Concrete Teaching: Hooks and Props as | nstructional
Technology

Owen Astrachan
Duke University
Department of Computer Science
Durham, NC, USA

ola@cs.duke.edu

1. ABSTRACT

Hooks and props are menta or physical images used in the
classroom which help students as they learn new topics.
Concrete and constructive teaching are essential in
introductory programming courses. In this paper we
discuss active teaching and some ideas using physica
props and images that in our experience have enhanced the
teaching and learning process.

1.1 Keywords
Active learning, active teaching, introductory computer
science, C++, Java, pointers.

2. INTRODUCTION

There has been significant recent work on using
technology to enhance the educational process. Much of
this work focuses on developing online courseware, eg.,
[5, 6], labs, e.g., [4, 2], and subject-specific support using,
for example, visualization [1, 11]. Research into different
styles of learning has focused recently on learner-centered
design [3, 8, 13] which emphasizes (among other things) a
constructionist theory of learning wherein students learn
through a process of building their own mental models.
Facilitating mental model-building with well-crafted
instructional software, labs, and curricula is an important
component in improving education.

Technology and the web are perhaps the most important
tools with which we can augment and change what and
how students learn. In this paper we argue that providing
concrete, constructive hooks, using props were possible, is
necessary for students to get the most out of the teaching
process. Here we contrast the teaching process, directed by
a guide or teacher, with the learning process, where we
agree that students are their own best guide. A hook is a

mental or physical image on which students can hang their
understanding as they learn a new topic. Concrete and
congtructive teaching is crucia in introductory
programming courses where students must build mental
models of language constructs to become proficient or
accomplished programmers and designers. Visualization
and courseware are crucia in reaching this goal, but
teacher-directed instruction is an important component of
successful introductory programming courses. The work
reported in [7] emphasizes active learning in the
classroom. We espouse this approach as well, in fact it is
crucial. In this paper we discuss methods that help
teachers augment active learning with hooks implemented
using bare-bones technology to enhance the learning and
teaching process.

Physics classes, for example, often use demonstrations to
provide a hook for student understanding. For example,
the classic monkey gun experiment illustrates how gravity
affects falling objects. In [7], McConnell uses the term
physical activity, and illustrates objects and classes using
paper bags containing private data. This hook, in the shape
of a physicd and menta image students use both
conscioudly and unconsciously, is an example of the
methods we report on here. We provide three examples of
these physical hooks and an example of a metaphorical
approach to explaining programming concepts. Metaphors
are also important in didactic learning. In [9], for example,
an explanation of a well-engineered program in terms of
stereo components shows how functions fit together using
parameters as stereo components fit together through well-
defined component interfaces and wires.

3. Parameter Passing

In our introductory courses we use C++. For the purpose of
this section, the only important feature of the language is
that there are three modes for passing parameters. by-
value, by-reference, and by-const-reference. In contrast,
Pascal has two modes of passing parameters. by-value and
by-reference, C and Java have only one mode: by value',

! Note that all Java parameters are references/pointers, but the
parameters are passed by value, i.e,, it is not possible to modify
a parameter by assignment and have the assignment have an
effect outside of the function in which the assignment takes

and Ada has (at least) three: in, out, in-out. Our students
have little difficulty understanding parameter passing
when we use only pass-by-value, but often have problems
understanding when we use the other modes in C++, and
when we discuss aliasing. Interestingly, we did not have
the same problems with parameters when we used C as
when we used Pascal or C++.

In our introductory course we have a lab specifically
designed for students to discover the differences among the
three parameter passing modes on their own. We use
group exercises in class were students analyze and predict
the behavior of functions written with different parameter
passing modes. However, one active presentation gives
students a physical experience as well as a mental model
that augments the other learning activities. We represent
variables and parameters as Frisbees (flying discs). We
bring severa sizes and colors of Frisbee to class when we
perform this in-class demonstration so that we can
represent different types, e.g., string, int, object. In the
active demo, one student represents a function and another
student represents a code block that calls the function. We
begin by explaining that storage for value parameters is
owned by the function. To call the function, the caller gets
the parameter/Frisbee from the function, copies a value
onto the Frisbee by either writing on the Frisbee or using a
post-it, and passes the parameter. Of course the exchange
of parametersis realized by flying the parameters between
the caller and the function. In the demo we use different
functions, not all of which modify the parameter. Since
the parameter is a local copy owned by the function, the
modifications have no affect in the calling code.

