Self-Reference is an Illustrative Essential

Owen Astrachan
Department of Computer Science
Duke University
Durham, NC 27708
ola@cs.duke.edu

Abstract

This paper includes an abstract, a discussion of the
usefulness of self-reference in early computer science
courses, and some examples to illustrate this usefulness.
Most readers will not be troubled by this example of
self-referential writing. Why then is self-reference, usu-
ally in the form of recursive subprograms, thought to
be so onerous as to be placed in its own left-until-the-
end-and-often-uncovered chapter in most introductory
texts? Self-reference is one of the cornerstones of com-
puter science from the unsolvability of the halting prob-
lem, to writing a Pascal compiler in Pascal, to reveling
in the beauty of Quicksort. We argue that the notion of
self-reference should permeate first courses in computer
science. If this is to be the case such courses should take
a view far broader than “Wow, I can average 10 num-
bers with the skills I learned in my first programming
course!”

1 Introduction

Students in a first course in computer science have diffi-
culty with a wide variety of topics. Although computers
are ubiquitous at all educational levels, many students
often have trouble understanding what an operating sys-
tem is, what a compiler does, why it is hard to program,
and what a computer can and cannot do. Although we
have no panacea to cure all these ills, we argue in this pa-
per that the general concept of self-reference is not only
of fundamental importance in computer science, but is
useful in helping students come to understand many ba-
sic concepts of computer programming and computer
science.

We offer several examples of self-reference that can

be used to explain different aspects of computer science.
Most of the examples occur in the context of program-
ming since we believe that programming on a real ma-
chine should be an integral part of introductory courses
and that whenever possible advanced topics should be
introduced and developed in a programming context.
We present examples in either C++ or Pascal, but any
imperative language could be as easily used. Many of
our examples are also useful in first courses that use
Scheme, but by design recursion in these courses plays
a different role than it does in courses based on Pascal-
like! languages. We have used these examples success-
fully in survey courses for non-majors as well as in our
first course for majors. In general, student enthusiasm
for these examples runs high.

Before developing our examples, we offer support for
our position from Daniel McCracken, the 1992 winner
of the SIGCSE award for contributions to computer sci-
ence education [McC87]:

Is Recursion an Advanced Topic?

Absolutely not. Recursion is fundamental
i computer science, whether understood as
a mathematical concept, a programming tech-
nique, a way of erpressing an algorithm, or a
problem-solving approach. It is too important
and too valuable to be belittled by showing a re-
cursive factorial function in CS1, which con-
veys almost nothing of its power.

Recursion is not trivial, but it is not tensor
calculus.

We owe it to our students to treat recursion and self-
reference as an accessible topic and not to stamp it with
a “badge of dishonor”. By covering recursion early, for
example, students may come to understand it before
learning enough to know that it’s difficult.

1We include Pascal, C, C++, Modula-2, and Ada in this list al-
though each of these differs from the others in fundamental ways.

2 The First Example

Students study some syntactic details of a language in
order to be able to write their first program. In [Pat94],
Rich Pattis argues that studying syntax in the form of
EBNF grammars provides a productive beginning to in-
troductory courses. Such grammars invariably include
self-referential rules for expressions and identifiers, pro-
viding an early use of self-reference that is accessible to
students.

Many courses and texts begin the study of a language
using programs whose only task is to write strings; the
canonical example of such a program is one that prints
“Hello, World” [KR78]. Such programs are useful be-
cause students must be able to use an editor, a compiler,
and understand rudimentary features of an operating
system in order to be able to run them. In our first
course we use such programs as well, but the programs
print a sequence of characters that is a superset of “Hello
World”. The program and the output it produces are
illustrated in Figure 1.

program MetaHello;

begin
writeln('program HelloWorld;');
writeln('begin');
writeln(' writeln(''Hello World'');');
writeln('end.');

end.

program HelloWorld;
begin

writeln(’Hello World’);
end.

Figure 1: An interesting first program

We ask our students to save the output in a file and
to compile and execute it. When students understand
everything they have done with this example, they have
a much deeper understanding of programming and com-
puters than they do using a traditional “Hello World”
program.

It is a very small step to generalize metahello.p to one
that prompts the user for a string and then generates a
program that, if compiled and run, will print the string
as output. Thus the user/writer of the program has,
to a degree, parameterized metahello.p by increasing its
functionality from a “Hello World” generating program
to an any-string generating program. Students can eas-
ily construct such a program and then generalize yet
again to a program that prompts for a file for input
rather than a string and then generates a program that,
if compiled and run, will print the file as output. We
provide students with such a program and have them ex-
periment by running the program on metahello.p. This

produces a program whose output is a program whose
output is a program. Although this is initially very con-
fusing for students, they can examine the output from
each stage of this process in coming to grips with the
process of compiling and running programs.

