
Design Patterns:
An Essential Component of CS Curricula

Owen Astrachan �, Geoffrey Berry, Landon Cox, Garrett Mitchener
Duke University

fola, gcb, lpc1, garrettg@cs.duke.edu

Abstract

The field of software patterns has seen an explosion in inter-
est in the last three years. Work to date has been on the
recognition, cataloging, and finding of patterns with little
attention to theuseof patterns, especially by students and
practitioners not well-versed in object-oriented technologies.
This project addresses pattern use through the development
of several programming and pedagogical frameworks that
supply support for using patterns throughout a computer
science curriculum. Although we do not claim that pat-
terns are Brooks’ silver bullet [10], their use can help cope
with the accidental complexity of software development and,
we argue, their use is essential for a successful adoption
of object-oriented techniques in academic computer science
programs. This project addresses practical concerns of the
computer science and software engineering communities in
using, teaching, and learning patterns. In this paper we argue
that patterns are an essential programming and pedagogical
tool and report on our work in making them accessible to the
educational community.

1 Introduction

One principle tenet of object technology and the corner-
stone of academic programming courses in which students
use code and libraries supplied by others, issoftware reuse.
For large programs and projects, reuse must occur at a level
above an individual class or even a class library. This is
described in the first Pattern Languages of Program Design
Conference proceedings [17].

Experience over the past two decades, however,
indicates that it is difficult to achieve reuse and
extensibility via class libraries alone. The basic
problem is that the scope of a broadly reusable
class is not large enough to significantly reduce the
amount of application code that must be developed
manually.

This observation has led to the development of program
frameworks [42], software architectures [33], and design
patterns. Design patterns have their roots in the architectural
work of Christopher Alexander [1, 2]. This work was first
brought to the attention of the software community in [9]
but more forcefully and with great impact in the seminal
work [20]. Of course earlier work such as [28, 36, 35]
provided foundational material for the adoption of architec-
tural patterns by academics and software practitioners. Work
continues to be reported in many conferences and recently
in conferences devoted specifically to the use of patterns
and pattern languages [17, 39]. Related work can be found
in [11, 12, 13, 15, 22]. Supporting views for the use of pat-
terns in software architectures and other related areas are
found in [33, 34, 24].

Our project is designed to makesoftware patternsacces-
sible and useful in an undergraduate computer science cur-
riculum. In this paper we describe patterns, their potential
impact as an integral part of a curriculum, methods for in-
corporating patterns early and often throughout a sequence
of courses, and supporting frameworks we have developed
to facilitate the use and understanding of patterns by educa-
tors. In Section 2 we define design patterns and idioms at
a high level; in Section 3 we describe why patterns are use-
ful but potentially difficult to use; in Section 4 we provide
examples of patterns and their successful use; in Section 5
we describe class libraries and expository material for using
patterns; in Section 6 we describe a potential rethinking and
restructuring of curricula that might be facilitated in part by
using patterns; Section 7 discusses related and future work;
in Appendix A we describe potential pitfalls in web-based
methods of dissemination

2 What is a Pattern?

Alexander defines a pattern as follows: [2]

A design pattern is a three-part rule, which ex-
presses a relation between a certain context, a
problem, and a solution. The pattern is, in short, at
the same time a thing, ..., and the rule which tells
us how to create that thing, and when we must cre-
ate it.

�This work is supported in part by the National Science Foundation
grants #DUE-9554910 and #CCR-9702550.



This definition has been extended and modified by
the software community to a schema comprised of four
parts [20]:

� The name which provides a handle and a vocabulary
for discussing and using the pattern.

� The problem which provides a context in which the
pattern is applicable.

� The solution which describes the components of the
pattern and how they interact including their responsi-
bilities, relationships, and collaborations. The solution
is abstract although it is often useful to ground it with a
concrete example in a specific programming language.

� The consequencesof using the pattern include trade-
offs and implications that arise from adopting the solu-
tion to the problem in context.

Patterns help extend the vocabulary of students by provid-
ing a toolkit of higher-level concepts. The extension of a
programmer’s vocabulary is particularly important, it allows
us (students and educators) to engage in more fruitful design
discussions. Thenameof the pattern becomes particularly
important in this context. Once a pattern is understood, both
conceptually and from useful experience1, it becomes part of
a student’s vocabulary and raises the level of discourse con-
siderably. Design patterns transcend particular languages al-
though not, necessarily, language paradigms. The language
independence of patterns makes them useful with any object-
oriented language.Idioms are similar to patterns but are
closer to the idea of templates and case studies [30, 32] and
are often grounded in a specific programming language. Our
project addresses both design patterns and idioms.

