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Abstract

We pose the correspondence problem as one of energy-based segmentation. In this framework, corre-
spondence assigns each pixel in an image to exactly one of several non-overlapping regions, and it also
computes a displacement function for each region. The framework is better able to capture the scene
geometry than the more direct formulation of matching pixels in two or more images, particularly when
the surfaces in the scene are not fronto-parallel. To illustrate the framework, we present a specific cor-
respondence algorithm that minimizes an energy functional by alternating between (1) segmenting the
image into a number of non-overlapping regions using the multiway-cut algorithm of Boykov, Veksler,
and Zabih; and (2) finding the affine parameters describing the displacement of the pixels in each region.
After convergence, a final step escapes local minima due to over-segmentation. The basic algorithm is
extended in two ways: using ground control points to detect long, thin regions; and warping segmentation
results to efficiently process image sequences. Experiments on real images show the algorithm’s ability
to find an accurate segmentation and displacement map, as well as discontinuities and creases, on a
wide variety of stereo and motion imagery.

1 Introduction

Given multiple images of a scene, the goal of visual correspondence is to determine which image points
are projections of the same world point. In the case of stereo the images are taken at the same time
by different cameras, while in the case of motion the images are taken by the same camera at different
times. Correspondence is a crucial step in recovering 3D geometric information about a scene from
multiple images. The problem of correspondence is often solved by minimizing an energy functional
that matches similar-looking pixels (in terms of intensity or color, for example), while penalizing the
discontinuities in order to preserve piecewise-continuity. The result of such a search is the best mapping
from pixels to displacements, according to the cost functional. In binocular stereo the displacement is
a scalar (the disparity), while in two-frame motion it is a two-element vector.

By searching over quantized disparities or motions, as is commonly done, what is preserved is actually
piecewise-constancy rather than piecewise-continuity, thereby implicitly making the assumption that
surfaces in the scene, along with their movement in the case of motion, are parallel to the camera.
As a result, the scene geometry is captured poorly when this assumption is violated. In Figure 1, for
example, the image from a stereo pair is improperly segmented: each slanted surface is split into a series
of constant-disparity regions, and some regions contain more than one surface. The result, therefore,
does not accurately represent the shape or orientation of the surfaces, nor are the discontinuities nor
creases easily recoverable from such an output. That is, differentiating and thresholding this disparity
map will generate many false discontinuities because of the large jumps in disparity that occur within
surfaces, and the vertical crease along the interior edge of the Cheerios box cannot be recovered because
it lies in the middle of a region.

A solution to such errors can be found in the insightful layers approach [32]. Because the world
generally consists of a number of cohesive objects separated by boundaries, solving the correspondence
problem involves finding not only the displacement of each pixel but also the surface (or layer) to which
each pixel belongs. In fact, this latter task of segmentation is in some ways more fundamental than the
former task of determining pixel displacements, because the segmentation provides global constraints
for estimating those displacements. By separating the correspondence problem into these two separate
questions, several benefits are achieved: (1) the piecewise-continuity constraint is handled naturally, (2)
the resulting displacements of the pixels are more accurate because they are computed with respect to
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Figure 1: left: An image from a stereo pair. right: The disparity map, with region boundaries
overlaid, computed by the algorithm of Boykov, Veksler, and Zabih [10], which searches over quantized
disparities. The scene geometry is poorly captured by this output.

their surfaces (and hence are real-valued) rather than to a set of predetermined quantized disparities,
and (3) the locations and boundaries of objects are naturally computed along with the correspondence.
A much richer and more natural representation of the scene emerges.

In this paper we explore this general framework in terms of a specific algorithm to minimize an
energy functional that allows not just constant displacements but rather affine warpings. Our approach
segments the image into a number of non-overlapping regions, each corresponding to a different surface
in the world, and it finds the affine parameters of the displacement function for each region. This is
accomplished by alternating between two steps: (1) segmenting the image, that is, assigning a label to
each pixel indicating to which region it belongs, using the multiway-cut technique of Boykov, Veksler,
and Zabih [10]; and (2) finding the affine parameters of the displacement function for each region, using
the method of Shi and Tomasi [31]. After these two steps converge on a result, a final step corrects
potential over-segmentation by merging adjacent regions if doing so reduces the energy further. The
basic algorithm is extended to find long, thin regions using ground control points, as well as to process
image sequences efficiently by warping the segmentation from the previous frame. Experimental results
demonstrate the algorithm’s ability to find clean, accurate segmentations and displacement maps (from
which discontinuities and creases can be inferred) from pairs of stereo and motion images containing
slanted surfaces and multiple moving objects.

