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A Pixel Dissimilarity Measure That Is
Insensitive to Image Sampling

Stan Birchfield and Carlo Tomasi

Abstract—Because of image sampling, traditional measures of pixel
dissimilarity can assign a large value to two corresponding pixels in a
stereo pair, even in the absence of noise and other degrading effects.
We propose a measure of dissimilarity that is provably insensitive to
sampling because it uses the linearly interpolated intensity functions
surrounding the pixels. Experiments on real images show that our
measure alleviates the problem of sampling with little additional
computational overhead.

Index Terms—Dissimilarity, stereo matching, correspondence.
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1 INTRODUCTION

WHEN a point in the world is imaged by a stereo pair of cameras,
the intensity values of the corresponding pixels are in general dif-
ferent. Many factors contribute to this difference, such as the fact
that the light reflected off the point is not the same in the two di-
rections, the two cameras have different gains and biases, the in-
tensities of the pixels are quantized, and noise exists in the camera
and framegrabber electronics. Moreover, a pixel value is actually
not the image of a point but of a surface patch, and two pixels that
contain corresponding world points integrate light reflected off
two different surface patches due to foreshortening, depth discon-
tinuities, lens blur, and image sampling.

Although some researchers have proposed measures of pixel
dissimilarity that are insensitive to gain, bias, noise, and depth
discontinuities [6], [9], [10], [11], [13], there seems to be no work on
explicitly achieving insensitivity to image sampling. Yet this latter
phenomenon can significantly change the intensity value of a pixel
where the intensity function is changing rapidly and where the
disparity is not an integral number of pixels (see Fig. 1). Although
this may not be a problem if one is only interested in finding the
best match for a given pixel, it is a problem if a threshold is used to
determine matching failure or if the dissimilarities between the
pixels are added to other quantities.

For example, there has recently emerged a class of stereo algo-
rithms [1], [2], [5], [7], [8] in which epipolar scanlines are matched by
minimizing a cost function that sums the absolute or squared differ-
ences of pixel intensities with penalties for occlusions. With the ex-
ception of [1] and [2], all of these algorithms work at pixel resolu-
tion, and therefore a measure of pixel dissimilarity that is insensitive
to sampling would eliminate the errors that they experience due to
sampling effects [5]. Moreover, because these algorithms explicitly
search over all possible disparities using dynamic programming,
working at subpixel resolution is often infeasible because it results in
an unacceptable increase in the computational burden.

In this paper, we propose a measure of pixel dissimilarity that
compares two pixels using the linearly interpolated intensity
functions surrounding them. However, because it does not explic-
itly reconstruct those functions, the computation required is only
slightly more than that of taking the absolute difference in inten-
sity. Our measure is provably insensitive to sampling and is shown
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to improve the results of a stereo algorithm on real images.

The paper is organized as follows. We define the dissimilarity
measure and describe its computation in Section 2. In Section 3, we
present two theorems that guarantee that our measure will exhibit
the desired behavior under certain general conditions, and we
show that it behaves reasonably even when those conditions are
not met. The measure is incorporated into a stereo algorithm to
demonstrate the improved results in Section 4, followed by a dis-
cussion in Section 5 comparing our dissimilarity measure with
working at subpixel resolution.

2 DEFINITION AND COMPUTATION OF DISSIMILARITY

Assume that we have a rectified stereo pair of cameras, so that the
scanlines are the epipolar lines. Along two corresponding scanli-

nes, let i; and ix be the one-dimensional continuous intensity func-
tions that result from convolving the amount of light incident
upon the two image sensors with a box function whose support is
equal to the width of one pixel. This convolution is due to the fact
that a real image sensor can be modeled as an integration of inten-
sity over each pixel followed by an ideal sampler—thus, to allow
us to concentrate on ideal sampling, we remove the integration at

the outset. The functions i; and i are sampled at discrete points by
the ideal sampler of the image sensor, resulting in two discrete

one-dimensional arrays of intensity values, I, and I, as shown in
Fig. 2. Our goal is to compute the dissimilarity between a pixel at

position x; in the left scanline and a pixel at position x in the right
scanline; the other pixels shown in the figure are adjacent to these

two. First, we define I, as the linearly interpolated function be-
tween the sample points of the right scanline, then we measure

how well the intensity at x; fits into the linearly interpolated re-

gion surrounding xg. That is, we define the following quantity:

d(x X I ulg) = min |IL(xL)—fR(x)|,
fozsxsxm%

Defining [, similarly, we obtain a symmetric quantity:

|fL(x) - IR(XR)|.

d(Xge X Il ) = min
SXSX

The dissimilarity d between the pixels is defined symmetrically as
the minimum of the two quantities:

d(x_, Xg) = min{a(xL,xR, I TR) d(Xge X, s, IL)}. (1)

Since the extreme points of a piecewise linear function must be
its breakpoints, the computation of d is straightforward. First, we
compute

N n

I = |R[xR _7J = %(IR(XR) +1g(x, =1)),

the linearly interpolated intensity halfway between xz and its
neighboring pixel to the left, and the analogous quantity

I = fR[xR +%J = %(IR(XR) + (% +1)).

