Systems of Bilinear Equations !

Scott Cohen Carlo Tomasi

{scohen, tomasi}@cs.stanford.edu
Computer Science Department
Stanford University
Stanford, CA 94305

! This research was sponsored in part by the National Science Foundation under contract IRI-9509149.

Abstract

How hard is it to solve a system of bilinear equations? No solutions are presented in this
report, but the problem is posed and some preliminary remarks are made. In particular,
solving a system of bilinear equations is reduced by a suitable transformation of its columns
to solving a homogeneous system of bilinear equations. In turn, the latter has a nontrivial
solution if and only if there exist two invertible matrices that, when applied to the tensor
of the coefficients of the system, zero its first column. MATLAB code is given to manipulate
three-dimensional tensors, including a procedure that finds one solution to a bilinear system
often, but not always.

Contents

10

11

Introduction 3
Bilinear Systems with m = 1 6
2.1 Homogeneous Systems with m=n=1.. 6
2.2 Homogeneous Systems with m =1 7
2.3 Non-Homogeneous Systems with m =1 8
Characterizing the Solutions 8
Some Simple Existence Results 10
Reduction to a Homogeneous System 11
Solving Homogeneous Bilinear Systems 12
6.1 An Equivalent Problem 12
6.2 Zeroing the First Column of a Homogeneous System 13
Homogeneous Bilinear Systems and Eigenvalue Problems 14
The Generalized Eigenvalue Problem Ax = ABz 15
8.1 The Square Generalized Eigenvalue Problem 16
8.2 The Non-Square Generalized Eigenvalue Problem 16
8.3 Computing (A, B) when A(A,B)=C 17
Least Squares Solutions of Inconsistent Equations 20
Related, Harder Problems 21
10.1 Extreme Singular Values of a Unit-Norm Linear Combination of Matrices 21
10.2 Simultaneous, Connected Figenvalue Problems 23
Conclusion 25
Tensor MaTLAB Code 26
A.1 Creation and Access Routines for Tensors 26
A2 Tensor-Matrix Type Transformations o .. 30
A.3 Tensor Multiplication by Scalar, Vector, Matrix 31
A.4 Householder Transformations for Matrices and Tensors 32
A5 Application Routines Lo 33
Cspsolve MATLAB Code 35
B.1 Basis Computation L e 35
B.2 Basis Verification oL L e 37
B.3 Basis Display e 38

1 Introduction

One of the most common types of systems of equations that arise in science and engineering is a
linear system

Az =b (1)

where A € R™*™ 2 € R", and b € R™. The system (1) consists of m equations

Zaij%‘:bi for i=1,...,m (2)
=1
in n unknowns x1,...,2,. The left-hand side of the ith equation in (2) is the linear form a?w,

where a7 is the ith row of A.

Adding one dimension to the linear system (2) yields a bilinear system of equations
m n
ZZtijkyjzk =d; for 1 =1,...,1 (3)
j=1k=1

where the t;;, and the d; are known real numbers. This system consists of [equations in m + n
unknowns yq,...,%m and z,...,z,. Here we have two unknown vectors

= [y - yn] €R™ and
= [Zl“‘Zn]TERn,

an order-3 tensor of coeflicients
T = [t] € RF™ ",

and a right-hand side vector

d=[dy --- d;]F e R}

A shorthand notation for the bilinear system (3) is
yI'z = d.

A homogeneous bilinear system is a bilinear system with right-hand side d = 0:
ZZtijkyjzk:O for 1 =1,...,1, (4)
j=1k=1

or, in our shorthand notation, yTz = 0.
The system (3) can be written in three alternative forms that make use of matrix notation:

gl Az = d; for i=1,...,1 (5)
B(y)z: = d (6)
Clz)y = d, (7)

1<=i<=1|
@)
o

Figure 1: The tensor of the coefficients of a system of bilinear equations. The two vectors y and
z are placed along the dimensions that they contract. The shaded area is the first column of the
tensor (j=k=1).

where
Bly) = > B, (8)
=1
Cz) = > zCr, (9)
k=1
and where the matrices
[tir oo g
A, = : : e R™X" for i=1,...,1 (10)
L timl e timn
[t o tin
B, = : .. ¢ | eRbm for j=1,...,m (11)
L tij1 - tyn
[tk fimk
Cn = Do e R*™ for k=1,...,n (12)
Ltk -0 ik

represent “slices” of the tensor 1" along its three dimensions (see figure 1). The representation (5)
makes it clear that the left-hand side of the ith bilinear equation is the bilinear form y* A;z.! The

! A more general system of equations includes strictly linear terms in y and z in the left-hand side of each equation.
If the ith equation were yZ A;z + Xy 4+ fT2 = d;, then we would have a system of biaffine equations. As in the
bilinear case, holding one of the unknown vectors fixed results in a linear system to solve for the other vector. This
is clear if we write the system as B(y)z + Fy + Fz = d, where el and fI are the ith rows of the matrices £ and F,
respectively. At the present time, we only consider systems in which the left-hand side of each equation is a bilinear
function of y and z.

representation (6) makes it clear that fixing the vector y results in a linear system to solve for z.
Similarly, the representation (7) shows that fixing the vector z yields a linear system to solve for y.
Therefore, fixing one of the unknown vectors leaves a linear system to solve for the other vector.
A very simple example of a bilinear system is the single equation of a rectangular hyperbola in
the plane:
yz = d, yeR, zeR, deR. (13)

Our definition of a bilinear system also includes the matrix form of equation (13):
YZ =D, Y e R"P, Z e RP*", D e R™". (14)

In (14) there are mn equations, one for each entry d;; of D, and (m 4 n)p unknowns, one for each
entry in Y and Z. Let y € R™? and z € RP" be the vectors formed by the row major and column
major order of the elements in the matrices Y and Z, respectively. Also, let A;; € R™P*P" be the
matrix which has the identity matrix [, in its (¢, 7)th p x p block, and zeros elsewhere. Then (14)
is equivalent to the bilinear system

yTAZ']‘ZIdZ']‘, for i=1,...,m, j=1,...,n. (15)

The matrix A;; “picks out” the elements in ¥ and Z that are multiplied together in forming the
matrix product element d;;. Obviously, we can unroll the 2D index into a 1D index to make (15)
look exactly like the form (5).