2 Comparison with Previous Work

Many authors have formulated the correspondence problem as that of energy minimization. Early
algorithms focused on stereo images and utilized the epipolar constraint to convert the 2D problem to
a 1D problem that can be solved efficiently using dynamic programming [3, 4, 14, 26]. Several years
ago researchers discovered that 2D energy functionals can be efficiently and effectively minimized using
graph cuts. The first such work in computer vision was that of Roy and Cox [28], who demonstrated
that the global minimum of a certain type of 2D cost functional could be computed with graph cuts;
unfortunately their formulation does not allow for sharp discontinuities in disparity, thus yielding poor
results at the boundaries of objects. Shortly thereafter, Boykov, Veksler, and Zabih [9, 10] presented
an alternative formulation of graph cuts known as the multiway cut that, while not guaranteed to
find the global minimum, nevertheless finds a provably good local minimum while preserving sharp
discontinuities. This work has since been extended in a number of publications addressing occlusion,
multiple cameras, computational efficiency, clustering, recognition, and non-constant intensities (e.g.,
contrast reversal, different camera gain and bias, and non-Lambertian surfaces) [20, 19, 21, 22, 34, 8].
The multiway-cut technique is an important tool for solving the correspondence problem as well as
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other related problems, and it forms the basis for the work presented in this paper.
Another popular approach to scene understanding is that of layers [2, 32, 33, 18, 12], which like

our technique formulates the correspondence problem as one of segmentation. These techniques use
expectation-maximization (EM) to iteratively segment an image into regions of common (usually affine)
motion. In our technique, the multiway-cut algorithm performs the work of the E-step, while the affine
parameters are fit in a manner similar to the M-step. Because the EM algorithms assign the labels
probabilistically, however, they require suboptimal techniques for enforcing spatial consistency. Our
approach can be seen as a layered technique that enforces spatial consistency in a principled, energy-
based manner using multiway cuts.

Recently, several correspondence algorithms have been proposed that match regions rather than pixels
[11, 27, 24, 25, 16, 7]. In these techniques, the image is first segmented using monocular cues, then the
correspondence between the regions is determined. Hong and Chen [16], for example, first segment each
image independently using a color-based mean shift algorithm. Although these techniques are quite
successful when applied to untextured or color images, they generally do not work on textured gray-
level images because of the difficulty of obtaining a monocular segmentation in such a case. In contrast,
the algorithm presented here does not simply compute the correspondence between regions after first
segmenting. Rather, it simultaneously computes the segmentation as part of the correspondence. We
believe that this approach of binocular segmentation, rather than monocular segmentation, is more
natural.

Some researchers have attempted binocular segmentation using the profiles of pixels in the two images,
where the profiles are computed by computing the dissimilarities with potential matching candidates
in the other image. Shi and Malik, for example, apply their normalized cuts algorithm to motion
segmentation in this manner [30]. This is similar to the mass-spring model of Blake and Zisserman
[6] with one spring for each possible displacement. It is important to realize that any segmentation
technique using pixel profiles suffers from the fundamental flaw that the profiles are influenced by
the dissimilarities of pixels at incorrect displacements. In contrast, the multiway-cut formulation is
able to ignore these misleading values because it effectively cuts the springs attached to the incorrect
displacements.

3 General formulation

We represent correspondence between two images as a labeling f : x → l for each pixel x = [x y ]T ,
along with a displacement function hl(x) for each label l. Pixels with the same label belong to the same
region, so f represents a segmentation. The corresponding pixel in the other image, then, is given by
hf(x)(x).

If all the possible displacement functions can be enumerated a priori, then the problem of corre-
spondence involves only one step: Each pixel in the image must be assigned to a region. Traditional
formulations often follow such an approach, thereby assuming that the surfaces in the scene are parallel
to the image plane [10]. In the case of motion, the movement of the surfaces is also assumed to be parallel
to the image plane. If this assumption holds, then the displacement functions are constant (hl(x) = l).
With a small baseline (stereo) or high frame rate (motion), the number of possible displacements is
reasonably small so that their exhaustive enumeration is feasible.

