
Preprints of the Fourth International
Symposium on Experimental Robotics, ISER'95
Stanford, California, June 30{July 2, 1995

An Intelligent Observer�

Craig Becker H.H. Gonz�alez-Ba~nos Jean-Claude Latombe Carlo Tomasi

Robotics Laboratory

Department of Computer Science

Stanford University, Stanford, CA 94305
fcdb, hhg, latombe, tomasig@
amingo.stanford.edu

Abstract

This paper describes an integrated mobile robotic sys-
tem dubbed the intelligent observer (IO). The IO is
a mobile robot which moves through an environment
(such as an o�ce building or a factory) while au-
tonomously observing moving targets selected by a
human operator. The robot carries one or more cam-
eras which allow it to track objects while at the same
time sensing its own location. It interacts with a hu-
man user who issues task-level commands, such as
indicating a target to track by clicking in a camera
image. The user could be located far away from the
observer itself, communicating with the robot over a
network. As the IO performs its tasks, the system pro-
vides real-time visual feedback to the user. We have
implemented a prototype of the IO which integrates
basic versions of �ve major components: landmark
detection, target tracking, motion planning, motion
control, and user interface. We have performed initial
experiments using this prototype, which demonstrate
the successful integration of these components and the
utility of the overall system.

1. Introduction

This paper describes the concept, design, and initial
implementation of a system we call the intelligent ob-

server (IO). Our goal for the IO is to develop a sys-
tem that provides a human user with intuitive, high-
level control over a mobile robot which autonomously
plans and executes motions to visually track a mov-
ing target (see Figure 1). The user sends commands,
such as \follow the next moving object which enters
the view", and receives real-time feedback, such as a
graphical display of the positions of the observer and

�This research was funded by ARPA grant N00014-94-1-
0721-P01 (ONR) and by an NSF/ARPA contract for ANVIL
through the University of Pennsylvania. C. Becker is supported
in part by an NSF Graduate Fellowship.

User Workstation Network Observer Target

High-Level Commands

Feedback to User

Figure 1. Interaction between a user and the intelli-
gent observer.

target overlaid on a map of the environment.

Although the IO can be seen as an extension to a tra-
ditional teleoperation system, there are several major
di�erences. First, it responds to high-level commands
which are speci�ed at the task level. There is no need
for a \virtual joystick" or any other such control. Re-
moving such low-level responsibilities from the human
user provides many bene�ts, such as reducing the like-
lihood of human error and allowing the user to focus
attention on more important, higher-level issues.

Second, it uses its internal representation to provide
a more 
exible feedback mechanism than would be
possible by simply displaying the image seen by the
observer's cameras. The IO can fuse information
from various sensors and, using geometric informa-
tion about the environment, reconstruct a view of
the observed scene. This view could be a simple
two-dimensional, \top-down" view or a more realis-
tic three-dimensional view rendered from an arbitrary
viewpoint.

The IO project brings together concepts and algo-
rithms from computer vision, motion planning, and
computer graphics in order to create a robust, useful,
and integrated system. One important aspect of the
system is that vision, often viewed merely as a mech-

1



anism for aiding robot navigation, itself becomes the
central objective of the system.

There are a number of possible applications for the
IO system. Consider an engineer who must remotely
monitor operations on a factory 
oor in order to an-
alyze the performance of an assembly line. The IO
would provide a convenient and automatic telepres-
ence which could, for example, automatically move to
track a single part as it travels through the assembly
sequence. The engineer need not focus on the mun-
dane task of moving the observer, but can instead con-
centrate on the assembly line task itself.

As another example, consider a security surveillance
system for a large building. Typically a human opera-
tor is presented with a large number of views from var-
ious cameras positioned throughout the building. To
be sure of catching any unusual activity, the user must
cycle regularly through many views, possibly watching
several views simultaneously. Here, the IO would alert
the operator of motion in any camera view, and also
plan new views as required to keep any moving ob-
jects in view. In this case the mobile robot is replaced
by a large number of cameras, each of which could be
either �xed or able to pan and tilt. The basic prob-
lem, however, is the same: the IO must still choose the
best view of the target. This is accomplished by either
moving the current camera or switching to a di�erent
camera.