Then, we let 1, = minfio, 15, 1o(xa)} and 1 = max{ig, 15, 1(xg)}-
With these quantities defined,

(%0 e 1) = Max]0, 1 (%) = Faes T = 1 (%)}
This computation, along with its symmetric counterpart
d(Xg X, Ig, 1, ), takes only a small, constant amount of time more

than the absolute difference in intensity. In practice, we have found
the total computing time of our stereo algorithm to increase by less
than 10 percent.
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Fig. 1. Top: Two scanlines differing by a disparity of 0.4 pixel. Bottom: The absolute difference in intensity (left) compared with our dissimilarity
measure (right). The scanlines are from images of a fronto-parallel, planar object viewed by a camera mounted on a precise translation stage.

3 ANALYSIS

In the following two subsections, the dissimilarity measure of (1) is
analyzed, first, by mathematics and simulation and, then, by ex-
periments on real images.

3.1 Theoretical Analysis

For now, let us assume that our cameras are ideal samplers, there
is neither photometric nor geometric distortion or shift between
the two intensity functions, and there is no noise, so that i, = ir = i.
Keep in mind that, in the following analysis, this restriction is only
required in a very small neighborhood surrounding each pixel. We
will show by theorems and simulations that the dissimilarity
measure defined in (1) is relatively insensitive to sampling if the
lenses are slightly defocused to remove aliasing from the sampled
intensity functions.

We model the imaging process as a blur function followed by
an ideal sampler. The blur results from both lens defocus (which is
always present, even in the best of lenses) and integration over the
pixel area, and it causes the intensity function to be bandlimited.
Since any continuous signal, and hence a bandlimited one, can be
broken up into a series of alternating convex and concave sec-
tions,' two situations are possible: Either both corresponding sam-
pling points lie within a convex or concave region or they straddle
one or more inflection points. We will now examine these two
situations in turn.

First, wherever the continuous intensity function is either con-
vex or concave in the vicinity of the pixels x; and x, these pixels
are correctly assigned a dissimilarity of zero if they should corre-
spond (that is, they are closer to each other than they are to any
other sampling points). This is stated by Theorem 1.

THEOREM 1. Let i be either convex or concave on an interval A, and let

x; and xg be sufficiently inside A so that [x_~4,x_+3] 0 A and

1. Recall that a function is convex if no chord lies below the function
and concave if no chord lies above it [12].

[Xe =% % + 2] O A If|x_ = xg| < £, then d(x_, xg) = 0.

In addition, wherever the intensity function is also linear with
nonzero slope (recall that linear functions are by definition both
convex and concave), a second theorem guarantees the dissimilar-
ity of two noncorresponding pixels to be nonzero:

THEOREM 2. Let i be linear and have nonzero slope on an interval A, and
let x; and xg, be sufficiently inside A so that [XL —L.x + %] 0 Aand

[X: =%, %; +3] O A. Then d(x;, xg) = 0 if and only 1f|xL - XR| <1

For interested readers, the proofs to these two theorems can be
found in [3].

In the second situation, when the pixels are near inflection
points, the behavior of our dissimilarity measure is more difficult
to analyze. As long as the inflection points are spaced far enough

v —1 2z xzp+1

tr—1 zr zp+1

Fig. 2. Definition and computation of cT(xL, Xl 1)
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Fig. 3. Our measure (solid) compared with the absolute difference in
intensity (dashed) for synthetic pairs of bandlimited images. As the
cutoff frequency decreases, our measure quickly goes to zero while the
absolute difference remains high. In these images, the dissimilarities
were measured for a disparity of zero pixels, while the actual disparity
was 0.4 pixel.

apart, then the regions surrounding them will be approximately
linear, and there will likely be no significant error because of Theo-
rem 2. Although the minimum distance between inflection points
cannot be guaranteed, bandlimited signals have the property that
as the inflection points get closer together, so do the values of adja-
cent maxima and minima. In other words, inflection points that are
close together have little effect upon the shape of the signal. There-
fore, it seems intuitive that the dissimilarity measure will work
well as long as there are no high frequencies present in the inten-
sity function.