We would like to understand bilinear systems as well as we understand linear systems. The
following problems arise:

1. Give conditions on the coefficient tensor T" and right-hand side vector d under which the
system (3) admits a solution. In the homogeneous case d = 0, give conditions on 7" under
which the homogeneous bilinear system admits a nontrivial solution (y,z), y # 0, z # 0.

2. Describe the set of solutions to a bilinear system.
3. Compute the set of solutions to a bilinear system.

4. If the equations in a bilinear system are incompatible, determine a least squares solution;
that is, find a pair (y, z) that minimizes the squared error

2

{ m n
Ay, 2) =2 | DD tigryizk — di

=1 \y=1k=1

All these problems have been completely solved for linear systems.

This report is organized as follows. In section 2, we study bilinear systems in which one of the
unknown vectors y, z is a scalar (m = 1 or n = 1). Such bilinear systems are thinly veiled linear
systems. In section 3, we characterize the solutions to general homogeneous and non-homogeneous
systems. The zeros of a certain degree 2n polynomial in m variables y,..., 4, are exactly the
vectors y for which there is a solution (y, z) to the homogeneous bilinear system (4); the zeros of a
certain degree 2m polynomial in n variables zq,..., 2z, are exactly the vectors z for which there is
a solution (y,z) to (4). In section 4, we present some simple results on the existence of solutions

(nontrivial solutions in the case of homogeneous systems). In section 5, we give a technique for
reducing a non-homogeneous problem to a homogeneous one.

Given that non-homogeneous bilinear systems are no harder than homogenous ones, we address
the solution of homogenous systems in section 6. First we show that finding a nontrivial solution to
a homogeneous bilinear system is equivalent to finding invertible matrices which zero the coefficient
tensor’s first column (j = k = 1 — see figure 1) when applied to its j-rows and k-rows. We then
give a heuristic method for zeroing the first column of a homogeneous system with Householder
matrices. The method has always succeeded in several random trials when [>> m,n, but fails
often when [is not much larger than m and n. In section 7, we show that homogeneous bilinear
systems generalize the eigenvalue problem to more than two, possibly non-square matrices. With
this fact in mind, we review two matrix eigenvalue problems in section 8, including the case when
the matrices are not square.

In practice, the equations in system (3) usually come from noisy data, and are therefore incon-
sistent. In section 9, we discuss the problem of finding a least squares solution to an inconsistent
system. In section 10, we pose two problems which are related to, but harder than the problem
of solving bilinear systems. Our concluding remarks in section 11 are followed by two appendices.
Appendix A lists some MATLAB code to work with tensors of order-3 (that is, three-dimensional
tensors). This code includes a program that in many cases (but not always) zeros the first column
of a tensor by Householder reflections. Appendix B contains MATLAB code that finds a basis of
solution functions x1(A), ..., z,(A) for the eigenvalue problem (A —AB)z = 0 when for every A € C
A — AB has linearly dependent columns.

2 Bilinear Systems with m =1

We begin our study of bilinear systems with the simple case m = 1 or n = 1. We shall see in the
next few sections that solving such bilinear systems reduces to solving linear systems. Without loss
of generality, only the m = 1 case is considered.

2.1 Homogeneous Systems with m =n =1

When m = n = 1, the two unknown vectors y and z, as well as the matrices A; = a;, are actually
scalars. The homogenous bilinear system is

a;yz =0 for 1 =1,...,1. (16)
It is trivial to see that the solution set is
S={(y,2) :y=0 or 2=0} if 3ia;#0

or

S={(y,2) :yeR,z€eR } if Via; =0.

In the former case, the solution set is the union of the y-axis and the z-axis. In the latter case, the
solution set is the entire yz-plane. See figure 2. If welet a = [ay -+ @]T € R!, then the solution
set is one-dimensional if rank(a) = 1 and two-dimensional if rank(a) = 0.

(a) (b)

Figure 2: Solution Set for a Homogeneous Bilinear System with m = n = 1. (a) The solution set
S to (16) is the union of the y-axis and z-axis when 3¢ a; # 0. (b) The solution set S is the entire
yz-plane when Vi a; = 0.

2.2 Homogeneous Systems with m =1

The case m = 1 with general n is almost as easy as the case m = n = 1 considered in the previous
section. When m = 1, the vector y is a scalar, while the matrices A; = a;fr € R ™ are row vectors.
The homogenous bilinear system is

yalz=0 for 1 =1,...,L (17)

When y = 0, any vector z € R" satisfies (17). When y # 0, the vector z must be in the nullspace
of the matrix A € R'*" whose rows are the a!. Hence the solution set is

S={(0.2) : zeR"} [J{(y,2) : ye R, z€null(A) },

where
A=Tla; - a]".
If we let
P = {(0,2) : ze R" } ={0} xR" and
Q = {(y,2) : yeR, z€null(4) } =R x null(4),
then

S=plJQ.
Now consider the case m = 1, n = 2. Then P is the plane through the origin in (y, 21, 22)-
space which is perpendicular to the y-axis, and dim(null(A)) € {0,1,2}. If dim(null(A)) = 0, then
@ =R x{(0,0)} is the y-axis, and the solution set S = PJ@Q is the union of a plane and a line.