The rest of this paper is organized as follows. In Sec-
tion 2 we describe the overall design of the IO and
of the roles of the various components that make up
the system. In Section 3 we describe an initial imple-
mentation of each component of the IO. In Section 4
we describe the results of our experimentation with
the system. Finally, in Section 5 we draw conclusions
from our work and discuss possible directions for fur-
ther research.

2. Overall Design

The complete IO consists of �ve major modules: land-
mark detection, target tracking, motion planning, user
interface, and motion control. The relationships be-
tween these modules and the actual robot are shown in
Figure 2. Each module is described more fully below.

Landmark Detection As the observer moves
around in its environment it must always keep track
of its current position. Our approach to solving this
problem involves placing arti�cial landmarks through-
out the environment. Many researchers have studied
the use of landmarks to aid robot navigation; for ex-
amples see [1, 3, 5, 6, 7].

Location
Target

Observer and
Target State

Observer and
Target State

Landmark

Detector

Tracker

Target User

Interface

Motion

PlannerLandmark
Location

Goal
PositionsO

do
m

et
ry

Motion

Controller

C
om

m
an

ds

Figure 2. The components of the IO system.

In our system, the positions of the landmarks are pro-
vided as part of a map which is provided to the IO.
Each landmark induces a landmark region such that
the landmark is visible to the robot whenever it moves
within that region. The robot localizes itself by visu-
ally detecting landmarks and determining its position
relative to them. Since the success of the robot de-
pends on this self-localization, the vision algorithms
used to detect the landmarks must be fast, accurate,
and robust.

Target Tracking The central task of the IO is to
observe moving objects, or targets. There are two
main requirements: �rst, that the IO recognizes when
a new target enters its �eld of view; and second, that
the IO is capable of tracking the desired target as it
moves. Since the robot must respond to the movement
of objects, all tracking must happen in real time. In
general, target motions may be almost totally uncon-
strained and the targets themselves may by nonrigid
and of unknown shape; humans are a good example.
In order to handle such targets, we can apply real-
time versions of tracking algorithms such as those de-
scribed in [4]. Currently, however, we use a simpli�ed
approach as detailed in Section 3.

Motion Planning Traditional motion planning
problems involve �nding a collision-free path from an
initial region I to a goal region G in the presence of
obstacles whose geometry is known in advance. The
assumption of a static world allows the entire path to
be precomputed in an o�-line fashion. A robot can
then follow the path without fear of collision.

In the context of the IO, the planning problem is quite
di�erent. The goal is no longer a �xed location; in-

2



stead, our goal is to remain in view of a moving target
at each point in time. Since the target motion is not
known in advance, we must employ an on-line algo-
rithm. In order to maintain a view of the target we
must avoid occlusions due to obstacles and, as in the
traditional case, we must also avoid collisions with ob-
stacles. Any given obstacle may obstruct the robot's
view, or its motion, or both. For example, a glass wall
obstucts motion but not visibility, while a table may
obstruct both, depending on its height.

We de�ne an on-line view planning problem which
must be solved by the IO as follows. The planner is
given as inputs the position Rt (at time t) of the ob-
server, the position Tt of the target, the regionRt+1 of
reachable locations of the observer at time t+1, and a
function Tt+1 which gives the probability of the target
moving to any position Tt+1. As output, the plan-
ner produces a new observer position Rt+1 2 Rt+1

which maximizes the probability of maintaining an un-
obstructed view of the target for all possible Tt+1.

The problem outlined above is \local" in the sense that
it only considers the probability one step in advance.
A less local version would attempt to maximize the
probabilty over some window of time, instead of only
at time t+ 1.

User Interface One simple way of providing feed-
back to the user of the IO is to display live video from
the robot's point of view. There are, however, several
drawbacks to this approach. First, it makes no use of
the higher-level representation maintained by the IO.
Second, it limits the viewpoint to that of the robot's
camera. Third, we would like to avoid \information
overload" in cases where there are multiple cameras
(or multiple observers). Finally, full-motion video re-
quires high transmission bandwidth; this problem is
especially important when the user is far away from
the observer.

Instead, we have chosen to use a di�erent approach.
The user is presented with a synthetic reconstruction
of the environment in which the IO is operating. This
reconstruction can be either a two-dimensional over-
head view or a three-dimensional view from an arbi-
trary vantage point. This module relies on an appro-
priate geometric model of the environment as well as
information about the positions of the observer and
the target.

