
7 Be aware of potential for OO Overkill, simplicity first

e We need more software cadavers with code and questions
2 Before and after are essential elements in using patterns

FYI: Objects and Patterns 21