If dim(null(A)) = 1 with null(A) = span(v), then @ is a plane through the origin spanned by the
vectors (0,v) and (1,0,0), and S = PJQ is the union of two planes. If dim(null(A)) = 2, then
Q = R x R?, and the solution set is § = @ = R x R?, the whole (y, 2, 23)-space. The three
qualitatively different solution sets S are shown in figure 3.

2.3 Non-Homogeneous Systems with m =1

In the previous section we saw that solving a homogeneous bilinear system with m = 1 reduces
to solving a homogeneous linear system Az = 0. We now show that solving a non-homogeneous
bilinear system with m = 1 reduces to solving a non-homogeneous linear system.

Consider the bilinear system

yalz = d; for 1 =1,...,1. (18)
If y =1, then (18) becomes the linear system
Az =d. (19)

If z is a solution to (19), then obviously (1, z) is a solution to (18) and, more generally, (¢, z/c) is
a solution for any ¢ # 0. The solution set to (18) is

S={(c,z/e): Az=d, c#0} if d#0.

Of course, the solution set 5 will be empty if there is no solution to the linear system (19).
If S is empty, we can still ask for a least squares solution to (18). By this we mean a pair (y, 2)

that minimizes the squared error
ey, 2) = |lyAz — d|]3.

Note that
e, z/e) = X(1,2) = Az —d|l} Ve £0

and
min |4z — d|}2 < |[d]I3 = €2(0,).

Thus a least squares solution z to the linear system (19) yields least squares solutions (¢, z/¢) Ve # 0
to the bilinear system (18).

3 Characterizing the Solutions

If (y,) is a solution to the general bilinear system (3), then so is (¢y, z/c) for any nonzero constant
c. If d # 0, then (y,0) and (0, z) are not solutions for any y or z. Consequently, solutions to a
non-homogeneous system can be characterized by, say, ||z|| = 1 without loss of generality. If (y, 2)
is a solution to the homogeneous system (4), then so is (¢1y, c22) for any constants ¢y, c3. Therefore,
the nontrivial solutions to a homogeneous system can be characterized by ||y|| = ||z]] = 1 without
loss of generality.

Let us focus for the moment on the homogeneous system

B(y)z = 0.

dim(null(A4)) =0 dim(null(A4)) =1

Z9 "] z2 4
<1 P={0} xR?
P = {0} x R? A A=
% oA S=PUQI e 2
PR Say ey
s=ruQ | W &
: : |/ L
| | 2 @ =Rxuul(4)
Q=R x {(0,0)
| e
(a) (b)
dim(null(A)) =2
<2

()

Figure 3: Solution Set for a Homogeneous Bilinear System with m = 1, n = 2. (a) The solution
set S to (17) is the union of the plane P = {0} x R? and the y-axis when dim(null(A4)) = 0. (b)
The solution set S is the union of the two planes P and @ = R X null(A) when dim(null(A)) = 1.
(c) The solution set S is the entire (y, 21, z2)-space when dim(null(A)) = 2.

Recall that B(y) € R*". Tt follows that nontrivial solutions to the homogeneous system exist iff
there exists y # 0 such that
rank(B(y)) < n (20)

or, equivalently,

det(BT (y)B(y)) = 0. (21)

For each such y that satisfies (21), any
z € null(B(y))

completes a solution (y, z).
Similar observations can be made with the role of B and C', and y and z, reversed because
B(y)z = C(2)y. Here we write the homogeneous bilinear system as

C(z)y=0.

Recall that C(2) € R™*™. It follows that nontrivial solutions to the homogeneous system exist iff
there exists z # 0 such that
rank(C(z)) < m (22)

or, equivalently,

det(CT(2)C(2)) = 0. (23)
For each such z that satisfies (23), any

y € null(C(z))

completes a solution (y, z).

In section 5 we show that a non-homogeneous system can be reduced to a homogeneous system.
Thus equation (21) seems to imply that solving the original system (3) is as hard as solving a
polynomial of degree 2n in the m — 1 variables ya,..., ¥, (if y1 = 1 for normalization). However,
this polynomial has a strong structure because of equation (8), so a solution may be easier to find.

4 Some Simple Existence Results

A homogeous linear system has a nontrivial solution whenever the number of equations is less than
the number of unknowns. The bilinear analog to this result is given below.

Theorem 1 Any homogeneous bilinear system defined by a coefficient tensor T € R>™X" with
I <m orl<n admits a nontrivial solution.

Proof 1 Ifl < m, then (22) holds for every z because C(z) has fewer rows than columns. Similarly,
I < n implies that (20) holds for every y.

If I < n, the solution set is

Sy=1{(y,2) : y e R™, z € null(B(y)) } ;

10

if I < m, the solution set is
S.=A{(y,2) : yenull(C(2)), ze¢ R" }.

Note that the number of equations is compared separately to the number of unknowns in the vectors
y and z, not to the total number of unknowns m + n.

Another result for linear systems that has an analog for bilinear systems is as follows: Suppose
that the square homogeneous linear system Az = 0 does not have a nontrivial solution. Then
Az = b admits a solution for every right-hand side vector b.