Idioms have a long history [36, 30] and are recognized as
part of the patterns community [16, 11]. Although the differ-
ence between an idiom and a pattern is not always clear, the
language specificity of idioms differentiates them from de-
sign patterns in most cases. Both kinds of patterns are essen-
tial for those new to object technology since object-oriented
programming and design will be realized in a specific lan-
guage.

3 The Need for Patterns

Most introductory textbooks attempt to do service to the pro-
cess of “problem solving” and “program design”. However,
the majority of texts are driven by the syntactic details of a
specific language rather than by general methods for solving
problems and designing programs. Students may come away
from courses based on such books with concepts described
in words as “divide and conquer”, and “top-down design”,
but our experience is that students are not adept at designing
programs or solving problems after one or two semesters.

1Here we literally meanuseful, i.e., has been used in a design or pro-
gram.

Instead, we propose that students should be exposed to good
designs in an approach similar to that advocated in [3, 8].
Programming and design vocabularies should be increased
using idioms and patterns such as those described in this pa-
per and elsewhere [40, 41, 21]. Students should use libraries
and frameworks built using a pattern vocabulary and should
use these libraries in several related, introductory courses.

The use of patterns for those being introduced to object
technology is described in [15]:

Patterns capture established practices that remain
obscure in the broad practice of a given domain.
Many patterns have their roots in the work of early
adaptors of a new technology or the first archi-
tects of a system. Many of these patterns attack
problems in subtle ways, which makes it difficult
to cast them in the framework of the predominate
constructs of the system. For example, when peo-
ple first learn C++, they learn it in terms of lan-
guage features: classes, functions, and objects or
in terms of object-oriented design principles such
as inheritance and polymorphism that lead to good
class partitioning. However, certain C++ idioms
transcend the language and are best expressed as
higher-level or meta concepts. These concepts
are captured as patterns when the patterns are ex-
pressed as solutions to a problem in context.

3.1 Problems Using Patterns

The strength, purpose, and abstractness of design patterns
makes them very accessible to those well-versed in object
technology, but less so to those new to the field. This dispar-
ity between effectiveness and accessibility is especially evi-
dent with students and educators new to the discipline. One
goal of this project addresses this disparity, with methods for
cataloging and using patterns that make them accessible to
students and educators (and software professionals).

The kind of design catalog provided in [20] is not acces-
sible to students, educators, or programmers new to object-
oriented programming. The pattern literature has focused
on experienced users of object technology, allowing them to
find better and more useful ways of organizing concepts and
frameworks to facilitate design and reuse of software compo-
nents. Our project tackles this problem directly by answering
concerns voiced in [11] as fundamental to the success of the
patterns community in the near future:

The ability to find (and a prerequisite to use) pat-
terns decreases in proportion to the number of doc-
umented patterns. Although the patterns in [20]
are divided into three subgroups (creational, struc-
tural, behavioral) the patterns are still difficult to
use without experience.



4 Pattern Examples

In this section we describe several patterns and the materi-
als we have developed for incorporating these patterns into
our curriculum and for other institutions to use in their cur-
ricula. Our philosophy is to test materials ourselves, but
to take steps to ensure that they are useful in a wide range
of institutions. One of the grants that supports this work
supports two collaborating institutions with drastically dif-
ferent student populations including one HBC (Historically
Black College), one undergraduate institution, and one re-
search university.

For this project, we have developed several ped-
agogical frameworks of code, libraries, expository
material, and assignments that are accessible at
http://www.cs.duke.edu/csed . The materials
provide resources for educators on creating assignments and
using patterns in conjunction with the apprentice style of
learning outlined in [3, 8].