When the scene becomes more complicated, however, this straightforward approach breaks down.
In the case of slanted surfaces, curved surfaces, non-fronto-parallel movement, or non-rigid motion,
one cannot hope to enumerate all the possible displacement functions a priori. With slanted motion
surfaces, for example, there are approximately O(n∆2σ2) possible displacement functions, assuming n
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pixels in the image, ∆ possible displacements in one direction, and σ different possible orientations in
one direction. Contrasted with ∆ possible displacement functions for rectified fronto-parallel stereo, this
is a significant increase in computational expense. For any reasonable discretization of the space, slanted
surfaces require several orders of magnitude more computation, thus rendering brute force search over
all possibilities infeasible. Curved surfaces or non-rigid motion require even larger search spaces.

In what follows we describe a computationally efficient approach for handling such complicated scenes.
Our goal is to find a correspondence that matches pixels of similar intensity while minimizing the number
of discontinuities. This is accomplished by minimizing the following two-dimensional energy functional:

E(f) = ED + ES , (1)

where
ED =

∑

x
g(x, f(x))

is a data-dependent energy term containing the costs of assigning the labels to the pixels, and

ES =
∑

(x,x′)

κ(x,x′)[f(x) 6= f(x′)]

enforces smoothness by penalizing the discontinuities. The first summation is over all pixels x in
the image, while the second summation is over every pair of neighboring pixels x and x′ (using 4-
neighborhood connectedness, for example). The assignment cost is the absolute difference in image
intensity: g(x, f(x)) = |I(x) − J(hf(x)(x))|, where I and J are the two intensity images. In order to
align the discontinuities with the intensity edges [5, 9, 13], the value of the discontinuity penalty depends
upon the thresholded magnitude of the gradient of intensity: κ(x,x′) = λ1 if |I(x) − I(x′)| < τ , and
κ(x,x′) = λ2 otherwise, where λ1 > λ2 and τ are constants. We also tried other edge detectors such as
Canny, but the results were not affected.

To minimize the energy functional, two sets of parameters must be determined: the function f that
describes the segmentation, and the functions hf(x) that encode the displacements of the regions. These
parameters are determined by alternating between two steps: (1) segmenting the image into disjoint
regions by assigning a label to every pixel, and (2) finding the affine parameters of the displacement
function for each region. The first step computes f , while the second computes hf(x). A final step
handles over-segmentation and, if necessary, under-segmentation, by considering the energy that would
result by splitting and merging regions. These three steps are discussed in the next three sections,
respectively.

4 Assigning labels to pixels

Assuming for the moment that all the possible displacement functions are known, the assignment
problem (i.e., the segmentation) can be formulated using the multiway cut of the weighted graph shown
in Figure 2a, which contains a vertex for every pixel in the image and a vertex for every possible label
[10]. Each pixel is connected to its four neighbors by four edges with weights equal to the discontinuity
penalty between the two pixels κ(xi,xj), and each label is connected to each pixel by an edge whose
weight is equal to the negative cost of assigning the label to that pixel −g(xi, lk) (to which is added
a large constant M to ensure non-negative weights). Minimizing Eq. (1) is the same as finding the
minimum-cost multiway cut of this graph, where a multiway cut is a set of edges such that there is
no path from any label to any other label in the induced graph formed by removing these edges. As a
result, once the multiway cut is found, each pixel is connected to exactly one label.

5



xjxi

xi

xjxi

 

pixels

labels
k

k

κ (    ,    )

l

l

M − g(    ,    )

or

xjxi

xjxi(    ,    )κ

xi

xi

pixels

kl

lm

k

 

lm

g(    ,    )

g(    ,    )l

    f(   )x

(a) (b)

Figure 2: (a) Minimizing Eq. (1) is equivalent to finding the minimum-cost multiway cut of this graph.
Every label is connected to every pixel, although some connections have been omitted from the drawing
to avoid clutter. (b) Computing the minimum-cost s–t cut of this graph constitutes one iteration of the
multiway-cut technique. For the α-β-swap algorithm, the middle layer contains only those pixels whose
current label is either lk or lm, and the bottom vertex is the label lm. For the α-expansion algorithm,
the middle layer contains all the pixels in the image, and the bottom vertex is not a single label but
rather the current label f(x) of each pixel x. In either case, all the pixels in the middle layer (which
is two-dimensional in reality) are connected to both labels, while each pixel is connected only to those
pixels which are its neighbors in the image. Observe that the large but otherwise arbitrary constant
M , which is needed in the problem formulation, is not needed in the actual implementation of either
algorithm (since the dissimilarity functions g(·) are swapped with respect to the labels).