Theorem 2 Suppose T € RU=m)xmxn on 7 ¢ RUS)Xmxn qnd that the homogeneous bilinear
system yT'z = 0 has no nontrivial solution. Then yT'z = d admits a solution for every non-zero
right-hand side vector d.

Proof 2 Suppose T € RUSm)xmxn Thep C(z) € R™*™ is a square matriz for every z € R™. We
are given that C(z)y = 0 has no nontrivial solution. This implies that det C(z) # 0 for every z.
Consequently, C(z)y = d admits a solution for every z. The case when T € RU=n)xmxn follows
from a similar argument.

Finally, we show that a single, nontrivial bilinear equation (i.e. a bilinear system with [= 1
and Ay # 0) always admits a solution.

Theorem 3 If A # 0, then the single bilinear equation y' Az = d admits a solution.
Proof 3 Let A=UXVT bean SVD of A, § = Uy, and 3 =V7Tz. Then

ylAz=d < §Tvz=d
rank(A)
< Z U]‘g}]‘?:’j =d.
i=1
Since A # 0, we have rank(A) > 1. Set gy =1, 2y =d/oq, §; = 2, =0 for j = 2,...,rank(A). For
arbitrary values of the remaining elements in § and 2, the pair (y,z) = (Ugy,V2) is a solution to

ylAz = d.

In fact, one can pick z or y arbitrarily, except that z ¢ null(A) and y ¢ null(AT), and solve
y" Az = d for the other vector. For instance, if w = Az # 0, any y on the plane yw = d will do
(e.g., y = dw/||w||?). Similar reasoning applies to v = ATy #£ 0.

5 Reduction to a Homogeneous System

In this section, we present a strategy for reducing a non-homogeneous bilinear system to a homo-
geneous one. This technique can be applied to linear systems as well, although it is somewhat
nonstandard. The right-hand side vector d # 0 can be transformed by a linear transformation, for
example by a Householder reflection ([3]), to a vector of the form

where § # 0, and the same transformation can be applied to the columns of the tensor T'. If Rd = d,
then multiplying both sides of the bilinear system B(y)z = d by R on the left gives

RB(y): = d
Ry By + - Bz d
(y1(RBy) + - +ym(m))z f{
(B4 -+ ym B)z d

B(y)z = d. (24)

Equation (24) represents the bilinear system with coefficient tensor T, where the fijk is equal to
the (7, k)th element of Bj. If A; is defined so that its (4, k)th element is #;;x, then the equations in
the transformed bilinear system (24) are

yT/liz:{é iti=0 ‘ (25)

0 otherwise

If R is invertible, then (y,) is a solution to the original bilinear system (5) iff (y, 2) is a solution
to the transformed bilinear system (25). The equations of (25) for ¢ = 2,...,[/ form a homogeneous
system. If (y,z) is a unit-norm solution of the latter, the pair (8y,z), where [is an unknown
parameter, can be replaced into the first equation (i = 1) to determine j:

ﬁ@/TAﬂ =0
If nyllz = 0, this solution is inconsistent with the original system. Otherwise,

b
yT Az

0=
If this procedure is repeated for all the solutions to the homogeneous system and the inconsistent
solutions are discarded, all consistent solutions to the full system remain.
6 Solving Homogeneous Bilinear Systems

6.1 An Equivalent Problem

Consider now a homogeneous bilinear system, and let (y, z) be a nontrivial solution (i.e. y,z # 0).
Then, there exist invertible matrices (e.g., Householder reflections) R,,, R. such that

Ryy = 6ye§m) and R,z = 6Zegn),

where 6,,6. # 0, and egp) is the p-dimensional elementary vector with a 1 in its first component
and zeros everywhere else. But then equation (5) can be rewritten as

yTRY (RY) ™ A (R Rz = 0,

or, equivalently,

where

But

the first entry of A;, so that we have
al?=0 for i=1,....1.

In conclusion, for every nontrivial solution to a homogeneous system there exist two invertible
matrices that, when applied to the j-rows and the k-rows of the tensor of the homogeneous system,
zero the tensor’s first column.

The converse of the last statement is also true. Suppose R, and RT are invertible matrices that
zero the coefficient tensor’s first column when applied to the j-rows and the k-rows of the tensor.
Then

T
(egm)) RyAiRz €§n) =0 for 1 =1,...,1,

and

(5:2) = (B el RIeY")

is obviously a solution to the homogeneous bilinear system. Since R;‘/F and R are invertible,

Y= Rgegm) and z = RZTegn) are nonzero. Therefore, finding a nontrivial solution to a homogeneous
bilinear system is equivalent to finding invertible matrices which zero the coefficient tensor’s first
column when applied to its j-rows and k-rows.? Because the argument above holds also when R,
and R are orthogonal (e.g., Householder reflections), finding a unit norm solution to a homogeneous
bilinear system is also equivalent to finding orthogonal matrices which zero the coeflicient tensor’s
first column when applied to its j-rows and k-rows.

6.2 Zeroing the First Column of a Homogeneous System

We could not find a method for zeroing the first column of a tensor by orthogonal matrices applied to
its rows. Here is the rationale behind a simple attempt, which does often work whenever [>> m,n.

Consider for instance the matrices B; in equation (8). If B; is rank deficient, we have a solution
to the homogeneous system, given by y = e;m) and a solution to the linear system B;z = 0. Assume
now that B; is full rank for all j. By the minimax characterization of singular values, the smallest
vector that can be formed by a unit-norm linear combination of the columns of B; is Ugj)ug), that
is, the smallest singular value of B; times the corresponding left singular vector. Let now

0, = min 07(1]) ,
J

achieved for j = jmin, and let w, and v, be the corresponding left and right singular vectors. The
vector o,u, is the smallest among the unit-norm combinations of columns all from By, or all from

2An analogous result holds for linear systems. A homogeneous linear system admits a nonzero solution iff the first
column of its coefficient matrix can be zeroed by an invertible linear transformation of its columns.

