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Abstract—Colorectal cancer can easily be prevented provided
that the precursors to tumors, small colonic polyps, are detected
and removed. Currently, the only definitive examination of the
colon is fiber-optic colonoscopy, which is invasive and expensive.
Computed tomographic colonography (CTC) is potentially a less
costly and less invasive alternative to FOC. It would be desirable to
have computer-aided detection (CAD) algorithms to examine the
large amount of data CTC provides. Most current CAD algorithms
have high false positive rates at the required sensitivity levels. We
developed and evaluated a postprocessing algorithm to decrease
the false positive rate of such a CAD method without sacrificing
sensitivity. Our method attempts to model the way a radiologist
recognizes a polyp while scrolling a cross-sectional plane through
three-dimensional computed tomography data by classification
of the changes in the location of the edges in the two-dimensional
plane. We performed a tenfold cross-validation study to assess its
performance using sensitivity/specificity analysis on data from 48
patients. The mean specificity over all experiments increased from
0.19 (0.35) to 0.47 (0.56) for a sensitivity of 1.00 (0.95).

Index Terms—Computed tomographic colonography (CTC),
computer-aided diagnosis, edge displacement fields (EDFs),
fiber-optic colonoscopy (FOC).

I. INTRODUCTION

COMPUTED tomographic colonography (CTC) was first
suggested in the early 1980s as a potential method for

mass screening of colorectal cancer, the second leading cause
of cancer deaths in the US [1], [2]. CTC was first realized in the
1990s following the rapid progress in computed tomography
(CT) and in digital computing [3]–[5]. CTC is a minimally in-
vasive method that consists of CT imaging the whole abdomen
and pelvis after cleansing and air insufflation of the colon.
Since then, several studies have been conducted assessing the
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performance of CTC [6]–[11], mostly based on a radiologist’s
visual examination of either two-dimensional (2-D) CT images
or three-dimensional (3-D) virtual colonoscopic views, or both.
Thus, most efforts have been directed toward developing better
visualization and navigation techniques, such as rendering,
colon wall flattening, flight path planning algorithms, and
user interface design [5], [12]–[20]. However, recently some
research has been focused on developing computer-aided de-
tection (CAD) methods for the identification of colonic polyps
in 3-D CT data to improve the accuracy and efficiency of CTC.

In most approaches, the 3-D geometrical features of polyps
are extracted and used for their detection and identification.
Mir et al. reviewed a set of methods proposed for shape de-
scription in CT images, e.g., moments, medial axis transforms,
splines, curvature, Fourier descriptors, AR modeling, and sta-
tistical approaches [21]. Summerset al. concluded that detec-
tion by shape analysis is feasible, especially for clinically im-
portant large polyps [22], [23]. Paiket al. proposed to use a
Hough transform (HT)-based method to detect spherical sur-
face patches along the colon wall that are likely to be parts of
polyps [24], [25]. Yoshidaet al.reported that geometric features
extracted from small volumes of interest are effective in differ-
entiating polyps from folds and feces [26], as well as charac-
terizing colon wall surface geometry [35]. Göktürket al. fitted
local spheres to the colon wall and based their detection on the
existence of clusters of sphere centers [27].

The main weakness of most of these methods is their low
specificity. As a result, manual examination of a large number
of images corresponding to the CAD outputs is required. Our
goal is to develop and evaluate a postprocessing algorithm that
would classify the outputs of a high-sensitivity low-specificity
CAD method to eliminate false positives only, thus to increase
specificity without sacrificing sensitivity. We used the HT-based
CAD (HTD) as the initial detection method [24], [25], and de-
veloped a second stage that models the way a radiologist rec-
ognizes a polyp by focusing on the changes in consecutive im-
ages as one views sequential cross sections of the volumetric
source CT data (3-D CT data). We used edge displacement fields
(EDFs) to represent these features, and a linear classifier acting
on the features extracted from the computed EDFs. A different
approach with the same goals has recently been proposed by our
group, which uses a large number of cross-sectional images of
suspicious structures and the histogram of 2-D image features
extracted from them [28]. We evaluated our method using data
from 48 patients, and assessed the improvement in the speci-
ficity at given sensitivity levels.
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Fig. 1. Generation of an axial EDF demonstrated using a hypothetical sphere. The predetected suspicious structure (the sphere) is sliced perpendicular to the
scrolling axis (in this case, thez axis). The differential changes in the grayscale image on each slice are computed using (1), with the positivez direction defined to
be outwards from the center slice. EDFsv (x; y) computed for each slice are added and smoothed to get a single EDFv (x; y) (Z = Axial in this example)
representative of the interslice image relations along thez axis. The PN is marked with a square and the CNs are marked with circles. The whole process is repeated
for thex andy axes to generate the sagittal and coronal EDFs, respectively.