Finally, to emphasize the self-referential aspects of
this problem even more, students run the file-printing
meta-program (object) on itself (source); this process is
illustrated in Figure 2.

(meta source) (meta object)

compile
=
program Met aProgr am
execute
with meta source as input

execute

program Cr eat ePr og;

. begin
(create object) =——————— .
compile writel n(’ program MetaPrograni);
end.
(create source)

Figure 2: a (meta) program that creates programs

Thus, in some sense, self-reference has come full cir-
cle. In the process we have discussed compilers, I/0,
redirection (if using a DOS or Unix? environment), and
both source and object files. Students come to under-
stand the last distinction since running the last program
on the object version of itself produces a much differ-
ent program than when run on the source version of
itself. The idea of parameterization is also emphasized
since students use a program that produces output that
differs according to the input.

At the same time this exercise makes it clear that
running programs on other programs is an every-day
occurrence since compilers are certainly programs, edi-
tors are programs, and students have now used another
program that accepts programs as input. We also pro-
vide a degree of foreshadowing by running a program on
itself; we return to this later in discussion of noncom-
putability and the halting problem.

Student enthusiasm for the “first program” is much
higher since we have incorporated these ideas rather
than relying on such typical examples as adding two
numbers or computing interest rates. Although this is
anecdotal evidence, we have found that a higher degree
of enthusiasm usually translates directly to better per-
formance.

3 Recursive Programs

Almost all introductory texts, regardless of the imper-
ative language being covered, treat recursion as a “spe-
cial” topic. The canonical examples of factorial and Fi-
bonacci numbers are often covered with only some texts

2Unix is a registered trademark

advising that recursion is not the “right way” to solve
these problems. Students are left to ponder exactly
what recursion is good for since they see few examples
of it and the examples are not integrated throughout
the text.

Our philosophy is that students should be shown re-
cursive subprograms whenever appropriate. Beginning
students should be asked to modify recursive subpro-
grams to show an understanding of how recursion works.
Sometimes it may be useful to require certain subpro-
grams to be written recursively, but it is only when a
student realizes on her own that recursion is the appro-
priate tool that the tool is fully appreciated.

Most importantly, however, students should be shown
as many examples as possible in order for them to come
to “believe” in recursion. Rather than adopt an opera-
tional viewpoint and diagram the state of the stack over
a series of recursive calls, we believe that the beauty and
power of recursion are best understood at a high level by
the use of concrete examples. Only after students have
begun to understand conceptually how recursive sub-
routines work at a higher level should they be shown
details of how recursion is implemented.

3.1 Writing Backwards

One of the early exercises we use in our first course for
majors® requires students to calculate the average word
length in texts by authors such as Melville, Twain, and
Poe. On many machines the intermediate calculations
cause integer overflow leading to “interesting” results.
This leads to an informal discussion of how integers are
implemented. We do not discuss this at the level of
explaining two’s complement, but we do expect students
to understand the binary representation of an integer.
We use the routine shown below to print a number.
Students are asked to reason about switching the order
of the statements in the body of the if statement and
to experiment with printing different numbers in binary
(for example, what happens when the precondition is
violated?).

void

PrintBinary(int n)

// precondition: n > 0

// postcondition: n printed in binary

if (n '= 0){
cout << (n % 2);
PrintBinary(n / 2);

}

}

The study of this problem leads to a similar exercise
that we have used successfully in developing an under-
standing of recursion: printing a number with commas
inserted properly, e.g., 31,415,926. If students are given

3This course recently switched from a C based course to a C++
based course.

code that is tail-recursive (as in the binary number ex-
ample above) so that it fails to work as intended, they
can usually determine (if only by trial and error) how
to fix the code so that it performs properly.*

3.2 Towers of Hanoi

Programs that compute the moves necessary to solve
the Towers of Hanoi problem are often used to intro-
duce recursion. It is a simple matter to bring an actual
representation of a six disk Towers of Hanoi to class and
discuss the problem. In every semester in which we have
done this, a student develops a recursive formulation of
the solution, usually in conjunction with showing how
many moves are necessary to move n disks.