In their seminal work, Boykov, Veksler, and Zabih [10] describe two algorithms, α-β-swap and α-
expansion, for solving the multiway-cut problem. Both algorithms find the minimum-cost multiway cut
of a graph by repeatedly finding minimum-cost single cuts of graphs derived from the original graph.
In both cases each single cut determines the best relabeling of a subset of the pixels using two of the
many possible labeling choices, with the difference between the algorithms being the way these labeling
choices are defined. The α-β-swap algorithm considers each pair of labels lk and lm in turn, and for each
of these pairs all the pixels currently assigned to either lk or lm are reassigned to one of these two labels
in order to minimize the overall energy of the cost functional. In contrast, the α-expansion algorithm
considers each label lk in turn, and for each such label all the pixels in the image either retain their
current label or are relabeled with lk.

The single-cut problems for the two algorithms are illustrated in Figure 2b. For α-β-swap, the graph
consists of two special vertices, known as the source and the sink, corresponding to the labels lk and lm.
In addition, there is a vertex for each pixel currently assigned to one of these two labels. Edges connect
each of the pixels to both the source and the sink, and edges also connect pixels to those of their image
neighbors. The former edges are assigned weights of g(xi, lm), while the latter are assigned weights of
κ(xi,xj). Once the graph is constructed, the problem is to find the minimum-cost cut that separates
the source (the vertex lk) from the sink (the vertex lm). Several algorithms exist for finding such a cut,
usually known as an s-t cut because it separates the source (s) from the sink (t). For each pixel, either
its edge to the source will be cut, in which case the pixel is assigned the label lm, or its edge to the sink
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is cut, in which case it is assigned the label lk. Notice that although a large constant M is needed in
the original graph, it is not needed in this graph because the edges connecting pixels to the source or
sink have been reversed.

Similarly, for α-expansion, the graph consists of a source and a sink, corresponding to the label lk
and a label meaning, “existing label”, respectively. The graph also contains a vertex for every pixel,
in contrast to the α-β-swap graph which has vertices for only a subset of the pixels. Edge weights are
assigned in a similar manner as before, and the minimum-cost s-t cut is found in the same way. Again,
for each pixel either its edge to the sink will be cut, in which case the pixel is assigned the label lk, or
its edge to the source is cut, in which case its current label is retained.

Because minimizing Eq. (1) is NP-hard [10], neither of these algorithms, which operate in an iterative,
greedy manner can be guaranteed to find the global minimum. Nevertheless, both of them find a strong
local minimum, in the sense that the final energy cannot be lowered by exchanging any subset of pixels
having a common label with any other subset of pixels having a common label (α-β-swap), or by
assigning any subset of pixels to a particular label (α-expansion). Moreover, under certain conditions
it can be proved that the minimum found is within a known constant factor of the global minimum
[10]. The algorithms work well in practice, producing a local minimum that is very close to the global
minimum no matter what the initial labeling (as long as the original images are reasonably textured). We
have found that simply labeling all the pixels initially with l0 works well. While there is no guaranteed
bound on the number of cycles needed for convergence (By cycle, we mean computing the single cut of
the graph in Figure 2b for all labels or pairs of labels), in practice we have found two to be necessary
initially, and only one after that (See Figure 9).

After the multiway-cut algorithm has converged, the connected components of the output are found,
in order to separate regions which may be assigned the same label but are not physically connected.
Regions that are too small (approximately 1% of the total image area or less) are discarded. Then the
displacement function is found for each remaining region, as explained in the next section.

5 Finding displacement functions

The affine model describes exactly the motion of a plane in the world viewed under orthographic
projection. Under perspective projection it is usually adequate when only small motions are involved.
Using this model, a point x = [x y ]T in image I moves to Ax + d in image J , where

A =

[

dxx + 1 dxy

dyx dyy + 1

]

and d =

[

dx

dy

]

.

The motion of each region, then, is described by a six-element vector z = [ dxx dxy dx dyx dyy dy ]T .
We will concentrate on the affine model hl(x) = Ax+d, but this framework could be extended to other
models, such as projective [15] or B-splines [23, ], as well.

To find the motion of a region, the dissimilarity

ǫ =

∫ ∫

W
[J(Ax + d) − I(x)]2 dx (2)

is minimized, where W is the set of pixels in the region. Following [31], Eq. (2) is differentiated with
respect to the unknown entries in A and d, and the result is set to zero. The resulting system is then
linearized about the current estimate by truncating the Taylor series expansion of J(Ax + d), yielding
the following linear system:

Tz = a, (3)
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jih h =⇒ hk

Figure 3: Over-segmentation: Two regions are merged if affine parameters for the union reduce the
energy.