4.1 Simple Program Patterns

Although patterns are known primarily through [20] , these
patterns address design concerns of object-oriented systems.
These patterns are important, and must be covered in a
course of study addressing object-oriented programming and
design, but simpler patterns can be used in studying pro-
gramming at the level of loops and conditionals. Using
programming patterns as a means of cataloging program-
ming techniques provides a foundation for the introduction
of design patterns. In [40], Eugene Wallingford outlines his
use of programming patterns for both procedural and object-
oriented programming. The patterns and mode of teaching
that he proposes are an essential foundation for subsequent
work with more complex design patterns. As an example,
consider the problem of processing sequential data, e.g., all
the values in an array, or the values in a file. When the pro-
cessing is complex, beginning students often try to use two
loops where one loop leads to code that is easier to under-
stand and easier to develop correctly. To see this problem in
context, ask students to write code to remove all zeroes from
an array, leaving the order of the other elements unchanged,
i.e., to change the array on the left below to the array on the
right.

1 0 2 0 0 3 4 0

n = 8

1 2 3 4

n = 4

In our experience, most students write one loop to process
all the array entries, and one loop to try to find and remove
zeros. This invariably leads to off-by-one bugs, problems
running off the end of the array, and problems with bound-
ary cases (e.g., first zero, last zero). A simple loop with an
if statement tracking the last non-zero index leads to short,
concise code; see [4]. As another example, consider process-
ing run-length encoded representations of black and white
pixel data for rectangular images, e.g., 4 1 2 3 represents

0000100111 . With no guidance, students often try to write
nested loops to fill a matrix, rather than a single loop to read
the file and populate the matrix. Captured as a pattern we
might call this problemOne Loop for Linear Structuresand
categorize it briefly as

Algorithmically, a problem may seem to call for
multiple loops to match intuition on how control
structures are used to program a solution to the
problem, but the data is stored sequentially, e.g., in
an array or a file. Programming based on control
leads to more problems than programming based
on structure.

Therefore, use the structure of the data to guide the
programmed solution: one loop for sequential data
with appropriately guarded conditionals to imple-
ment the control.

4.2 Iterators

In our first course we use the pattern identified in [20] as
Iterator. Iterators solve the problem of providing sequen-
tial access to the elements of an aggregate without knowl-
edge of how the aggregate is implemented. We have had
great success using iterators of different types in our courses.
We use iterators to hide the details of how aggregate data is
stored and to build a foundation that we follow through three
courses on programming, design, and computer science.

In our first course we use a class to read words from a
file using member functionsfirst, isDone, next, andcurrent.
The code below uses the pattern, realized in a classWord-
StreamIterator, to calculate the average word length inHam-
let. Here the aggregate is a collection of words, each word is
extracted one-at-a-time using the iterator pattern.

int main()
{

WordStreamIterator iter;
iter.open("hamlet");
string word;
int totalWords = 0, totalLetters = 0;

for(iter.first();!iter.isDone();iter.next())
{

totalWords++;
totalLetters += current().length();

}
cout << "average word length = "

<< double(totalLetters)/totalWords << endl;
}

We use the Iterator pattern with the same names for mem-
ber functions in a class that returns the entries in a directory,
either files or subdirectories. Students use this class to prac-
tice recursion in a naturally recursive context: e.g., subdi-
rectories of subdirectories as described in [5]. Students are
accustomed to the iterator pattern and have little difficulty
in applying the functions in a new context. In our second
course we migrate to the kind of external pattern described



in [20] that is part of an inheritance hierarchy. Because the
pattern is the same, and the member functions have the same
names, our students have little difficulty in coping with the
new method for implementing the pattern. In contrast, when
we’ve introduced this more advanced method without the
context of the first course (e.g., in a graduate course in soft-
ware design) students had more difficulty. Using the itera-
tor pattern also builds a foundation for studying iterators as
used in the C++ Standard Template Library and with the Java
Enumerationinterface.

The iterator pattern by itself is of little value without sev-
eral classes that provide a context and an application for its
use. Although experienced programmers can sometimes see
the benefits of a pattern abstractly, students and educators
new to object technology must have examples to make the
patterns concrete before realizing the power of patterns ab-
stractly. The examples we have developed show the prelimi-
nary promise of this line of research. The examples are mo-
tivating because they make significant use of computational
resources, e.g., solving problems that cannot be solved with-
out the computer.

4.3 An Image Processing Framework

One of the frameworks we have developed uses image pro-
cessing of as the basis for labs and assignments in introduc-
tory programming courses. Students are given partially com-
plete classes that they use to load, display, and manipulate
images in several formats, see [6] for details. We use this
program in our first course, and in an accelerated course that
combines two semesters into one for students with prior ex-
perience. Students are asked to implement different parts of
the program in different semesters, so that the same frame-
work supplies material for related, but different assignments
across semesters.