13

By, ..., or all from B,,. This vector can be brought to the first column of the tensor by two
Householder reflections. In fact, let

h = —house(v,) ,

where house(v,,) is the Householder vector for v, (the first component of house(v,) is normalized
to be 1). Since the Householder matrix
hhT
P(h)=1—-2——
() hTh
maps the elementary vector egn) into v, the first column of P(h) is equal to

P(h)egn) =0, ,

and the first column of B;_, P(h) is o,u,. Because the first column of B; , is also a column of
C1 (see equations (7) and (9)), this reflection has the effect of moving the “small” vector o, u, to
(7. The same procedure, repeated with the roles of the B and ¢ matrices reversed, will then bring
this “small” vector, or an even smaller one, to the first column of the tensor (j = k = 1). The
second reflection changes the column spaces of the matrices Bj, so there is a chance that another,
smaller vector can be produced by repeating this two-step procedure. This, of course, need not
be the case in general, and in fact for systems where [is not much larger than m and n failure to
converge occurs often. If [>> m,n, on the other hand, this procedure has always succeeded in
several random trials. Perhaps this observation can be of heuristic value in the search for a solution
method.

Of course, zeroing the first column of the tensor is not the whole story, since this yields only
one solution to the original system.

7 Homogeneous Bilinear Systems and Eigenvalue Problems

For the special case n = 2, the homogeneous system C(z)y = 0 becomes
(21C1 + 22C2)y = 0, (26)

where C'1,Cy € R™™, If we normalize z so that z; = 1, and write 2 = [1 — X]T, A =1, and
B = (3, then (26) becomes
(A= AB)y =0. (27)

If I = m, then (27) is the generalized eigenvalue problem. The normalization z; = 1 results in only a
slight loss of generality because any solution with z; # 0 can be divided by z; to produce a solution
with z; = 1. Setting z; = 0 produces an [X m X 1 homogeneous bilinear system

ZQCQy = 0.

In section 2.2, we showed that homogeneous bilinear systems in which one of the unknown vectors
is a scalar are essentially equivalent to linear systems. Thus the difficultly in solving (26) lies in
solving the eigenvalue problem (27).> Here “solving the eigenvalue problem” means finding both

®Solving the homogeneous bilinear system (26) entails considering solutions to (27) corresponding to real
eigenvalues.

14

the eigenvalues and corresponding eigenvectors. The eigenvalues define z, while the corresponding
eigenvectors give y. When A and B are square, finding the eigenvalues is a well-studied problem.
Given a finite set of eigenvalues, the corresponding set of eigenvectors follow easily. Difficulties
arise in finding the set of eigenvectors when every A € C is an eigenvalue.

Removing the [= m restriction results in non-square eigenvalue problems. Considering the case
n > 2 shows that a homogeneous bilinear system generalizes the eigenvalue problem to more than
two matrices

(Cl + 2’202 + -+ chn)y = 0.

The generalized eigenvalue problem (with two, possibly non-square matrices) is the topic of sec-
tion 8.

8 The Generalized Eigenvalue Problem Ax = ABux
The generalized eigenvalue problem is to solve the equation
Ax = ABzx (28)
for A € C and z # 0, where A € R"*" and B € R™*" are square matrices. We can rewrite (28) as
(A= \B)z=0. (29)

There exists an o # 0 that satisfies (29) iff rank(A — AB) < n. For square matrices A and B, this
condition is equivalent to the condition

det(A — AB) = 0. (30)

The eigenvalues of the pair (A, B) are the values of A € C that satisfy (30). The set of eigenvalues
of (A, B) is denoted by A(A, B).

Define the characteristic polynomial p(A) = det(A — AB). Note that p is a polynomial of degree
at most n. If p(A) = ¢ # 0, then A(A,B) = 0. If p(\) = 0, then A\(A, B) = C. The remaining
possibility is that 1 < deg(p) < n. In this case, the pair (A, B) has exactly deg(p) eigenvalues
A € C (counting multiplicities).

If B = I,,, the n X n identity matrix, then (28) reduces to the ordinary eigenvalue problem
Az = Az. In fact, the generalized eigenvalue problem reduces to the ordinary eigenvalue problem
B~!'Az = Az if B is invertible. The general case in which B is not necessarily invertible is reviewed
in section 8.1.

Note that equation (28) still makes sense when A € R”*™ and B € R™*" are not square. In
this case, the generalized eigenvalue problem asks for nonzero vectors x which are mapped by A
and B into parallel vectors Az and Bz. We can modify our definition of A(A, B) to include the
non-square case:

MA,B)={ A€ C : rank(A—AB)<n}.

We will show in section 8.2 that a non-square problem can be reduced to a square problem.
The set of eigenvectors (A, B) which satisfy (29) is

2(A,B)= | J null(A-AB).
AEXN(A,B)

15

For a given A, an SVD of A — AB provides a basis for null(A — AB). If A(A, B) is a finite set,
we “compute” (A, B) by computing a basis for null(A — A\; B) for each \; € A(A, B). Computing
z(A, B) when A(A, B) = C is the subject of section 8.3. This is not an uncommon case. In fact,
A(A, B) = C whenever m < n, since then rank(A — AB) < n.