Assuming that the environment is largely static, only a
small amount of new information is required to update
the scene, alleviating the bandwidth problem. This
approach also allows us to fuse input from multiple
cameras into a single, uni�ed view.

Motion Control The motion controller takes the
role of the top-level supervisor in the IO system (see
Figure 2). It coordinates communication with the
other components and produces appropriate low-level
commands to control the physical robot. In addi-
tion, it periodically updates the current estimate of
the robot's position based on feedback from the land-
mark detector and the odometric information from the
robot. When appropriate, it also requests a new goal
point from the motion planner. Finally, is sends up-
dated information to the user interface.

The IO system is made up of a number of di�erent
processes, each of which has its own characteristic
cycle time. Because of this, the motion controller
must communicate asynchronously with the other pro-
cesses, using new information as it becomes available.
The exception is communication with the path plan-
ner, which follows a transaction-based model: the con-
troller requests new a goal once it has achieved the
previous one.

3. Implementation

This section describes our initial implementation of
each of the components of the IO. Each of the �ve
components has been implemented as a separate Unix
process. They communicate with one another using
standard TCP/IP protocols, making it possible to run
them on di�erent machines to increase performance.
In fact, during our experimentation we ran the land-
mark detector, motion controller, and user interface
on a Sun sparcstation 20, the target tracker on an
SGI Indigo2, and the motion planner on a DEC Al-
pha/AXP. The implementation of each process is de-
tailed below.

Landmark Detection As discussed earlier, we rely
on arti�cal landmarks to localize the robot. Our land-
marks, shown in Figure 3, are placed on the ceiling
at known positions throughout the robot's workspace.
Each landmark consists of a black square with a 4� 4
pattern of smaller squares inside of it. The detection
algorithm �rst identi�es edge pixels in the image (us-
ing a variant of the algorithm presented in [2]), and
then looks for edge chains that are consistent with the
boundary of a square. When such a chain is found,
the corners are detected and then lines are �t to the
pixels which make up each edge. The slopes of these
lines yield the orientation of the landmark; their in-
tersection points locate the landmark's corners. Once
the landmark is localized, the positions of the inner
squares are computed and their intensities are read
from the image using bilinear interpolation. These
intensities are grouped into \black" and \white" sub-

3



Copy Room Door 2501

Figure 3. A sample ceiling landmark.

groups to determine the 16 binary values they repre-
sent. Four of these values are used to disambiguate
the landmark's orientation, and the others encode the
landmark's unique ID.

The landmark detector uses 320 � 240 grayscale im-
ages as input. Each frame requires approximately 0.5
seconds to process; this includes detecting, localizing,
and identifying the landmark. The algorithm is very
accurate: the translational error has zero mean and a
standard deviation of 0.75 inches, while the rotational
error is also zero mean and has a standard deviation
of 0.5 degrees.

Target Tracking This component is used by the
observer to detect and visually track a moving target.
Currently the target consists of a number of black,
vertical bars on a white cylindrical \hat" which sits on
top of the target robot (see Figure 5). The tracking
algorithm detects these bars in each image and, given
the camera parameters and the physical size of the
bars, computes the target's location relative to the
camera.

The tracking system operates at approximately 5
frames per second using 160 � 120 grayscale images
as input. For each frame, it determines the angle �

and distance r to the center of the target. Typically
the target can be detected at distances ranging from
2 feet to 10 feet from the camera. Experimentation
shows that � is accurate to within �1 degree, and r is
accurate to within �4 inches.

Motion Planning Our implemented solution to the
on-line view planning problem is deliberately simple so
that planning time is reasonable. The planner is given
a polygonal map of the workspace, as well as bounds
vR and vT on the maximum velocities of the observer
and target, respectively. These velocities are given in
terms of distance per planning cycle.

Suppose a new goal position is requested at time t.
The planner is given the positions Rt and Tt of the
observer and target. We �rst �nd Rt+1 by construct-

ing a disk of radius vR centered at Rt, and intersecting
that with the free space in the environment. Similarly,
we take Tt+1 to be the intersection of the free space
with a disk of radius vT centered at Tt. We assume
that all positions within this region are equally prob-
able.