Unfortunately, not enough use is made of this problem
in most courses. In addition to providing an example of
recursion that can be readily understood, the Towers of
Hanoi is an example of a provably intractable (i.e., ex-
ponential) problem. It is very important for students in
the first courses in computer science to have a rudimen-
tary understanding of algorithmic complexity. In addi-
tion to understanding the difference between O(n logn)
and O(n?) sorting algorithms, students should under-
stand the difference between an NP-complete problem
(most likely an intractable problem) and a provably in-
tractable problem. Students should also be aware that
such asymptotic measures are important, but may not
be relevant if the problem size is small.

To introduce these concepts in our non-major’s class,
we use a new measure of computer performance abbre-
viated DIPS, for Disks Per Second, that represents the
number of disks moved per second in solving, for ex-
ample a 25 disk Towers of Hanoi. Our students mod-
ify a program that prints the moves so that it counts
the moves instead thus avoiding measuring I/0. Ta-
ble 1 indicates DIPS performance for the machines in
our department (25 disks requires 22° — 1 = 33,554, 431
moves.)

machine time for 25 disks DIPS
386SX 46 minutes 12,000
486 (33 Mhz) 10.5 minutes 53,000
convex C1l 4.6 minutes 120,000
dec 2100 85 secs 390,000
dec 3100 63 secs 530,000
sparc 1+ 61 secs 550,000
sparc 2 26 secs 1,250,000

dec alpha AXP 9 secs 3,700,000

Table 1: Measuring Performance using DIPS

This example of recursion has allowed us to talk of
complexity classes and performance measures. It is par-
ticularly enlightening since students can see some of the

4This problem appeared on the 1989 Advanced Placement
Computer Science Exam.

evolution of performance by their own experimentation.
Of course the same results can be obtained by using
fewer disks without waiting for nearly an hour. This
forces the students to think about testing since the DIPS
measure is independent of the number of disks (provided
enough moves are made to allow timing to take place.)

We also ask students to try to “improve” the DIPS
rate. Since the number of disks moved cannot change,
several possibilities arise. Students easily discover that
the overhead of procedure calls affects the performance
and move the statement that increments the number of
moves so that it occurs inline rather than as part of a
MoveOneDisk subprogram. Occasionally students will
have seen this problem before and know that an iter-
ative solution is possible. Although more complex to
code, such a solution does improve the DIPS rate. This
further illustrates exactly what recursion often means:
simplicity and elegance at (perhaps) the expense of per-
formance.

3.3 Non-trivial Recursion

Although we introduce what are considered trivial (e.g.,
tail recursive) examples of recursion as conceptual il-
lustrations, we strongly believe in studying simple, but
useful and powerful examples of recursion. Space con-
siderations preclude a detailed discussion of Quicksort
or Mergesort, but either of these sorting routines is ac-
cessible to students in a first course. Quicksort in par-
ticular can be clearly written in fewer than 20 lines of
code.

Removing Directories

In some of our classes students use machines that run a
variant of the MS-DOS operating system. This system
provides no method for removing a directory when the
directory is not empty. Since the remove command does
not work hierarchically (recursively), e.g., it cannot be
invoked to remove a directory and all its files and subdi-
rectories, disk re-organization can be a time-consuming
task without some other support.

Since modern file systems are hierarchical they read-
ily lend themselves to recursive examples. We give our
students the code for procedure Visit in Figure 3 that
prints all files and subdirectories in the directory speci-
fied by the initial string parameter.

All procedure calls used in this code are implemented
in a unit linked in when this procedure is compiled. This
allows us to use the same code across different platforms
and operating systems®

Our students are asked to reason about how to change
this code so that it can be used to remove a directory (in-

5We use the Pascal code in our non-majors course and both
C and C++ code in our courses for majors. The code will be
provided on request via email.

procedure Visit(s : string);
var

dirInfo : DirInfoType;
begin

GetFirstDirEntry(s,dirInfo);
writeln('DIR: ',DirName(dirInfo));

while MoreFiles(dirInfo) do begin
if IsDirectory(dirInfo) then
if IsRealDirectory(dirInfo) then
Visit(FullPathString(dirInfo))
else
writeln(' ',FileName(dirInfo));
GetNextDirEntry(dirInfo);
end;
end;

Figure 3: A useful recursive procedure

cluding all subdirectories). This entails understanding
not only that the writeln statements must be changed,
but that the (now changed) first writeln must be moved
after the loop to ensure that the directory is empty when
the (now changed) writeln is executed. Again a real
conceptual understanding of the process is necessary in
order to realize that the removal of the directory must
occur after the recursive calls have finished.