8.1 The Square Generalized Eigenvalue Problem

Let us assume that A, B € R™*". The matrix decomposition which solves the generalized eigenvalue
problem is the generalized Schur decomposition. It states that there exist unitary matrices ¢ and
Z such that the two matrices

Q"AZ = R and (31)
"Bz = U (32)

are upper triangular. From (31) and (32), it follows easily that

det(A — AB) = det(QZH) ﬁ(m — Aui;)

=1

If there exists k such that rx; = ugr = 0, then A(A, B) = C. Otherwise,
MA,B)={ri/uy » wi; #0}

is the finite (possibly empty) set of eigenvalues of (A, B).

8.2 The Non-Square Generalized Eigenvalue Problem

Suppose that we want to solve (28) for matrices A, B € R"™*" which are not necessarily square.
We now show that the non-square problem can be reduced to a square problem. The following re-
duction is credited in [6] to Professor Gene Golub of the Computer Science Department at Stanford
University.

A key fact to the reduction is that rank(A — AB) < n iff tank((A — AB)T(A—AB)) < n iff there
exists y # 0 such that

(A= ABY(A- By =0. (33)
Simple algebraic manipulation of (33) produces the equivalent equation
(MCH+AD+ E)y=0 (34)
where
¢ = BTB,
D = —(ATB+ BTA), and
E = ATA.

If we let z = Ay, then (34) can be rewritten as

z = Ay
AMz4+ ADy+FEy = 0.

16

These two equations may be written in matrix form as
0 In ||y]| _ I, 0 y

F = l 27 Ié”b] c R2n><2n and

If we let

_ In 0 2nX2n
G = [—D _C]GR

then (35) is the square generalized eigenvalue problem

F[y]:/\(}[y]. (36)
z z
The above discussion shows that A, y satisfy (33) iff A, y, z satisfy (36). If y # 0, then [yl 2T]T #0,
and it follows that A(A, B) C A(F,G). The opposite inclusion A(F,G) C A(A, B) will follow if
[yT 2T]T # 0 implies that y # 0. But if y = 0, then z = Ay = 0 and [yT 2T]T = 0. Thus we
have proven

MA, B) = N(F,G) .

8.3 Computing ©(A, B) when A(A,B)=C

When A(A, B) = C, then for each value of A there is a nonzero vector @ = x(\) that satisfies (29).
We start by looking for real solutions z(\) which are polynomials in A. Suppose we seek a solution

of degree d:
2(N) = 2o + Az + Mag + -+ May (zq #0). (37)

Here each z; is an n-dimensional real vector. Substituting (37)into (29) and equating the coefficients
of A%, AL, ..., A% to zero, we obtain

A$0 =0

A$1 - B$0 =0

A$2 - B$1 =0
. (38)

Arg—Bxy_1 = 0

—Bxy; = 0.

We can rewrite (38) as a homogeneous linear system

Td(AvB)x =0, (39)

17

where

- .
-B A
nam=| 0 ¢ RO (@)
-B A
L -B |
and
S
Ty
. 90‘2 c R(#HDn,
Td—1
REZE

Any solution z to (39) with 24 # 0 yields a degree d solution to (29) via (37).

Suppose now that we want to know the degree ¢; of the smallest degree polynomial solution
z(A) to (29). We claim that ¢; is the least value of the index d for which the sign < holds in the
relation rank(7y(A, B)) < (d+1)n. Otherwise, there would be a non-zero solution to 7,(A, B)z = 0
with ¢ < ;. But such a solution vector z would yield an z(A) which has degree less than or equal
to € and, therefore, less than €.

It turns out that any solution function z(A) to (29) can be written as a linear combination
(where the coefficients are polynomials in A) of linearly independent polynomial solutions (stated
without proof in a footnote on p. 29 in [2]). A set of k polynomial vectors z1(A),...,zx(A) is
linearly independent iff

g (A)z1(A) + -+ qe(N)ze(A) =0 = ¢(\) =0 Vi.

A basis of polynomial solutions to (29) is formed as follows. The process begins by choosing a
non-zero solution z1(\) of least degree. During the ith step, choose the smallest degree solution
2;(A) which is linearly independent of the previously chosen solutions z1(A),...,2;-1(A). If such
a solution does not exist, then the process stops. The number of linearly independent solutions
to (29) is at most n. If we find p basis solutions z1(A),...2,(A) of degrees €;,...,¢,, then

6 <6 << (40)

A polynomial basis of solutions to (29) is not uniquely defined (to within scale factors). However,
any two polynomial bases have the same sequence of degrees (40). The degrees ¢1,¢z,...,¢€, are
called the column minimal indices (cmi) of the the pencil A — AB. The sequence of distinct cmi’s
is written as

€1 < €3 < - < gy

We denote the multiplicity of the cmi é; by p;. Note that the number of basis functions is
u
p=>_pi
=1

18

We shall describe an algorithm due to Karcanias ([4]) which computes a basis of solutions
from the sequence {T%(A, B)}. Although this algorithm is not numerically efficient, it is simple to
describe and easy to implement in MATLAB because it uses only basic linear algebra computations
on real matrices. See [1] for an efficient algorithm which relies on the generalized Schur form of a
matrix pencil. The output of the Karcanias algorithm is a sequence of matrices Ny,..., N, which
defines the polynomial basis 1(A),...,2,(A) as follows. The matrix

To1 Loz T Lo,
13 13 13
N; = 1_’1 1"2 1"’)’ e RE+1)nxpi
wEi,l in,Q xEﬂpZ

defines the p; basis polynomials of degree ¢;. Here each w};j is a vector in R™. The jth column of
N, defines the basis function

zii(A) = Z x};j/\k.
k=0

Before giving the algorithm to compute a basis of solutions, we need to introduce some more
notation. Suppose the matrix M € R{HD7X" is partitioned as

My
where M; € R"*". Then we define the matrix T5(M) for k > d as

My
My My
My
THM) = ' S Mo R+ (k=d+1)r
= . M, | € :
My -
My
I My |

Finally, let 7, = dim(null(7%(A, B))) in the algorithm description below.