In our software design course we dissect the version of the
program used in earlier courses, and show how several pat-
terns make it more general and more adaptable to use with
either a GUI or text UI. In particular, we use theCommand,
Proxy, Composite, andMediatorpatterns from [20]. A text-
based version using C++ exists for Unix machines, and GUI
versions exist for both C++ and Java running on other plat-
forms.

4.4 A Simulation Pattern Framework

A preliminary version of this assignment framework was
reported in [7]. For the last two years, we have used the
framework successfully in a one-day workshop introducing
women and minorities to computer science The program
is related to the kind of Artificial Life programs described
in [25, 29] and is based on assignment given at Stanford and
developed by Nick Parlante.

This framework is calledDarwin and is based on a two-
dimensional grid world inhabited by creatures competing for
world domination. Creatures run a program specific to their
species and written inDULL (Darwin Unstructured Lattice
Language). These programs control how and when a crea-

ture can hop, turn, see what’s in front of it, and, most impor-
tantly, infect other creatures. When creaturex infects crea-
turey, y’s species changes tox’s species. Species programs
are constructed so that creatures exhibit specific behaviors
(e.g., some species make creatures that are food for other
creatures), and students write DULL programs for species to
take over the world. A screen shot of the Darwin simulation
is shown below.

An example DULL program follows:

Flytrap
ifenemy 4
left
go 1
infect
go 1

The flytrap sits in one place and spins.
It infects anything in front of it
Flytraps do well when they clump

4.4.1 The Observer Pattern

The Model View Controller (MVC) pattern from
Smalltalk [23] is discussed in [20] asObserver and is
realized explicitly in Java with Observer/Observable inter-
faces. The Observer pattern is appropriate when a change in



one object requires that other, observing objects update their
state to reflect the change. The goal is to decouple the object
being observed from the objects that are observing so that
they can be reused and varied independently. The solution
uses two separate class hierarchies: a model and a view or,
in Java, the observable and the observer. The MVC pattern
can be viewed as a Smalltalk idiom (supported directly
in the language), a design pattern (solving a coupling
problem), and an architectural framework (structuring a
large system) [15]. These different views can be discussed
at different points in a curriculum.

In the Darwin program, each creature is an observable
with several views. The world is one observer/view, the bar-
gauges showing how many of each species are alive is an-
other view, and an animated view of an executing program is
a third view. Students don’t write the observers, but typically
write the code for a classCreatureand must update observers
when appropriate. Related work [8] described the use of the
Observer pattern in a program that showed a graphical exam-
ple of automatic bowling scoring. One bowler, the observ-
able/model is watched by two separate observers/views: one
to show the score automatically, and one to show a graphical
simulation of pins being knocked down.

4.4.2 Using Darwin

In this section we show how patterns can improve on ex-
isting practice by showing how Darwin was originally im-
plemented in C, how this technique can be implemented in
C++ using an idiom, and how a Factory pattern improves on
both implementations. The Factory pattern [20] facilitates
alternative implementations of a class or abstract data type
(ADT). We are using a factory to isolate client code from
dependencies on specific class names, i.e., we do not want to
require students to use a specific name likeStudentCreature
for the class they implement. Our students do struggle at first
with this pattern, but the context shows how patterns help in
making a transition to an object-oriented way of thinking. As
part of this project we hope to develop material that makes
the factory pattern more accessible .

We have modeled our intended use of this assignment
after the original Stanford description. The original pro-
gram was designed to be implemented in C, with pointer-
based ADTs for creatures, species, and other types used in
building the Darwin program. C supports forward declara-
tion of pointer-based types, e.g.,Creature * c and code
that uses these types, e.g.,takeTurn(Creature * c)
and getSpecies(Creature * c) , without needing
the concrete implementation of theCreatureADT. Students
are provided with compiled code for each class so that
they begin with an executable program. Each ADT is re-
implemented and the new implementation linked with pro-
vided implementations of other ADTs to create a (hope-
fully) working program. Students learn the benefits of
modular/class-based decomposition and see first-hand how
abstract ADTs are realized with concrete implementations.