Figure 4: left: Segmentation of the Cheerios image after the convergence of the multiway cut and
affine-parameter fitting steps. right: Two regions on the ground plane have been merged, with more
to follow.

where

T =

∫ ∫

W
ggT dx

a =

∫ ∫

W
[I(x) − J(x)]g dx.

The motion of the region can be found by using Eq. (3) iteratively in a Newton-Raphson style mini-
mization.

The elements of the vector g are image coordinates multiplied by derivatives of image intensity:
g = [u v ]T , where u = (∂J/∂x)p, v = (∂J/∂y)p, and p = [x y 1 ]. These equations are identical
to those in [31] but with simplified notation. In the case of rectified stereo images, dyx = dyy = dy = 0,
so the disparities in a region are described by a vector with only three elements: z = [ dxx dxy dx ],
which is found in the same manner as before but with g = uT . Either way, the minimization continues
until either the parameters in z do not change significantly or the dissimilarity in the region increases.

6 Handling over-segmentation

Greedily alternating between the two steps just mentioned could potentially lead to a local minimum
due to over- or under-segmentation. Handling over-segmentation is rather straightforward. Every pair
of adjacent regions is considered, and affine parameters are fit to the union of the two (See Figure 3).
If the new internal energy is less than the sum of the two individual internal energies and the cost of
the discontinuity, then the regions are merged, thereby lowering the overall energy of the system. This
process is repeated until no two regions can be merged to decrease the energy. An extreme example
of this computation in progress is presented in Figure 4, in which the ground plane is covered by five
different regions.

To test and correct under-segmentation, one must divide existing regions, fit affine parameters to the
subregions, and retain the subregions if the energy is lowered. Of these steps, the first one is open-ended:
There are many ways to divide a region. One technique would be to select two pixels in the region
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at random and to perform a floodfill operation in parallel for them until every pixel in the region is
connected to one of the two initial pixels. A simpler but more restricted approach would be to divide
the region in half using a line at a random angle going through the region centroid. Empirically, we
have found that if enough displacement parameters are allowed initially, then the algorithm is much less
likely to encounter under-segmentation as it is to encounter over-segmentation. In our experiments, we
have not yet found an occurrence of under-segmentation, according to the cost functional.

7 Experimental results

In this section we present the results of the algorithm on various stereo image pairs and pairs of image
frames from motion sequences. These results demonstrate the algorithm’s ability to find accurate
displacements and segmentations for a wide variety of imagery. We first present qualitative results,
followed by quantitative results using images with ground truth.

7.1 Qualitative results

Three stereo pairs of both indoor and outdoor scenes, along with the results of our algorithm, are shown
in Figure 5. In the first row, the results are quite accurate. Each of the surfaces is properly segmented,
with the only mistake being that of splitting the books (left of the Cheerios box) in two. Comparing
these results with those of Figure 1, we see that the scene geometry is now accurately recovered. To help
visualize the disparities computed by the algorithm, a three-dimensional reconstruction of the scene is
shown in Figure 6. From this, one can tell that the orientations of the surfaces are recovered accurately.
Notice, for example, that the two faces of the Cheerios box meet along a line, the boxes meet the ground
plane at right angles, and the two regions corresponding to the books are, although not merged, nearly
coplanar.

In the second row, whose images are from the well-known JISCT data set, the individual bushes,
automobile, and two buildings are correctly segmented. Notice that the main building is correctly
recovered as a single, slanted plane, not the usual pair of fronto-parallel planes. Although we may wish
to have the parking meters segmented from the bushes, such a separation would actually increase the
energy of the result.

The last row shows the limitations of a simple cost functional like Eq. (1). Because there is little
texture on the Clorox box and no intensity edges along most of the vertical crease, the lowest cost
solution incorrectly follows the logo on the front of the box instead of the actual crease. Our algorithm
does successfully minimize the functional, but the functional does not represent the world in this case.
Notice, however, that much of the scene is accurately recovered, such as the creases between the floor
and the boxes and many of the depth discontinuities around the Clorox box.