To test this hypothesis, we used Matlab to generate a large
number of random bandlimited one-dimensional intensity func-
tions. These functions were shifted by exactly 0.4 pixel to pro-
duce corresponding functions. Rounding to the nearest integer,
then, these pairs of functions had a true disparity of zero. Fig. 3
shows the dissimilarities at a disparity of zero computed using
the absolute difference in intensity and our measure, plotted
versus T, = 1/f,, where f. is the cutoff frequency (i.e., the maximum
frequency) of the intensity function. We see that when the imagi-
nary lenses are slightly defocused to remove aliasing (T, = 2 pix-
els), the maximum dissimilarity using our measure is 24 gray lev-
els, and the average dissimilarity is just barely one gray level.
Compare this to the absolute difference, which yields 98 gray lev-
els for the maximum and 26 gray levels for the average. If the
lenses are defocused slightly more, so that T, = 4 pixels, our dis-
similarity reduces the effects of the sampling problem to the
equivalent of quantization noise, whereas the absolute difference
still yields errors on the order of 20 gray levels.
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Fig. 4. Our measure (solid) compared with the absolute difference in
intensity (dashed) at a hypothesized disparity of 10 pixels.

3.2 Experimental Analysis

To obtain quantitative analysis on real images, we used a single
Pulnix camera mounted on a precise translation stage to take 52
images of a frontoparallel, planar object that was about 600 mm
from the camera. The camera translated 4.00 mm between the first
two images and 0.04 mm between subsequent images, the transla-
tion being roughly parallel to the scanlines. Empirically, it was
determined that each pixel of disparity was equivalent to about
0.48 mm of translation. Therefore, with respect to the reference
image (the first image), the disparities of the images ranged from
about 8.5 to about 12.5 pixels. The lens was slightly defocused to
remove aliasing.

Each pixel in the reference image was compared with its
corresponding pixels in all the other images, assuming a dis-
parity of 10 pixels. Maximum and average values were then
computed for each image, along with the values obtained by
the absolute difference. The results, shown in Fig. 4, are signifi-
cant for two reasons. First, they verify the validity of the theo-
rems and simulations of the previous subsection. That is, our
measure indeed yielded relatively flat behavior for disparities
between 9.5 and 10.5, with the maximum dissimilarity varying
by no more than two gray levels between disparities of 9.58
and 10.32. In contrast, in this same region the dissimilarities
obtained by the absolute difference spanned a range of 19 gray
levels. Therefore, meaning is readily attached to the dissimilar-
ity obtained by our measure, while the dissimilarity obtained
by the absolute difference is hard to interpret because a large
dissimilarity between two pixels may or may not indicate that
they correspond.

Second, these plots answer a question left open by the previous
analysis, that is, how much discriminating power is lost. Because
the slopes outside of the flat region are nearly the same for our
measure and the absolute difference, our measure still yields rela-
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Fig. 5. (&) An object with a true disparity of about 7.5 pixels. (b) The
absolute difference in intensity made a number of mistakes, while (c)
our dissimilarity measure correctly assigned disparities of seven or
eight throughout the object.
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Fig. 6. Left and right scanlines from row 294 of the previous figure,
along with the matches found by the stereo algorithm. (a) Rather than
match the correct pixels, the absolute difference in intensity preferred
to match a few random, unrelated pixels and to declare five occlusions.
(b) Our dissimilarity measure correctly yielded a disparity of eight
throughout.

tively high values for incorrect disparities and thereby allows a
matching algorithm to find the best disparity.

4 PERFORMANCE ON REAL STEREO IMAGES

To ascertain the performance improvement in the context of stereo
matching, we used the scanline-based dynamic programming al-
gorithm described in [4], which computes the disparities along

100

200 300 400 500

Fig. 7. Regions in which our dissimilarity measure outperformed abso-
lute differences.

each scanline by minimizing a cost function that adds the dissimi-
larities of the matched pixels to penalties for the occlusions. We
compared the results of the algorithm using our dissimilarity
measure with the results of the algorithm using the absolute dif-
ference in intensity.

On the six pairs of images that we tested, the absolute differ-
ence measure was usually adequate. In fact, when comparing the
two measures, we found that fewer than 10 percent of the pixels in
the disparity maps changed. However, wherever the intensity
function was changing rapidly and the disparity was not an inte-
gral number of pixels, our measure was crucial to recovering accu-
rate disparities. In this section, we will highlight three situations in
which this behavior was achieved.

One situation was that of the object shown in Fig. 5. Since the
actual disparity was about 7.5 pixels, the absolute difference in
intensity yielded erratic results in some places while our measure
correctly assigned disparities of seven or eight throughout. In par-
ticular, along scanline 294 (shown in Fig. 6), a disparity of either
seven or eight pixels created such a large absolute difference in
intensity that the algorithm preferred to declare five occlusions
and assign various disparities to parts of the object. Our measure,
on the other hand, correctly assigned a disparity of eight pixels
throughout.