Algorithm Given a matrix pencil A — AB € R"™*" with A(A, B) = C, the following algorithm computes
a polynomial basis of solutions z1(A),...,2,(A) for the eigenvalue problem (A — AB)z = 0.

Step 1 Let & = min{ k : 7, > 0 }. Then & is the smallest cmi and p; = 7¢, is its multiplicity. Take
N7 to be any basis matrix for null(7% (A, B)).

19

Step 2 Let é; = min{ k : rp > p1(k — é 4+ 1) }. Then é; is the next smallest distinct cmi (€2 >)
and py = re, — p1(€ — € + 1) is its multiplicity. The vector space null(T;,(A, B)) can be
expressed as a direct sum

null(7%:,(A, B)) = range(TéQ(Nl)) @ Va,

where dim(V;) = p3. Take N3 to be any basis matrix for the vector space Vo. If Z5 and R,
are orthonormal basis matrices for null(T¢, (A, B)) and range(T:?(N1)), respectively, then Ny
may be chosen as a basis matrix for range(Z; — Ro(RY Z5)).

Stepi Let ¢ = min{ k : rp > Z] Yp;j(k—¢& + 1) }. Then & is the next smallest distinct cmi
(6> &1 >--->¢) and p; =1 — Z;;ll p;(€& — €; 4+ 1) is its multiplicity. The vector space
null(7%, (A, B)) can be expressed as a direct sum

null(7%, (A, B)) = range(H;) D V;,
where

H; = [TE?(Nl) Téi(NQ) S (N;_)] ER(6-|—1n><2: 1P Ez—ej-l—l)7

€—1

and dim(V;) = p;. Take N; to be any basis matrix for the vector space V;. If Z; and R; are
orthonormal basis matrices for null(7;, (A, B)) and range(H;), respectively, then N; may be
chosen as a basis matrix for range(Z; — R;(R! Z;)).

End The number of basis polynomials p < min{m,n}, and therefore the algorithm halts during
step i, if the computation of ¢;, considers a candidate k& > min{m,n}. Obviously, at most
min{m, n} steps are required.

A MAaTLAB implementation of this algorithm is given in appendix B.

9 Least Squares Solutions of Inconsistent Equations

In practice, the equations in system (3) usually come from noisy data, and are therefore inconsistent.
The solution to the system can then be required to be optimal in the sense of least squares:

[m

i3
mine lenZZZ LRy 2k —

e =1 j=1 k=1
This leads to a system of equations of the third degree. In fact, by using notations (6) and (7) we
have
1B(y)z = d|I* = =" B" () B(y)z = 22" B (y)d + d"d
.2) = O —df = T CT 0y — 27 CT ()i + dTd.

[}
[\]
—_
=
N
~—
|

20

The normal equations are

2
%% = CT(x)C(2)yy-CT(2)d=0
1 de?
55 = BBz — B (yd=0.

The resulting system

CT(HC(zyy = CT(2)d
BT(y)B(y)z = BT(y)d

has m equations in the first part and n in the second, is biquadratic (that is, separately quadratic
in y and in z), and of total degree 3. Note that (y,z) = (0,0) is always a solution to the normal
equations.

10 Related, Harder Problems

10.1 Extreme Singular Values of a Unit-Norm Linear Combination of Matrices

Solving a homogeneous bilinear system B(y)z = 0 means finding vectors y € R™ for which B(y)
does not have full column rank. As mentioned in section 3, we may assume ||y|| = 1 WLOG. Under
this assumption, B(y) is a unit norm linear combination of matrices of size | x n:

By)=wnBi+ - +ynBn |yl =1

If I < n, then for every y B(y) is not full column rank. If [> n, then B(y) is not full column rank
iff its smallest singular value o,(B(y)) = 0. Therefore, the homogeneous bilinear system B(y)z = 0
with [> n has a nontrival solution iff

||H|l|in1 Umin(lel + et ymBm) = 0.
y =

A more general optimization problem is

Problem 1 Given [matrices Ay,..., A; € R™*", find a unit norm vector o = [ay -+ oy]T that
minimizes (mazimizes) the smallest (largest) singular value of the linear combination ', a; A;.

As detailed above, an algorithm to solve the minimization version of problem 1 can be applied to
determine the existence of a solution to a homogeneous bilinear system.

A solution to the maximization version of problem 1 may also prove useful in the theory of
bilinear systems. The singular value decomposition (SVD) of a matrix A yields a least squares
solution to the linear system Az = b. Is there a “tensor SVD” of T that yields a least squares
solution to yTz = d? One possible strategy is to examine matrix SVD properties and try to extend
them naturally to order-3 tensors. For example, it is well known that

m i3
xTAy = max ZZaijxiyj = ojatx =1u,y = 1.

ol =]|=1 leli=llvll=1 £ =

A natural extension to the above maximization problem is

21

Problem 2 Find

Il m
Z Z Z tzykx YiZk
k=1

~ lleli=liSl =1 =

and unit norm vectors ¥ = w1,y = v1,z = wy at which the maximum is achieved.