More generally, Eq. (1) causes the algorithm to balance the two goals of matching similar pixels and
producing a piecewise smooth disparity map. The former goal assumes that the two cameras have the
same photometric properties and that the surfaces in the world are Lambertian. If these assumptions
do not hold, then preprocessing of the images may be necessary. Even if the assumptions do hold, the
matching will be locally ambiguous if there is not enough local variation in intensity (i.e., texture),
leading to the need for the piecewise smooth prior. This latter goal is enforced using a lattice-based
Markov random field [10], causing the algorithm to prefer to define segment boundaries as vertical
or horizontal lines, in the absence of local intenstiy information. To improve upon the results shown
here, one could include higher-order a priori information about the shapes of regions, such as enforcing
that the edges of the box are straight. Such information would require object recognition beforehand,
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Figure 5: left: An image from a stereo pair. 2nd column: The thresholded gradient of the image, with
black pixels indicating large gradients. 3rd column: The disparity map, with segmentation overlaid.
right: The image with segmentation overlaid. Lines are thickened where the change in displacement
across the boundary surpasses a threshold of two, thus distinguishing depth discontinuities (thick lines)
from creases (thin lines).

however, leading to the important but unsolved problem of how to balance bottom-up and top-down
information.

Figure 7 shows the results of the algorithm on two pairs of motion frames. The first row contains
complex motion due to the handheld camera, a person walking in the foreground, and a bicyclist
peddling in the background. Nevertheless, all three planes defining the world (the ground plane and
the two walls of the building) are correctly segmented from each other. The extra region under the arch
appears to be caused partly by the motion of the bicyclist. Because the camera translation is rather
small, there is little information to distinguish the various surfaces in the static world, which explains
why the creases are in slightly incorrect locations and why the bottom of the statue is grouped with the
ground plane. Notice, however, the detailed contour of the torso of the statue, as well as the outline of
the pedestrian, whose lower leg is moving in a different direction from the rest of his body.

In the last row, the basketball player is accurately segmented from the crowd (even his elbow is
well-preserved), and the ball is nearly completely segmented from the player. Although it is not visible
in the figure, the motion of the crowd varies across the image, so that an algorithm searching over
quantized motions would split it in two.

We have already seen how the final step to handle over-segmentation is key to recovering the ground
plane in the Cheerios image. It also plays a minor role in two other images by merging four pairs of
regions to form the player’s left arm and basketball, his body and right arm, and the two regions of
near and far bushes (with parking meters). After careful investigation we have concluded that none of
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Figure 6: top: Stereo images, displayed for cross-eyed viewing. middle and bottom: 3D reconstruc-
tion, as texture-mapped surfaces, from novel viewpoints.

Figure 7: left: An image from a pair of motion frames. 2nd column: The thresholded gradient of
the image. 3rd column: The displacement map (magnitude of the motion vector), with segmentation
overlaid. right: The image with segmentation overlaid.
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the images is under-segmented, according to the cost functional. Specifically, we tried to find separate
affine parameters for the parking meter and the bush behind it, but the resulting energy was higher
than the result displayed in Figure 5. Similarly, if either arm of the basketball player is separated from
the rest of its region, the energy increases.

7.2 Quantitative results

In this section we present quantitative results of our algorithm on stereo images, using the database of
Scharstein and Szeliski [29, 1]. Figure 8 shows the left image of each pair in the top row, the disparity
map computed by our algorithm in the middle row, and the disparity map computed by the current
leading algorithm of Hong and Chen [16] in the last row. The overall errors of our algorithm on these
images are 0.53, 0.26, 0.61, and 8.08, respectively, while the overall errors of the Hong-Chen technique
are 0.08, 1.49, 0.30, and 1.23. Although the Hong-Chen algorithm significantly outperforms ours on
three of these images, our algorithm produces superior results on one of them (the Map image, second
column), both qualitatively and quantitatively. Also notice that we are able to recover the shape of
the video camera in the Tsukuba image, which Hong-Chen is not able to do. Keep in mind that
our algorithm operates on gray-scale images, while Hong-Chen requires color images. In the original
comparison our algorithm was ranked 1st, 3rd, 4th, and 17th on these images, respectively, out of 20
algorithms (see Table 5 of [29]), although more recent algorithms have changed those rankings. It is
important to keep in mind that our algorithm and general framework are designed to compute real-
valued disparity maps at subpixel resolution and to operate on motion images as well as stereo. These
key features of our approach are not captured by Scharstein and Szeliski’s original integral-disparity
stereo comparison which counts as errors only those pixels whose disparity is greater than one pixel
from the ground truth disparity.

7.3 Algorithm operation

A typical run of the algorithm is shown in Figure 9, where the energy of the system is plotted versus time.
From these data we notice that the most significant iteration is the first application of the multiway-cut
algorithm using quantized displacements, which reduces the energy by an amazing 80% in just one step.
(Figure 1 shows the output after two iterations.) The energy is then steadily and quickly reduced by
alternating between the multiway-cut segmentation and the fitting of affine parameters. Notice that
many of the multiway-cut iterations shown here are not necessary: only the first two initially and the
first one after every affine fitting. Thus, these same results could be achieved in just 11 iterations. The
step to handle over-segmentation further reduces the energy by another 10% on this image, though its
impact on other images was less noticeable.