II. M ETHODS

A. Algorithm

We used our previously developed software to identify struc-
tures that are suspected of being polyps. Briefly, the software
first segments the colon from the rectum to the cecum using
gray-level thresholding [19]. It next identifies the colon wall by
dilation and determination of intensity gradients, and uses an
HT-based polyp detector (the HTD) to detect spherical surface
patches (polyp-like structures) within a thin shell surrounding
the colon wall [24], [25]. The HTD produces a score for each
voxel that is proportional to the number of vectors normal to
the colon wall and extending 5 mm into the tissue that intersect
the voxel. Intuitively, the voxels close to the center of a spher-
ical surface patch would have a high HT score. We defined the
voxels with an HT score larger than 3000 (an arbitrary but low
threshold) to be the HTD detected points (HT_hits). HT_hits
closer than 10 mm to each other were considered to be marking
the same spherical surface patch, so they were replaced with a
single HT_hit, that is, their maximum. We extracted subvolumes
of 21 21 21 voxels (mean size 15.6 mm 15.6 mm
26.9 mm) centered at the HT_hits and postprocessed them with
our EDF-based classifier (EDFC).

The first step of postprocessing is the EDF computation to
represent the changes in the location of edges in the segmented
CT images (tissue/air boundaries) as one scrolls through the 3-D
CT data. We consider three mutually orthogonal scrolling axes
perpendicular to axial, coronal, and sagittal planes, as follows.
Let the plane be an image plane perpendicular to the scrolling
axis Axial, Sagittal, Coronal. The EDF equation is [29]

(1)

where is the EDF (2-D in-plane vector field)
defined on the plane that is perpendicular to theaxis and
is located at that . is the associated image,
i.e., the attenuation coefficient function on the same plane.

represents the dislocation of the edge at
along the local gradient from to .
is computed for all , i.e., for all slices, within the subvolume
except at the boundaries. We defined the positivedirection

to be outwards from the center slice. This consistency is
required as for all are summed and smoothed to
get a composite EDF, , associated with the current
subvolume and the scrolling axis (see Fig. 1). Thus, it is
assured that the edges of polyp-like structures move inwards
on the plane perpendicular to the scrolling axis. The com-
posite EDF is smoothed. The smoothing kernel is a Gaussian
( mm) whose size is limited to . This is repeated
for all three orthogonal axes ( Axial, Sagittal, Coronal)
resulting in three EDFs that encode information in each of
them. In the following, the term EDF will refer to ,

, or .
The second step is to characterize the computed EDFs. To

characterize a single EDF, one parent node (PN) and eight child
nodes (CNs) are determined. A PN is defined to be the minimum
divergence pixel location in a 4 mm 4 mm neighborhood of
the HT_hit on the EDF. CNs are defined to be the pixel locations
that are 4 mm away from the PN on the streamlines incoming to
the eight immediate neighbors of the PN. The right side of Fig. 1
depicts the process graphically. Fig. 2 shows an actual example
with three associated axial images.

Two parameters, and , are computed using the Jacobian
matrix of the EDF at the PN, as follows [30], [31]:

(2)

(3)

(4)

Note that and carry information about the eigenvalues of
the Jacobian matrix. In fact, the characteristic equation ofis

(5)

Furthermore, is equal to the divergence of the EDF at PN. The
ratio of to uniquely defines the topology of a linear vector
field so the normalized and (normalized by ) are
used as suggested by Lavinet al. [31].
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Fig. 2. Three sequential axial images (smoothed for visual purposes) around
an HT_hit and the associated EDFv (x; y). The PN is marked with a
square and the CNs are marked with small circles. Two of the eight CNs are
coincident with two other CNs.

Additionally, we characterize the behavior of the incoming
streamlines around the PN using the parameter, defined as

(6)

where the s are computed with respect to the PN’s location.
Thus, is used to characterize the spread of CNs around the PN.
Fig. 3 shows four axial EDFs computed for two positive (polyp)
and two negative (nonpolyp) cases to give an understanding of
the meaning of EDF characterization parameters visually. In
agreement with the intuition, the EDFs corresponding to posi-
tive cases have a PN with anclose to 1 (negative divergence)
and close to zero (small circulatory behavior), and a large

(streamlines well spread around the PN), i.e., a star-shaped
topology, unlike the EDFs of negative cases.