When passing parameters by reference, storage is owned
by the calling code. To pass a parameter, the function gets
the storage and value for the parameter from the calling
code. Usualy we pass a piece of string attached to the
parameter so that the parameter itself stays with the caller.
This allows us to attach more than one piece of string to
the same parameter to illustrate the affects of aliasing in
parameter passing. Usually we pass the parameter first and
then use the string to model the actual process more
closely. The piece of string is also the same size regardless
of the size of the parameter. This reinforces pass-by-
reference for efficiency concerns. C++ has the nice feature
of alowing pass-by-reference for efficiency to be combined
with const for safety (non modifiability by the called
function). To illustrate this mode we enclose the Frisbee in
a plastic bag and throw the bag (this is before we use the
string-and-Frisbee model of reference parameters). The

called function examines the Frisbee, but the plastic bag is
protection against modifying the parameter.

4. Linked Lists

A significant portion of our second course, and part of our
first course, is spent on helping students master linked
data structures, specifically lists and trees. We use
traditional “box-and-pointer” diagrams, augmented with
programs and labs to illustrate how different operations
affect linked lists, e.g., adding a node, deleting a node,
traversing alist. We also use ddd, a debugger that provides
a graphical representation of linked structures which
students can resize, move, and inspect. The use of the
debugger is essential in providing students with a visua
model of what their code is doing. We have used
visualizations [10, 14] to help as well, but use a hook in a
physica demo that is a proven success in providing
students with the same kind of mental and physical model
that Frisbees provide for parameter passing.

We use plastic building blocks designed for small children.
These blocks come in different colors, with different
shapes, and ;

have beaded
ends that allow
the blocks to
be plugged
into each
other. Figure 1
shows these
props in
action, one as
a circularly
linked-list and
one as a plain
linked list.

Figure 1. Building Block as Linked

Certainly these
props are not essential to student understanding of linked
structures, but they provide a physica hook on which
students can build a mental model of how linked structures
work. We think the physical nature of the blocks is an
important addition to visualizations and simulations that
we also use.

5. Pointers
Students often have a difficult time with pointers in C++

and references in Java’. To illustrate what happens when
new is caled in either C++ or Java, we use a physical
representation of a pointer made out of a sticky, stretchable
rubber-like substance commercially marketed as “icky-
poo”. We use different colors of icky-poo to represent

place. In addition to enlivening the classroom discussion of
parameters, this demonstration provides a physical and mental
hook that students use in subsequent labs and programming
exercises.

2 |n Java references are essentially pointers, but since there is no
address-of operator in Java and since garbage collection makes
it unnecessary to delete/free memory, students do not encounter
some of the same problems as they do in C++.

typed pointers and references in C++ and Java,
respectively. In code, a pointer definition without a value
assignment results in a dangling pointer convincingly
shown as a wiggly, shaking pointer. A null pointer is
shown hanging downward, al pointers can point to this
“gpecial place” which facilitates pointer comparison
without memory allocation. Finally, calling new returns a
chunk of memory that is literaly attached to a pointer. In
our class demo we use different colored or sized paper to
represent different types of memory, e.g., int and string.

Calling new causes the teacher to cast the pointer (no pun
intended, here cast is used in the sense of a fishing line)
towards the pool of memory. A good cast results in the
larger end of the pointer becoming attached to a piece of
paper, which is then snapped back to the caster because of
the elastic
properties of the
pointer. A bad cast
yields no memory
engendering a
discussion of
whether this results
in a null pointer or
an exception. In
Figure 2 both null
(hanging straight
down) and
successfully
allocated (attached
to the board)
pointers are shown.
Again the physical nature of this demo, combined with the
actual demonstration which typically results in a few
misses, but well-cheered successful allocations, is an
important facet of other methods we use for students to
learn about pointers.