7.4 Parameters

The parameters used for the experiments were τ = 5 gray levels, λ1 = 12, and λ2 = 6. For the stereo
images, the disparity values considered ranged from 0 to 30. For the motion images, the displacements
ranged from (−2,−10) to (2, 2) for freethrow and from (−5,−5) to (15, 5) for statue. We have found that
the range of disparities or displacements does not affect the results, although it does have a significant
impact upon the running time. The images used in the experiments are listed in Table 1 along with
their sizes, the number of iterations, and the time taken by the algorithm to compute the result. The
number of iterations listed involves a pair of multiway cut and affine minimization as one iteration.
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Figure 8: top: The left image from each stereo pair of the original Middlebury database (from left
to right: Venus, Map, Sawtooth, Tsukuba). middle: Disparity map computed by our algorithm.
bottom: Disparity map computed by the algorithm of Hong and Chen [16].
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Figure 9: The algorithm greedily decreases the energy by alternating between the two steps of Sections
4 and 5, followed by a single run of the over-segmentation step. These data are from the Cheerios image.
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computing time (sec.)
image size iterations multiway-cut affine overseg total

Cheerios 640 × 480 8 201 33 30 264
parking meter 512 × 480 5 111 15 38 164

Clorox 640 × 480 5 116 19 24 159
Venus 434 × 383 4 59 7 10 76
map 284 × 216 2 11 1 7 19

sawtooth 434 × 380 3 47 5 39 91
Tsukuba 384 × 288 2 23 2 18 43
statue 318 × 243 10 109 8 10 127

freethrow 315 × 237 5 29 4 6 39

Table 1: The number of iterations and computing time of the algorithm on the images used in the
experiments.

The computing time is based upon an unoptimized Visual C++ implementation running on a 2.8 GHz
Pentium 4 computer with 256 MB RAM.

8 Extensions

In this section we present two extensions to the basic algorithm.

8.1 Using ground control points

As explained in the experimental results of the previous section, the proposed algorithm is extremely
effective at minimizing the energy functional in Equation (1). The errors in the result are not due to
the inability of the algorithm to find the global minimum, but rather to the inability of the simple cost
functional to accurately describe the world. One place where this limitation is particularly noticeable is
the case of long, thin objects. Because the cost functional simply penalizes the number of pixels along
the borders of regions, the algorithm favors regions that are compact in space. Long, thin objects will
not be found, because the smoothness term overwhelms the data term.

To solve this problem, we use the notion of ground control points (GCPs) [17]. Before any energy
minimization is performed, the intensities of the pixels in each image are compared with all the possible
matches in the other image. This yields one cross-correlation vector per pixel per image, where each
element of the vector indicates the likelihood of matching one of the other pixels. If the vector has a
strong, unambiguous minimum, then we declare the pixel to be a GCP. More specifically, we compute
the pixels for which

C(x; δxmin) < γC(x; δ), ∀δ 6= δxmin, (4)

where C(x; δ) is the likelihood of matching pixel x at disparity δ, and δxmin = arg minδ C(x; δ). Pixels
that pass this test using both the left and right cross-correlation vectors, as well as pass the left-right
consistency check [13], are declared ground control points if a sufficient number of contiguous pixels
agree on their disparity. The correlation is computed using a 5×5 window, and we use a threshold of 60
pixels as the minimum size of a GCP region. The constant γ ∈ [0, 1] governs the amount of unambiguity
needed in order to declare a GCP; it is set empirically to 0.4.

The cost functional is modified to preserve the correspondence of the GCPs. A higher cost is incurred
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image GCPs disparity map

Figure 10: Left: Parking meter image, Center: Ground control points (GCPs) shown in black,
Right: Resulting disparity map.

if the disparity of a GCP is changed significantly from the minimum value of the cross-correlation vector:

g(x, f(x)) =

{

|I(x) − J(hf(x)(x))| if |δf,h(x) − δxmin| ≤ 0.5

η|I(x) − J(hf(x)(x))| otherwise,
(5)

where δf,h(x) = x− hf(x)(x) is the disparity of the pixel x, the value of η is set to 6, and the threshold
of 0.5 is used to ignore roundoff error.