Each parameter is computed for the axial, coronal, and
sagittal EDFs, resulting in a nine-dimensional feature vector
for each subvolume considered. We selected to use the mean
values of each parameter over three scrolling axes as the
final feature vector. This choice is based on a previous study
where we have shown, on a smaller data set, that this choice
results in marginally better classification than a range of other
choices [32]. In the rest, we will refer to this definition, i.e.,

, where stands for averaging over axial, coronal,
and sagittal parameters.

The binary classification (polyp versus nonpolyp) is done
by a Mahalanobis distance based linear classifier [33]. The

(a) (b)

(c) (d)

Fig. 3. Axial EDFs of four cases: (a) positive (polyp) with[�; �; d] =
[�0:96; 0:29; 4:99]; (b) positive with [�; �; d] = [�0:99; 0:12; 5:15];
(c) negative (nonpolyp)[�; �; d] = [�0:77; 0:65; 1:28]; (d) negative with
[�; �; d] = [�0:71; 0:70; 072].

Mahalanobis distance of a vectorto the mean vector of a
population is defined as

(7)

where is the covariance matrix of. This distance is a stan-
dardized measure that: 1) automatically accounts for scaling;
2) takes care of correlations between features; and 3) can pro-
vide linear and curved decision surfaces. For classification pur-
poses, represents the training set andrepresents a sample
from the test set . Referring to the subset of polyps inas
and the subset of nonpolyps as, the binary classifier is de-
fined as follows:

otherwise (8)

where and refer to the subsets of polyps and nonpolyps
in .

All processing was done using Matlab 6.0 (The Mathworks
Inc., Natick, MA). In addition, the time required to process
individual subvolumes was measured using Matlab’stic/toc
commands.

B. Evaluation

The CTC data were acquired from 48 patients enrolled in
our CTC study (45 male, age 27–86, mean age 6012),
either in the supine or the prone position, following colon
cleansing and air insufflation. A single- or multidetector CT
system (GE Medical Systems, Milwaukee, WI) was used with
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Fig. 4. SS andSS curves for each of ten experiments. Solid line (—) is the two-stage system, HTD followed by EDFC; dashed line (- -) is the
single-stage system, HTD only.

the following parameters: 3 mm (2.5 mm) collimation, pitch
1.5–2.0 (3.0), 1.5 mm (1.0–1.5 mm) reconstruction interval,
120 kVp (120 kVp), 200 mAs (56 mAs) for the single- (multi)
detector system. The data size was where
the number of axial slices ranged from 237 to 403. The
average voxel spacing was 0.74 mm0.74 mm 1.28 mm.
All of the patients underwent fiber-optic colonoscopy (FOC)
immediately after the CTC.

Preprocessing with HTD resulted in 31 099 HT_hits. An ex-
pert radiologist, unblinded to the FOC results, examined the
CTC images and reconciled the FOC determined lesions with
CTC visibility. Due to computational concerns, we subsampled
the data set by keeping all polyps (i.e., positives) and randomly
selecting 50 nonpolyps (i.e., negatives) per patient, uniformly
distributed over the range of HT scores for each patient. The
radiologist then eliminated any multiple HT_hits for a single
polyp by including the one closest to the coordinates determined
manually on CTC data. A colonic cancer of 32 mm in diameter
was excluded in accordance with our aim of detecting polyps.
The HT_hits that were annotated as polyps by both FOCand
CTC were designated as positives. Similarly, the HT_hits that
were not annotated as polyps by FOC or by CTC were desig-
nated negatives. These served as the gold standard. There were
46 positives and 2400 negatives in the preprocessed data set. Six
positives and 181 negatives were excluded due to their closeness
to the volume boundary, in which case the subvolume required
for processing could not be extracted. This resulted in a final
data set of 40 positives (sizes ranging from 2 to 15 mm) and 2219
negatives. The subvolumes centered at each of the 2259 HT_hits
were used as the input data to the EDFC.