When a C++ or Java class is used, this same technique can
be used as sketched below for C++.

class CreatureImpl;
class Species;

class Creature
{

public:
Creature();
Species * getSpecies();
void takeTurn();

private:
CreatureImpl * myImpl;

};

Since we must provide header files, but we want to leave
implementation design decisions to the students, we can use
this pointer-based implementation, called thehandle-body
idiom in [16]. However, this method has severe drawbacks;
for example, students must write a class named Creature, and
it is difficult to experiment with alternate definitions of the
class.

4.4.3 The Factory Pattern

When we first began to develop the Darwin suite we
polled several listserv groups devoted to object-oriented pro-
gramming in the first years of academic study. We pro-
posed the handle-body idiom as one solution to the abstrac-
tion/concrete realization problem here and another solution
based on theFactorypattern. The Factory pattern is some-
times called avirtual constructor. Students create creatures
in programs using the following code.

Factory * fact = new CreatureFactory;
Creature * c = fact->makeCreature();

Student code uses an abstractCreatureclass where ab-
stract now has a technical term: declared specifically as ab-
stract in Java, or having one pure virtual function in C++.
The key aspect of an abstract class is that one cannot be con-
structed, only derived classes of the abstract class are con-
structed. In the code above, theCreatureFactoryreturns an
instance of a class derived fromCreature. Students must
implement a factory class, but the factories are typically in-
stantiated once in main and used thereafter.2

The sentiment of those responding to the online query was
overwhelmingly in favor of using the handle-body idiom but
recognized that the Factory pattern was the better approach.
The consensus was that the Factory pattern would be too dif-
ficult to explain but that it was clearly the more general ap-
proach, and would lead to better designs and understanding
in the long run. One of the primary goals of this project is
to develop materials that will make the better method recog-
nized as superior in theory and in pedagogical practice.

2Factories are often implemented using another pattern,Singleton,
which makes it impossible to create more than one of each kind of factory
in a program.



5 Using Class Libraries

In this section we summarize one method for using patterns
and raising the level of design discussion that builds on this
framework. A complete description of the libraries, classes,
and the method of using these tools is found on our website.
As part of this project we have developed a framework of re-
lated classes and libraries designed around several patterns.
The set of related classes is calledBargello.

The class libraries in Bargello include the following.

� A class for parsing command line arguments in C++
and Java

� A pattern and concrete classes realizing the pattern for
managing limited resources, e.g., a large number of
open files in certain applications.

� A file system abstraction that can be used to traverse
directories, tar files, ftp sites, and URLs.

Supporting material on our website shows a technique
called “Before and After” that we discovered at the first UP
(Using Patterns) conference. Complete programmed solu-
tions to a specific problem are analyzed for strengths and
weaknesses with an eye to how the solutions might be im-
proved by using patterns. In our case, student solutions to a
problem posed in our Software Design course are dissected
(the solutions are anonymous). In many cases the designs
are improved by the introduction of appropriate patterns to
solve problems that were not solved, or that were solved us-
ing methods that in turn lead to other problems. This tech-
nique of using patterns makes concrete the idea attributed to
both Fred Brooks and Henry Petroski: “good design comes
from experience, and experience comes from bad design.”
The before and after model shows students concretely how
designs and programs can be improved by using patterns.
The discussion is facilitated by a pattern vocabulary and a
higher level of discourse caused, in part, by incorporating
patterns into our curriculum.

6 Systematic and Systemic Changes

Current computer science curricula reflect expertise of indi-
vidual faculty well-versed in subdisciplines of the field. In-
tegration of concepts throughout a curriculum, a so-called
spiral approach, is normally accidental rather than planned.
This situation will change as an object-oriented approach is
adopted. Faculty, especially in smaller schools, will need
to become well-versed in what may be a new way of think-
ing. An analogy applies to recent changes in the curricula
of many medical schools. Rather than using a course-based
approach: gross anatomy followed by biochemistry followed
by clinical perspectives and so on, an integrated systemic ap-
proach is followed. A cadaver may serve as the springboard
to a large-scale introduction of many related concepts rather
than merely as the object of dissection. Problems are put in
context, and in the context of whole study rather than iso-
lated subdisciplines.

The same approach is possible in computer science, al-
though this may be unnatural for many faculty. The work
that will result from this project will, we hope, make a
systematic approach to a systemic curriculum possible at a
wide-range of institutions. Several kinds of materials will be
developed as part of the project.