To compute a new goal position Rt+1, we use the fol-
lowing approach. First we uniformly sample Tt+1, pro-
ducingm possible positions of the target. For each po-
sition we then compute the resulting visibility polygon
Vi (i = 1; : : : ;m). We then sample Rt+1, yielding n

possible goals for the observer. From these samples we
select the one which falls within the maximum num-
ber of visibility regions Vi. Ties can be broken in any
number of ways; currently we choose the goal which
results in the smallest motion of the observer. As-
suming that we sample densely enough, this approach
approximately maximizes the probabilty of maintain-
ing a view of the target at time t+ 1.

In the experiments we have performed, a single ap-
plication of this planning technique requires between
0.2 and 0.8 seconds depending on the con�guration of
the observer and target relative to the obstacles in the
environment.

User Interface In our initial system we have
adopted a simple, two-dimensional user interface as
shown in Figure 4. Physical obstacles are shown in
black and con�guration space obstacles are dark gray.
The positions of the observer (R) and target (T) are
updated in real time. In addition, the visibility region
of the observer is shown in light gray.

Motion Control As mentioned before, this module
not only controls the motion of the robot, but it also
coordinates communication between all of the other
modules. In a sense it is the top-level supervisory
process for the whole system.

The most basic task of the motion controller is to issue
velocity commands to the robot. This is accomplished
using a tight feedback loop which runs at approxi-
mately 10 cycles per second. At each cycle, the loop
reads odometry information from the robot and com-
putes a velocity command to move the robot toward
the current goal position. The control system mea-
sures and compensates for the communication delays
present in the system. When new information is avail-
able from the landmark detector, the controller uses
this to update the current position of the robot; this
is done to compensate for errors which would build up
over time if only odometric information were used.

The landmark detector returns the position of the
robot relative to a landmark at the time s that a par-

4



ticular image is captured by the camera. The infor-
mation is not received by the motion controller until
some later time t. Due to latency in our digitizing
hardware and to the image processing time, the dif-
ference between s and t can be as long as two seconds.
To compensate for this delay, the controller keeps a
history of the robot's position over the past several
seconds. An updated position estimate at time t is
computed by adding the di�erence between the stored
positions at times t and s to the position sensed at
time s using landmarks.

The error signal for steering and translation is based
on the (x; y) goal points received from the motion
planner. An error in both cartesian directions is com-
puted by using the current position estimate of the
observer. The steering error and the translation er-
ror are then calculated in such way that the required
steering is minimized. Both of these errors are then
provided to the control law.

A totally separate control loop is used to position the
camera in response to feedback from the target track-
ing system. The camera is mounted on a turret which
can rotate independently of the robot's drive wheels.
At each cycle, the turret control loop obtains the (r; �)
coordinates of the target, where r is the distance from
the observer to the target and � is the angle between
the camera's optical axis and the line between the ob-
server and the target. To account for delays, the actual
target position is estimated using the last reading from
the target tracker, an estimate of the target velocity,
and the measured delay between actually acquiring an
image of the target and completing the processing of
that image. The estimated target position is the error
signal used by the turret control law.

The control laws for the turret, steering, and trans-
lation are all similar in structure. These are sim-
ple P-controllers with compensation for the time-delay
found inherent in communicationwith the robot. This
time delay is present both when new odometric infor-
mation is requested and when new velocity commands
are issued. The control laws attempt to compensate
for this lag based on estimates of previous delays. This
compensation ideally performs a linearization by feed-
back, and the whole system is reduced to three second-
order systems once the loops are closed. The simpli-
�cation is valid as long as the feedback gain is not
excessive.

The three P-controllers have exactly the same gain.
In our system we attempted to minimize both time-
response and oscillations. In theory, the ideal gain is
the one that makes the two closed-loop poles at each
loop identical. In practice the ideal value is 60% of

Figure 4. The display presented to the user.

the theoretical one, which shows that the linearization
by feedback approach works satisfactorily, and that
the system was e�ectively reduced to three �rst-order
systems under the imposed operating conditions.

4. Experimental Setup

This section describes our initial experiments with the
IO system. Our experimentation has two goals: �rst,
to validate the utility and robustness of the chosen al-
gorithms for each of the various system components;
and second, to demonstrate the feasibility of integrat-
ing all of the components into a uni�ed system.