Figure 2. null, non-null pointers

6. Outside Readings as M etaphors

We use metaphors in addition to physical props. Often
these metaphors are found in places one might not expect.
For example, The Cat in the Hat Comes Back [12] has a
fine example of recursion including a base-case (a small
cat named Voom) used to clean up red snow. In our classes
we read this book aloud on the last day of class. This is
always a resounding success bringing a different kind of
understanding to students. We have severa kinds of
students in our introductory courses: those who continue
with programming and computer science and those for
whom the course is their last exposure to the field; all
these students remember the end-of-class reading. We do
not advocate sacrificing rigor and understanding for show.
However, when a show can reinforce the rigor, we believe
it is important for students to remember that learning and
class are enjoyable and that topics from computer science
can be found everywhere.

Other Dr. Seuss books are used in our operating systems
course to explain deadlock (The Lorax), and in our
introductory courses to explain linked lists (I can Lick
Thirty Tigers Today).

7. Summary

Using technology in the classroom, and as part of the
teaching and learning process, is essential in the current
environment. Too often, however, we forget that
explanation-based teaching does have a place in the
classroom, and that some lecturing can be a valuable
addition to group exercises, labs, and interactive learning.
Props and metaphors should be used to augment the
classroom experience and to provide a physical image that
hel ps students construct a mental model.

8. REFERENCES

[1] ASTRACHAN, O., AND RODGER, S. Animation,
visualization, and interaction in CS 1 assignments. In
The Papers of the Twenty-ninth SGCSE Technical
Symposium on Computer Science Education (1998).

[2] BALDWIN, D. Three years experience with gateway
labs. In Proceedings of the 1996 ITCSE conference
(1996), ACM/SIGCSE, pp. 6-7.

[3] JACKSON, S. L., KRAJCIK, J., AND SOLOWAY, E.
The design of guided |learner-adaptable scaffolding in
interactive learning environments. In Proceedings of
CHI 98 (1998).

[4] KNOX, D., WOLZ, U. et al. Use of laboratories in
Computer Science education: guidelines for good
practice. In Proceedings of the 1996 ITCSE
conference (1996), ACM/SIGCSE, pp. 167-181.

[5] LAWHEAD, P. B. A model for the creation of online
courseware. In Proceedings of ITCSE 97 (1997),
ACM/SIGCSE, pp. 31-36. SIGCSE Bulletin,
September 1997.

[6] MARSHALL, A., AND HURLEY, S. Interactive
hypermedia courseware for the world wide web. In
Proceedings of the 1996 ITCSE conference (1996),
ACM/SIGCSE, pp. 1-5.

[71 MCCONNELL, J. J. Active learning and its use in
Computer Science. In Proceedings of the 1996 ITCSE
conference (1996), ACM/SIGCSE, pp. 51-54.

[8] PAPERT, S. The Children's Machine (Rethinking
School in the Age of the Computer). Basic Books,
1993.

[9] REGES, S. Building Pascal Programs. Little, Brown
and Company, 1987.

[10] RODGER, S. An interactive lecture approach to
teaching computer science. In The Papers of the
Twenty-Sxth S GCSE Technical Symposium on
Computer Science Education (March 1995), ACM
Press.

[11] RODGER, S. H. Integrating animations into courses.
In ACM SGCSE/SIGCUE Conference on Integrating

Technology in Computer Science Education
(Barcelona) (1996), pp. 72-74.

[12] SEUSS, D. The Cat in the Hat Comes Back. Beginner
Books, 1986.

[13] SOLOWAY, E., JACKSON, SL. KLEIN, J,
QUINTANA, C.,, REED, J, SPITULNIK, J,

STRATFORD, SJ, AND STUDER, S. Learning
theory in practice: Case studies of learner centered
design. In http://hi-ce.eecs.umich.edu/papers (1997).

[14] STASKO, J. Using student-built algorithm animations
as learning aids. In The Papers of the Twenty-eighth

SIGCSE Technical Symposium on Computer Science
Education (1997), pp. 25-29.