� A collection of idioms for C++ and Java that facili-
tate an object-oriented approach to learning these lan-
guages rather than a syntax driven approach. These
idioms will be addressed specifically at those new to
these languages but who may have experience in other
languages.

� A collection of simple programming patterns of the
kind outlined in Section 4.1 that focus on general issues
not specifically related to object-oriented programming.

� A collection of design patterns that help in design-
ing and implementing larger programs and in learning
about object-oriented design and programming.

� Examples that are motivating for both students and ed-
ucators which provide the context for learning and dis-
cussing idioms and patterns. However, examples will
be of little help without support for educators in using
the examples as the basis for lectures, labs, and assign-
ments. This support, in the form of web-based materials
(and perhaps textbooks), is essential for the long-term
success of the project.

� Research in how patterns and idioms are best used. This
research has repercussions beyond the curricular issues
addressed by the previous items. The learning strategies
of experienced and novice programmers is a research
area that could be addressed by this project as well.

Current trends in computer science education [18] call for
the removal of some core courses to be replaced by more
modern courses. It is unlikely that faculty will be will per-
suaded to drop courses for which they assume responsibility,
especially when the alternative requires new courses and cur-
ricula. A systemic approach to the early courses and the cur-
riculum in general addresses these concerns. The systemic
approach, implemented systematically, allows concepts to
spiral throughout the curriculum. Revisiting material intro-
duced in one course in later courses makes the material more
accessible to students [43]. Although the main thrust of this
project is not the systematic reform of the curriculum, the
materials developed as part of this project can be used in
a systemic approach to the first two years of the curricu-
lum. Such an approach requires the software equivalent of
a cadaver. This support must be a framework of projects,
explanatory material, and patterns that tie the frameworks
together. This proposal addresses these concerns by deliv-
ering instructional materials in the form of projects, class
and program frameworks, and the materials needed for ed-
ucators and students to use these materials. The program-
ming frameworks outlined above (e.g., Darwin) provide the



reusable software cadaver we think will help make patterns
accessible while providing material for developing interest-
ing problems and assignments.

7 Related Work

There has been some work in using patterns in intro-
ductory courses. Wallingford [40, 27] shows how pat-
terns can be used with a procedural and an object-
oriented paradigm. This work is part of three-day work-
shop that will take place in conjunction with ChiliPLoP
(see http://www.agcs.com/patterns/chiliplop/ ).
These patterns are what we have termed programming pat-
terns, and are typically not used in frameworks or class li-
braries. Recent work in [19] also addresses patterns in in-
troductory courses. Work at Brown University using Object
Pascal in the first course [14] uses patterns implicitly, these
patterns are not identified per se. In particular, the patterns
are not named which makes them difficult to find and use.
This work has been less accessible to the community be-
cause of the use of Object Pascal [38]. However, the course
has migrated from Pascal to Java which will help make the
work more accessible to educators interested in following an
object-oriented approach. Several papers address the use of
design patterns in data structures courses [21, 26].

8 Summary

Patterns can and should be used to help develop basic and
more advanced programming and design skills in academic
computer science courses. Simple programming patterns can
be used to help acclimate students and educators to the use
of patterns, and to build a foundation for continued study of
object-oriented design patterns. Object-oriented program-
ming will emerge as the paradigm of choice in academic
computer science programming courses. The language used
may change, e.g., from Ada to C++ to Java to an as yet un-
specified alternative, but the object paradigm is better for
many programming endeavors (though not all) than tradi-
tional structured programming. To use object-oriented de-
sign techniques and languages requires a new way of think-
ing, one that does not come naturally to many of us who have
been mired in a structured programming world. Design pat-
terns help facilitate the transition to an object-oriented way
of thinking and, we argue, are essential to use object-oriented
techniques correctly and efficiently. Our project is develop-
ing materials, available for distribution via the world-wide
web, to help educators make the transition to using design
patterns. These materials can be used for self-learning, in
the classroom, and as part of a more broadly-based spiral
approach.

A Web Dissemination

The re-development of material found by searching courses
at other institutions shows the promise and the drawbacks
of the web as a means of disseminating information, ideas,

assignments, and pedagogical modules. Stanford’s website
[where we first learned of Darwin — see Section 4.4] pro-
vided neither code nor libraries for use outside of Stanford.
Although the code was made available by contacting the in-
stitution, platform incompatibilities can preclude re-using
assignments in other contexts. In this case, the graphics
library used was part of material developed in conjunction
with a book [31], and freely available. However, we found
it necessary to develop our own version to support a richer
graphics context, to be useful using both Java and C++, and
to support an object-oriented approach based on patterns.