To evaluate our system, we performed a tenfold cross-val-
idation study. We distributed 40 positives into ten sets, each
containing ten distinct positives by using 20 randomly selected
positives twice and the rest three times. The average overlap in
positives between all pairs of sets is 1.8; the maximum overlap
is 4 (which is in two pairs only). In these ten sets, 2219 nega-
tives were randomly distributed mutually exclusively by putting
221 negatives in one set and 222 negatives in the others. Thus,
each set contained ten distinct positives (polyps) and 221 or

222 distinct negatives (nonpolyps). For each experiment, one
such set was used as the test set and the union of the remaining
sets was used as the training set. Thus, we had 30 positives and
1997 (or 1998) negatives in each training set. The sensitivity
and the specificity were defined as the percentage of correctly
identified positives and negatives, respectively, in the test set.
The principal question we addressed wasHow much can we in-
crease the specificity of a detector by postprocessing its out-
puts, without sacrificing sensitivity?To answer this question,
we performed the following analysis. For each of the ten exper-
iments, we ran the HTD and classified its output by varyingon
the range HT Score . Varying in this way gen-
erates the curve relating (sensitivity of HTD alone)
to (specificity of HTD alone). Next, for each, we ap-
plied the EDFC to the positives identified by the HTD, varying

[see (8)] across its entire range for this experiment. Varying
in this way generates a curve relating (sensitivity of HTD

and EDFC combined) to (specificity of HTD and
EDFC combined) at this particular. Note that because only the
set of positive outputs of the HTD (which is a function of) are
passed to the EDFC, the EDFC cannot lower the specificity. On
each of these curves, we determined the maximum specificity
at the sensitivity level set by HTD alone at the corresponding

. (Equivalently, this point is the maximum specificity at 100%
sensitivity on the curve that is parameterized by, at that .)
Thus, we use to mean the sensitivity of HTD alone and the
sensitivity of the combination HTD and EDFC. Concatenation
of these points provides us another sensitivity/specificity curve
( ).

We report each of the and curves for ten
experiments (see Fig. 4). is, by definition, always
to the left of because a postprocessing method cannot de-
crease the specificity, i.e., cannot create new false positives that
are not included in the set of data predicted to be positive by
HTD. Comparison of and provides a simple
way to answer the question we put forth above. The differences
in specificity levels at a given sensitivity level (the horizontal
separation between and ) shows the improve-
ment in specificity achieved by EDFC at that sensitivity. We de-
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TABLE I
MEAN AND STANDARD DEVIATION OF MAXIMUM SPECIFICITY LEVELS

ACHIEVED BY ONE-STAGE (HT) AND TWO-STAGE (HT + EDF) METHODS AT

DIFFERENTSENSITIVITY LEVELS SET BY THE FIRST STAGE. CORRESPONDING

TWO-TAILED p VALUES ARE COMPUTED BY PAIRED t TESTSWITH THE NULL

HYPOTHESISTHAT THE DIFFERENCE OF THEMEANS OFSp AND

Sp OVER TEN EXPERIMENTS ISZERO

termined the maximum s and s for a number
of sensitivity levels each of which corresponds to different op-
erating points set by. Due to the discrete nature of the
and curves, we approximated the 95% sensitivity
point by linearly interpolating the maximum specificity points
for 100% and 90% sensitivity levels.

The statistical significance of the difference between the
mean specificity levels at different sensitivity levels was also
assessed. We computed the two-tailedvalues of the paired
tests performed on the sets of maximum and
values at different sensitivity levels. The null hypothesis was
that the difference of the means of and is zero
over ten experiments. The mean and the standard deviation of
specificity values and the correspondingvalues are reported.

III. RESULTS

Table I lists the mean and the standard deviation of the max-
imum specificity values for one- and two-stage methods at dif-
ferent sensitivity levels set by the HTD’s threshold. The cor-
responding values assess the significance of the difference
between these mean values, based on ten cross-validation exper-
iments. The mean improvements in specificity at clinically rele-
vant sensitivity values, i.e., at 1.00 and 0.95 sensitivity levels,
are 0.28 (from 0.19 0.12 to 0.47 0.16) and 0.21 (from
0.35 0.13 to 0.56 0.14) with values of 4.7 10 and
2.2 10 , respectively. The improvement in specificity is sig-
nificant ( ) for sensitivity levels larger than 0.50.

The computation time for a single subvolume on a PC with
Pentium III processor (1-GHz clock rate), 512-MB RAM, using
Matlab 6.0, was 3.0 s on the average. There were approximately

600 HT_hits per patient; thus, the analysis of a single patient
would require 30 min.

IV. DISCUSSION

The low specificity of previously reported CAD methods
is generally due to the assumption that high curvature surface
patches occur only on polyps. While it is true that polyps
have highly curved surfaces, so do some other structures, like
haustral folds and retained stool. Radiologists reading these
scans use additional information with which they classify
suspicious regions. For example, haustral folds are elongated
structures, as opposed to polyps, which protrude locally from
the colon wall. Stool may sometimes be identified by relatively
inhomogeneous image intensity compared to polyps.