The other two situations are shown in Fig. 7. In the region
around the doorknob, the boundary between the door and the wall
was not cleanly found when using absolute differences, instead
large numbers of pixels were skipped (see Fig. 8). This behavior
was again due to sampling effects, which caused the correspond-
ing pixels to have very different intensities. In the final situation,
along the door edge our dissimilarity measure produced a fairly
straight edge, while the absolute difference measure caused a jag-
ged edge whose location was subject to sampling noise, as shown
in Fig. 9.

Although the first two errors mentioned above could have
been eliminated by simply increasing the overall penalty for
occlusions, the wiggly door edge remained no matter how the
parameters2 were chosen. (In contrast, our measure did not yield
any of these errors, regardless of the parameter values.) Moreo-
ver, the parameter values that alleviated the sampling problem
for absolute differences on one image were different from the
parameter values that worked on other images. In short, for our

2. In the stereo algorithm, two parameters govern the occlusion penalty.
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Fig. 8. Top: Disparity map of doorknob using (a) absolute differences, and (b) our dissimilarity measure. Bottom: Portions of the scanlines of row
205, with matches. (a) Absolute differences refused to match the correct pixels and instead declared a spurious match with two large sets of oc-
cluded pixels. (b) In contrast, our measure correctly found a disparity of seven on the door and four on the wall, with three occluded pixels in be-

tween.

six images, there was no single choice of parameter values that
yielded results using absolute differences that were as good as
those obtained using our dissimilarity measure with a particular
choice of parameter values.

5 COMPARISON WITH SUBPIXEL RESOLUTION

A natural question to ask is how using our dissimilarity measure
at pixel resolution compares with using the absolute difference
measure at subpixel resolution. It is important to notice that even
with our slightly defocused images, the intensities of adajacent
pixels often differ by thirty gray levels or more. Therefore, the
amount of interpolation that is necessary to bring the sampling
problem down to the level of quantization noise is quite substan-
tial: The images must be interpolated by a factor of about 10 to 15.
We linearly interpolated our six images by a factor of 10 and
ran the stereo algorithm. No appreciable difference in the results
was noticed except where objects had nonintegral disparities. For
example, in the case of the Clorox bottle, shown in Fig. 10, our
measure produced a noticeable disparity wobble between seven
and eight pixels, whereas the disparity on the linearly interpolated
image was smoother. It should be noted, however, that although
the latter disparity map looks smooth, there is actually a substan-
tial variation between the values, ranging from 7.0 to 8.2 pixels.
While the disparity map obtained using linear interpolation is

pensive accuracy may not be needed. For example, if the goal is
segmentation rather than reconstruction, then pixel resolution may
be adequate, especially if a postprocessing step can detect and
correct the disparity wobble.
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certainly as good if not better than the one obtained using our Fig. 9. A straighter door edge was produced using (b) our measure
measure, depending on the application, this higher but very ex- than (a) absolute differences.
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Fig. 10. The disparity map obtained using (a) our measure at pixel
resolution (a copy of Fig. 5¢) and (b) the absolute difference measure
at the resolution of a tenth of a pixel. Both maps exhibit a range of
disparities from seven to eight pixels, but the one in Fig. 10b is
smoother.

The most compelling reason for working at pixel resolution, at
least when using a dynamic programming stereo algorithm, is
the increase in speed. The algorithm described in [4] has a run-
ning time of approximately O(mnA logA) (where the image is of
size m X n, and A is the maximum disparity), which is slightly
faster than that of the standard implementation. Even so, interpo-
lating by a factor of 10 increased the computing time by 1,100 per-
cent, from eight seconds to 15 minutes, because both the number
of pixels in a scanline and the maximum disparity are proportional
to the amount of interpolation.

6 CONCLUSION

Sampling is an important phenomenon that can contribute signifi-
cantly to the difference in intensity between corresponding pixels
of a stereo pair. When working at pixel resolution, traditional
measures of dissimilarity, such as the squared or absolute differ-
ence in intensity, do not give a good indication of whether two
pixels match, making these measures inadequate for applications
in which the dissimilarity values are added to other values in a
cost function or are thresholded to determine matching success.
We have proposed a dissimilarity measure that is provably insen-
sitive to sampling in the sense that two corresponding pixels al-
ways have a dissimilarity near zero (in the noise- and distortion-
free case), whenever the camera lenses are slightly defocused to
remove aliasing. The measure was shown to improve the results of
a stereo algorithm tested on real images.

This dissimilarity measure could be effortlessly integrated into
existing stereo algorithms that minimize an objective function that
adds dissimilarities to occlusion penalties [1], [2], [5], [7], [8]. In
such an algorithm, it could be used either with or without correla-
tion windows. Future work should be aimed at extending the dis-
similarity measure from one dimension to two dimensions, to al-
low its use in motion tracking, not just stereo.
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