Material we make available on the web in conjunction
with this project and our courses includes source code, li-
braries, and instruction. Modules developed as part of this
ongoing project include documentation and explanatory ma-
terial aimed directly at educators. Pattern-based modules re-
quire extensive explanatory materials since nearly all pattern
books and articles are aimed at those experienced in object
technologies.3

The materials developed will include guidelines and dis-
cussion on how to use the patterns that are shown in concrete
programs in new settings. The patterns community recog-
nizes similar shortcomings in the use of patterns as opposed
to the discovery and cataloging of patterns [37]. AUsing
Patterns Conferencewas held for the first time in 1997. The
conference was devoted to the use of patterns rather than to
their formation and discovery.

Thanks

Robert C. Duvall helped immensely in the development of
this paper.

References

[1] Christopher Alexander.A Pattern Language. Oxford Univer-
sity Press, 1977.

[2] Christopher Alexander.The Timeless Way of Building. Oxford
University Press, 1979.

[3] O. Astrachan and D. Reed. AAA and CS-1: The applied ap-
prenticeship approach to CS 1. InThe Papers of the Twenty-
Sixth SIGCSE Technical Symposium on Computer Science
Education, pages 1–5. ACM Press, March 1995. SIGCSE
Bulletin V. 27 N 1.

[4] Owen Astrachan. Pictures as invariants. InThe Papers of the
Twenty-Second SIGCSE Technical Symposium on Computer
Science Education, pages 112–118. ACM Press, March 1991.
SIGCSE Bulletin V. 23 N 1.

[5] Owen Astrachan. Self reference is an illustrative essential. In
The Papers of the Twenty-Fifth SIGCSE Technical Symposium
on Computer Science Education, pages 238–242. ACM Press,
March 1994. SIGCSE Bulletin V. 26 N 1.

[6] Owen Astrachan and Susan Rodger. Animation, visualiza-
tion, and interaction in cs 1 assignments. InThe Papers of

3Although we hope to develop some of this material into a book, all
materials on the web will include complete source, right to use and modify
the source, and explanatory text aimed at educators.



the Twenty-ninth SIGCSE Technical Symposium on Computer
Science Education. ACM Press, 1998.

[7] Owen Astrachan, Trevor Selby, and Joshua Unger. An object-
oriented, apprenticeship approach to data structures using
simulation. InProceedings of the Twenty-Sixth Frontiers in
Education, pages 130–134, 1996.

[8] Owen Astrachan, James Wilkes, and Robert Smith.
Application-based modules using apprentice learning for cs 2.
In The Papers of the Twenty-eighth SIGCSE Technical Sympo-
sium on Computer Science Education, pages 233–237. ACM
Press, February 1997.

[9] Kent Beck. Using a pattern language for programming. In
Workshop on Specification and Design, OOPSLA 87, 1987.
ACM Sigplan Notices 23, 5.

[10] Frederick Brooks. The Mythical Man Month. Addison-
Wesley, 20th anniversary edition edition, 1995.

[11] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter
Sommerlad, and Michael Stal.A System of Patterns: Pattern-
Oriented Software Architecture. John Wiley, 1996.

[12] Marshall Cline. Pros and cons of adopting and applying
patterns in the real world. Communications of the ACM,
39(10):47–49, October 1996.

[13] Alistair Cockburn. The interaction of social issues and soft-
ware architecture.Communications of the ACM, 39(10):40–
46, October 1996.

[14] D. Brookshire Conner, David Niguidula, and Andries van
Dam. Object-Oriented Programming in Pascal: A graphical
approach. Addison Wesley, 1995.

[15] James Coplien.Software Patterns. SIGS books, 1996.

[16] James O. Coplien.Advanced C++ Programming Styles and
Idioms. Addison Wesley, 1992.

[17] James O. Coplien and Douglas C. Schmidt, editors.Pattern
Languages of Program Design. Addison Wesley, 1995.

[18] Alan Tucker et. al. Strategic directions in computer science
education.ACM Computing Surveys, 28(4), December 1996.