Our experiments took place in our laboratory, a fairly
typical o�ce environment. As obstacles we used desks,
chairs, and large cardboard boxes. A map, as required
by the motion planner, was constructed by approxi-
mating the obstacles by polygons; this map is shown
in Figure 4.

The observer itself is a nomad-200 mobile robot. It
is equipped with an upward-pointing camera for land-
mark detection and a forward-pointing camera for tar-
get tracking. Both cameras are mounted rigidly to the
robot's turret, which can rotate independently of its
drive wheels. This allows the turret, and therefore the
tracking camera, to rotate based on the motions of
the target without a�ecting the motion of the robot.
The robot's onboard computation is provided by an
internal Pentium-based computer.

As a target, we used a second nomad-200 equipped
with a special \hat" required by our simpli�ed track-
ing algorithm, as described above. The target was
moved under joystick control by a human operator.
Figure 5 shows a view of both the target and the ob-
server.

5



Figure 5. A view of the IO in action, following a second
robot which serves as the target.

As stated above, the purpose of our experimentation
was to verify each of the individual components of the
system, as well as to show that they could be success-
fully integrated. Although we have been able to quan-
tify the performance of several of the components, it
is too early to quantitatively describe the performance
of the system as a whole. Qualitatively, however, the
system was successful: the observer was consistently
able to visually track the target and keep it in view in
the presence of obstacles.

The most important conclusion of our experimenta-
tion is that, even though each of the components which
makes up the system may periodically fail, the over-
all system is robust in the face of those failures. For
example, the target tracker or landmark detector may
periodically given an inaccurate result, but these er-
rors are tolerable since they are random variables with
zero mean and a relatively small variance. In addition,
the sampling rate is high enough relative to the reac-
tion time of the control system that sporadic sensing
failures do not signi�cantly alter the long-term perfor-
mance of the system.

5. Conclusion

In this paper we have described the concept and high-
level design of the intelligent observer. We have also
described our initial implementation of the compo-
nents of the system as well as early experiments with
the system as a whole. Up to this point, our goal
has been to design the overall system and to develop

simple versions of all of the system components. Our
continuing work focuses on two types of extensions:
�rst, those which increase the generality and robust-
ness of current components; and second, those which
add new functionality to the concept of the overall IO
system.

In terms of improving upon the current components,
we have the following goals. First, we are working on
ways to remove the discretization in our planning im-
plementation by developing new visibility algorithms
more directly related to the view planning problem.
Second, we are working on ways to allow the planner
to look farther ahead in time when it considers possi-
ble target moves. Third, we are working to implement
a more general target tracking mechanism which re-
moves the need for a special visual cue on the target.

In terms of adding functionality to the IO system,
we are working on several extensions. First, we plan
to add a component which automatically builds a 3D
model of the observer's environment. The model will
be generated using a laser range�nder (for geometry)
and a camera (for color). This model would then be
used to reconstruct a view for the user. Second, we
plan to extend the view planner to deal with multi-
ple observers which can cooperate to track a single
target. Finally, we will also consider the case of multi-
ple targets and the problem of dynamically assigning
observers to these targets.

References
[1] C. Becker, J. Salas, K. Tokusei, and J.C. Latombe.

Reliable navigation using landmarks. In Proc. IEEE

Int'l Conference on Robotics and Automation, 1995.

[2] J.F. Canny. A computational approach to edge de-
tection. IEEE Transactions on PAMI, 8(6):679{698,
1986.

[3] S. Hutchinson. Exploiting visual constraints in robot
motion planning. In Proc. IEEE Int'l Conference on

Robotics and Automation, pages 1722{1727, 1991.

[4] D.P. Huttenlocher, J.J. Noh, and W.J. Rucklidge.
Tracking non-rigid objects in complex scenes. Tech-
nical report, Cornell University Department of Com-
puter Science.

[5] D.J. Kriegman, E.Triendl, and T.O. Binford. Stereo
vision and navigation in buildings for mobile robots.
IEEE Transactions on Robotics and Automation,
5(6):792{803, 1989.

[6] A. Lazanas and J.C. Latombe. Landmark-based robot
navigation. Algorithmica, 13:472{501, 1995.

[7] T.S. Levitt, D.T. Lawton, D.M. Chelberg, and P.C.
Nelson. Qualitative navigation. In Proc. DARPA Im-

age Understanding Workshop, pages 447{465, 1987.

6