The results are shown in Figure 10. Compared with Figure 5, the algorithm exhibits improved
behavior. The front two bushes are separated from each other, and the pole of the first parking meter
is separated from the background even though there is only a one-pixel difference in their disparities.
The specularities on the parking meter prevent a clear delineation of the entire meter due to a lack of
GCPs on it. Notice also that one edge of the pole of the second meter is recovered, along with the side
mirror of the car.

8.2 Processing an image sequence

The computational time of the algorithm is dependent upon the number of labels considered. For
most images, the total number of segments found is small, ranging from approximately two to ten.
Yet, because we do not know a priori how many segments exist, nor the proper displacement functions
for each segment, the algorithm must search over many possibilities. For example, we search over 31
disparities for the stereo images, while for motion the search can include hundreds of displacements. By
taking advantage of the temporal continuity between image frames of a sequence, the motion of objects
can be found with significantly less processing.

We augment the basic algorithm in the following manner. In the first pair of frames of the sequence
the algorithm is applied as before, since there is no additional information. In subsequent frames, the
segmentation computed for the immediately preceding pair of frames is projected onto the images using
the displacement functions of the regions. Only the labels from the previous pair of frames is used,
thus dramatically reducing the computational cost. When a new object enters the scene, there is no
requirement that it be labeled correctly, because the connected components step automatically generates
a new label for the object, as long as the motion of the object matches one of the non-background labels.
In the case that the object motion is more similar to the background than to any existing foreground
object, a new label is proposed with the displacement function corresponding to the dominant motion
of the new area computed efficiently by cross-correlation.

The extension was run on the ‘Hamburg Taxi’ sequence. Although this sequence has poor illumination
and little texture, the algorithm effectively segments the three vehicles, as shown in Figure 11. Because
the vehicle on the right side is severely occluded by the tree, errors result in its segmentation in several
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Figure 11: Segmentation results for frames 1,5,18,22, and 36 the ‘taxi’ sequence. Top: original images,
Middle: segmentation, and Bottom: images overlaid on segmentation.

of the frames. The other two vehicles are segmented correctly, with a few errors in the labeling of road
pixels near the end of the sequence due to the decelerating motion of the taxi. For these results, the L2
metric was used for the data cost, since L1 metric resulted in over-smoothing of regions due to the low
contrast between the dark car on the left and the dark background. Use of the L1 metric necessitated
squaring the smoothness parameters to λ1 = 100 and λ2 = 40. The algorithm is not sensitive to these
parameters, with similar results being obtained when they were varied in the range of ±30%. The
sequence consists of 36 images, each of size 256 × 191. The execution time for the sequence was 13
seconds for the first pair of frames (using an initial search range from (−3,−3) to (3, 3) in the x and y
directions) and an average of 2.6 seconds for each subsequent pair.

9 Conclusion

Stereo and motion algorithms that search over all possible displacements to minimize an energy func-
tional have traditionally assumed that all the surfaces in the world are parallel to the image plane. As
a result, they are unable to capture the scene geometry well when the assumption is violated. In this
paper we have presented a framework for solving the correspondence problem by casting it as an energy-
based segmentation problem. We have described a specific algorithm that alternates between two steps:
(1) segmenting an image into non-overlapping regions using the powerful multiway-cut formulation of
Boykov, Veksler, and Zabih; and (2) finding the affine parameters of the displacement function of each
region using Newton-Raphson minimization. An additional step enables the algorithm to recover when
this alternation settles onto a suboptimal over-segmentation. This iterative, greedy algorithm is able
to find clean, accurate displacement maps for a wide range of images from stereo and motion, even in
the presence of slanted surfaces. In addition to these qualitative results, quantitative results on the
Middlebury stereo database show that the accuracy of the algorithm is comparable to other leading
algorithms.

We have also presented two extensions to the basic algorithm. First, ground control points are used to
guide the energy minimization to preserve the correspondences that can be obtained reliably in a local
fashion. In this manner, the bias of the Markov random field against long, thin objects is overcome.
Secondly, a method is presenting for processing a multi-frame image sequence by projecting regions
onto the current frame using the displacement of the previous frame. The method reduces the number
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of labels that need to be searched, thus significantly reducing the processing time.
The main limitation of this work is the restrictiveness of the energy functional used. For example, the

algorithm may become stuck in local minima if there are extremely untextured surfaces in the world, in
which case it will be difficult to determine automatically their affine parameters. Moreover, it is easily
distracted when intensity edges do not accompany the region boundaries, and it prefers to draw region
boundaries along straight lines, thus ensuring a bias against tracing the contours of curved objects.
Future work should be aimed at incorporating occlusions, the curvature of boundaries, or the shape of
regions.
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