[19] Harriet J. Fell, Viera K. Proulx, and Richard Rasala. Scaling:
A design pattern in introductory computer science courses.
In The Papers of the Twenty-Ninth SIGCSE Technical Sympo-
sium on Computer Science Education. ACM Press, 1998.

[20] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[21] Natasha Gelfand, Michael T. Goodrich, and Roberto Tamas-
sia. Teaching data structures design patterns. InThe Papers of
the Twenty-Ninth SIGCSE Technical Symposium on Computer
Science Education. ACM Press, 1998.

[22] Brandon Goldfedder and Linda Rising. A training experience
with patterns. Communications of the ACM, 39(10):60–64,
October 1996.

[23] G.E. Krasner and S.T. Pope. A cookbook for using the model-
view controller user interface paradigm in smalltalk-80.Jour-
nal of Object Oriented Programming, 1(3):26–49, 1988.

[24] T.D. Meijler and R. Engel. Making design patterns explicit
in face: A framework adaptive composition environment. In
EuroPLoP 96, 1996.

[25] Glenn Meter and Philip Miller. Engaging students and teach-
ing modern concepts: Literate, situated, object-oriented pro-
gramming. InThe Papers of the Twenty-Fifth SIGCSE Techni-
cal Symposium on Computer Science Education, pages 329–
333. ACM Press, March 1994. SIGCSE Bulletin V. 26 N 1.

[26] Dung Nguyen. Design patterns for data structures. InThe
Papers of the Twenty-Ninth SIGCSE Technical Symposium on
Computer Science Education. ACM Press, 1998.

[27] Pattern-based programming instruction. NSF DUE-9455736,
1995.

[28] D.L. Parnas. On the design and development of program fam-
ilies. IEEE Transactions on Software Engineering, 2:1–9,
1976.

[29] Richard Pattis. Teaching oop in c++ using an artificial life
framework. In The Papers of the Twenty-Eighth SIGCSE
Technical Symposium on Computer Science Education, pages
39–43. ACM Press, February 1997.

[30] Robert S. Rist. Schema creation in programming.Cognitive
Science, 13:389–414, 1989.

[31] Eric S. Roberts.The Art and Science of C. Addison Wesley,
1995.

[32] Patricia K. Schank, Marcia C. Linn, and Michael J. Clancy.
Supporting pascal programming with an on-line template li-
brary and case studies.International Journal of Man-Machine
Studies, 38(6):1031–1048, June 1993.

[33] M. Shaw and D. Garlan.Software Architecture: Perspectives
on an Emerging Discipline. Prentice Hall, 1996.

[34] Mary Shaw. Patterns for software architecture. In J. Coplien
and D. Schmidt, editors,Pattern Languages for Program De-
sign (PLoP), pages 453–461. Addison-Wesley, 1995.

[35] E. Soloway and K. Ehrlich. Empirical studies of program-
ming knowledge.IEEE Transactions on Software Engineer-
ing, 10(5), 1984.

[36] Elliot Soloway. Learning to program = learning to construct
mechanisms and explanations.Communications of the ACM,
29(9):850–858, 1986.

[37] Jiri Soukup. Implementing patterns. In J. Coplien and
D. Schmidt, editors,Pattern Languages for Program Design
(PLoP), pages 396–412. Addison-Wesley, 1995.

[38] Andries van Dam. Object oriented programming: Getting it
right from the start. NECUSE symposium, 1995.

[39] John Vlissides, James Coplien, and Norman Kerth, editors.
Pattern Languages of Program Design 2. Addison Wesley,
1996.

[40] Eugene Wallingford. Toward a first course based on object-
oriented patterns. InThe Papers of the Twenty-Seventh
SIGCSE Technical Symposium on Computer Science Educa-
tion, pages 27–31. ACM Press, 1996.

[41] Eugene Wallingford. Roundabout: A pattern for
writing recursive programs. InPLoP 1997. 1997.
http://www.cs.uni.edu/�willingf/research/patterns.

[42] A. Weinand, E. Gamma, and R. Marty. ET++ – an object-
oriented application framework in c++. InOOPSLA ’88,
1988. SIGPLAN Notices, 23(11).

[43] Karl Wender, Franz Schmalhoer, and Heinz-Dieter Bocker,
editors.Cognition and Computer Programming. Ablex, 1995.