The approach pursued in this study was to model the way
a radiologist discriminates these structures while scrolling a
cross-sectional plane (the image plane) through the 3-D CT
data. Our algorithm is based on quantitative evaluation of the
changes in local image gradients in consecutive image planes.
These gradients mainly capture the information in air/tissue
boundaries (the edges). As one moves through a series of image
planes, the edges of elongated structures (such as haustral
folds) are likely to sweep a large portion of the image plane,
whereas those of locally protruding structures (such as polyps)
are likely to appear/disappear instantaneously at some image
plane. The EDFs, computed as described above, are aimed to
capture this property.

As a conjecture, we expect the summation and smoothing op-
erations help to enhance the difference between homogeneous
and inhomogeneous structures (such as polyps and stool).
In case of inhomogeneous structures, the contribution of the
local image gradients at pixels other than the edges would be
more significant than it would be for a homogeneous structure.
Furthermore, this contribution would be in a relatively random
fashion, canceling the contribution from the edges and, thus,
enhancing the discrimination between spherical homogeneous
and inhomogeneous structures. This conjecture remains to be
studied.

The inherent assumption in our method is that the majority of
the EDFs around polyps along different scrolling axes will be
similar to the EDFs of positive cases in Fig. 3, whereas this will
not be the case around nonpolyps. Our choice of averaging the
parameters over three image planes is based on this assumption
and our previous study that showed no significant sensitivity of
the performance to different choices, such as minimum, max-
imum, median, etc. [32]. However, this averaging may still in-
troduce too much smoothing to the parameters, degrading the
performance. A better approach might be to make measure-
ments in a large number of scrolling axes and to use the resulting
parameters in the form of a histogram. However, in this study
we aimed to model a radiologist’s classification task and, there-
fore, confined our analysis to the data most easily available to a
radiologist, namely, to three orthogonal image planes. Another
alternative is to use the EDFs in the vicinity of PNs as they are,
without extracting single parameters (e.g.,, , ) from them.
Support vector machines (SVMs) can be trained to learn from
these EDFs [34]. The critical point is to design an appropriate
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SVM kernel that will capture the relevant information in these
EDFs.

The sensitivity of our algorithm to polyps of different sizes
depends on the voxel size and the size of the subvolume consid-
ered. The parameters we used in this study support the represen-
tation of structures up to 15.5 mm15.5 mm 26.9 mm large
on the average. An increase in the EDFs’ discriminative power
with a decrease in voxel size is expected.

We excluded the HT_hits close to the volume boundary for
the sake of analysis in this study. Such an exclusion can be
avoided by defining the CNs to be on the volume boundary if
the streamlines, on which the CNs are located, hit the volume
boundary before the preset distance, which is 4 mm. The PNs,
on the other hand, cannot be on the volume boundary as they
are on the colon wall by definition.

The computational analysis for a single patient with approx-
imately 600 HT_hits required approximately 30 min. While
Matlab is an excellent prototyping environment, we would
expect significant time reductions with optimized software.
Thus, we do not expect our method to be a rate-limiting step
in clinical practice.

V. CONCLUSION

We have shown that the information content of the motion of
edges (air/tissue boundary) in sequential cross sections through
the 3-D CTC data is relevant in polyp identification and that the
use of EDFs is adequate to represent this information. The in-
tuitive nature of the proposed EDF characterization parameters
( , , ) make it easy to interpret the feature vectors: Asand

decrease and increases, the “polypness” of the structure
increases. Although a statistically significant improvement in
specificity is achievable at clinically relevant sensitivity levels,
these specificity levels are still too low for clinical applications.
The method is limited by the number of image planes (cur-
rently, three) and the performance of the classifier. The method
assumes that the predetected points are sufficiently close to the
geometrical center of the suspicious structures, which may be
limiting the performance of EDFC. Increasing the number of
image planes and constructing a histogram of the parameters
would remove this assumption and is subject to future research.
An alternative to the Mahalanobis distance-based classifier is
the use of SVMs, which minimize training classification error
as well as generalization error. Higher specificity levels are re-
quired for practical clinical applications and we believe that the
above-mentioned improvements would achieve this.
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