Program testing, introduced in most courses but of-
ten unmotivated, is very important using this example.
How should the modified Visit procedure (that removes
directories) be tested? Students that fail to talk proper
precautions when testing can quickly learn that care is
necessary when testing programs that might cause “un-
wanted side-effects.”

4 Noncomputability

Too often students in a first class are left with the im-
pression that the computer is capable of performing al-
most any task provided an intelligent programmer is at
work and enough computer time is available. We believe
it is important for students to see that there are prob-
lems that are provably unsolvable by computer. The
canonical example of a such a problem is the halting
problem: does a program P halt on input S? In our de-
velopment of this problem we restrict programs to those
whose only input is a string. The question we pose to
our students is “Is it possible to write a program corre-
sponding to the machine on the left in Figure 4?” For
a similar development see [GLS88].

We construct a program Confuse as represented by
the machine on the right in Figure 4 and predicated on
the existence of the program Halt. We pose the following
three questions to our students and we leave them to the
audience of this paper.

1. Describe what it means when Halt outputs “yes”

strin
pmgram/) f\ 9

HALT CONFUSE
yesor no yesor no

Figure 4: halting problem

when run using the program Confuse as the pro-
gram input and the string representing the program
Confuse as the string input.

2. Describe what it means when Halt outputs “no”
with the same inputs as in the previous question.

3. Based on the answers to the previous questions
and the semantics of Confuse, what is output when
Confuse is run using Confuse as input?

Note that we have again come full circle and returned
to a characterization of the first programs we studied:
we are running a program on itself as input. Although
our students are initially confused by this example (the
name Confuse is not an accident) we show them a fa-
miliar paradox:

This sentence is false.

at the same time, the idea behind the program is not
completely unfamiliar because of the self-referential pro-
grams they have seen throughout the semester. Just
as students have difficulty with reductio ad absurdum
proofs, self-referential programs can be initially confus-
ing. If such programs are used throughout a course
rather than as a “special topic”, students often don’t
know that they should be confused and hence take to
the material more readily.

program Confuse;
var
s : string;
begin
readln(s);
if Halt(s,s) = 'yes' then
while 0=0 do
(x loop forever x)
writeln('yes');
end.

Figure 5: the program Confuse

5 Conclusion

We believe that the idea of self-reference is important
and that it should be a recurring theme in any first

course in computer science. We strive to use self-
referential examples and recursive procedures in a man-
ner that illustrates their power and that allows us to
introduce fundamentally important topics in computer
science at a lower level than is normally expected.

We want our first courses to use programming as a
means of exploring advanced topics and to use self-
reference as one of the themes that ties together the
seemingly disparate areas that comprise computer sci-
ence into a coherent whole rather than leave our stu-
dents with the impression that our field is comprised of
an eclectic collection if disconnected subfields. Although
most books do not integrate recursion into the text as a
whole, the books by Roberts [Rob86] and Rohl [Roh84]
provide many examples of recursion in interesting set-
tings.

Students in our courses for majors do not have as
much difficulty with recursion since we have incorpo-
rated self-reference into these courses as a theme rather
than as a special topic. In addition, they have a bet-
ter understanding of what computer science is. Finally,
students enjoy these examples which usually means that
they are willing to work harder at understanding them
(and the material in the rest of the course). When asked
to comment on those parts of their course that were
good, many students invariably choose the study of one
of the recursive and self-referential examples we have
examined.

Acknowledgments

This paper benefited greatly from comments made by
John Rager. Paraphrasing Stuart Reges, I’ve benefited
greatly from many of Rich Pattis’ ideas and comments
as well.

References

[GL88] L. Goldshlager and A. Lister. Computer Sci-
ence: A Modern Introduction. Prentic-Hall In-

ternational, second edition, 1988.

[KR78] Brian W. Kernighan and Dennis Ritchie. The
C Programming Language. Prentice-Hall,

1978.

[McC87] D.D. McCracken. Ruminations on computer
science curricula. Communications of the
ACM, 30(1):3-5, January 1987.

[Pat94] Richard E. Pattis. Teaching ebnf first in cs
1. In The Papers of the Twenty-Fifth Tech-
nical Symposium on Computer Science Educ-
tion. ACM Press, March 1994. Phoenix, AZ.

[Rob86] Eric Roberts. Thinking Recursively. John Wi-
ley & Sons, 1986.

[Roh84] J.S. Rohl. Recursion via Pascal. Cambridge
University Press, 1984.