Do o1, w1, v1, and, wy play a role in a least squares solution of bilinear systems? We currently
do not have an answer to this question. The most concrete link that we can establish between
problem 2 and bilinear systems is via problem 1 for which we have already established a clear
connection with bilinear systems.

We now show that problem 2 reduces to problem 1. Let

[l m n
oy, 2) =D 0> tiwwiyiz,
=1 j=1k=1
and let A; be the m x n matrix

A = [tijk]ffll”n 1=1,...,L

=1,....m"

Then we may write f(z,y,z) as

fla,y,z waz_bx

where
m i3
bi =33 tijnyize =y Az,
j=1k=1
Clearly,
T
max flz,y,2) = max bz
T TR A TR A
and
b
max bla =|b|| at x= —.
2] =1 101
Therefore we can solve problem 2 by maximizing ||b|| for ||y|| = ||z]| = 1.
Note that

[[
o] =60 => b7 => ylAizzT Aly.
= =1

Therefore we may write
111 = y" By,

where

B = ZAZZTAT Zczl, c; = Az,
=1

22

Finally, viewing matrix multiplication as the process of summing outer products of columns and
rows, we can express B as the product B = CCT, where C' =[¢; --- ¢;]. Now we know that

x |Ibl]> = max y" By = o1(B) at y=w(B), B=VIV'

|| || ‘i llyl|=1
Therefore we want to maximize o1(B) = o1(B(z2)) for ||z|| = 1.
Using the simple obersvation that o1(B) = (01(C))?, we see that maximizing oy(B(z)) for
||z]] = 1 is equivalent to maximizing o1(C(2)), the largest singular value of C, for ||z|| = 1. Note

that C =[A1z -+ A;z] and consider C'w for ||w|| = 1. We have

Cw_szAz (ZwZ Z)z:Dz,

=1

where D is the unit norm linear combination of the matrices

l
DIZwiAi.
=1
Summarizing,
max 01(C(2)) = max max ||C — max max A= max ot (D(w).
fmax 01(C(2)) = max max [|C(z) wi] = max max [[D(w) 2|} = max o1(D(w))

Here we have written C'(2) and D(w) to make the dependence of C' and D on z and w explicit. We
can therefore solve problem 2 by finding a unit norm vector w = w, which makes the maximum
singular value of D(w) = w141+ -+ w, A, as large as possible. This is exactly the maximization
version of problem 1.

Once we have w,, unit norm vectors ., ¥, z« which maximize f(z,y,z) are

ze = v(D(
Y = UI(B(Z*)

re = W)
* (

The desired maximum value of f(z,y, z) is

max T,Y,2) = b s P]
||9U||=||Z/||=||Z||=1f(Y, 2) = [10(ys;)|

10.2 Simultaneous, Connected Eigenvalue Problems

A bilinear system may be viewed as a linear system with a nonlinear constraint. Let

t111 triz o0t tizr oo Tize v im0 Timm
n to11 212 o forn to21 v T22n o fomi 0 Tomnm
tin tnz v tne ti2ze o0 Tz o T o Timn

23

and
(AR
Y122

Y12n
Y221

Yazn

Ym <1

L Ym<n |

The 2th row of the matrix A is the matrix A; in row major order, and the vector z collects the mn
unknown products y;z;. The bilinear system (3) may be written as an [x mn linear system

Az =d. (42)

A solution z to the linear system (42) yields a solution to the bilinear system (3) if « is constrained
as in (41). If the linear system (42) does not have a solution, then the bilinear system (3) does not
have a solution either.

Now consider the homogeneous case d = 0. The linearized version of a homogeneous bilinear
system is

Az = 0. (43)
If { 21,...,25 } is a basis for null(A), then
r=s21 4+ s e R
is a solution to (43) Vs = [sy ---s7]7, and 2 = 0iff s = 0. Switching from mn-dimensional vectors
to m x n matrices (where contiguous vector elements form the rows of the corresponding matrix),

X=s51X14+ - +s;X;eR™" (44)
and X = 0 iff s = 0. The constraint (41) can be expressed as
X = sz.

In words, X must be a rank one matrix if it yields a nontrivial solution to the homogeneous bilinear
system (4).

The condition that X is rank one means that column two of X is a multiple of column one,
column three is a mulitple of column two, ..., column n is a multiple of column n — 1 (and not all
columns are zero). If we collect all jth columns of X;’s into an m X f matrix W;, then the rank
one condition can be expressed as a set of simultaneous connected eigenvalue problems

Wit1s = A\;W;s for j=1,...,n—1.

24

Fach vector s # 0 which is a generalized eigenvector for the n — 1 pairs of matrices (Wz, Wh),
(W3, Wa), ..., (W,,W,_y) yields a rank one matrix X via (44). If an SVD of X is X = UXVT =
orurv{ , then, for example, (y,2) = (g1uy,v1) is a solution to (4).

The general problem can be stated as follows (in more familiar notation).

Problem 3 Given [l > 2 matrices Ay,..., A; € R™*"™, compute

-1
S = ﬂ{x#o : AN € R such that A2 = Az .
=1

Note that an eigenvector & € 5 may correspond to different eigenvalues for different pairs of
matrices:

S={ax#0: 3I\,..._1 € R such that A;1 12 = \;A;z }.

When [= 2, problem 3 reduces to the generalized eigenvalue problem discussed in section 8.

11 Conclusion

This report introduced the problem of solving a system of bilinear equations y? A;z = d;, for
1=1,...,0. If y € R™ and z € R", then there are m + n unknowns. We showed that a non-
homogeneous bilinear system is no more difficult to solve (in theory) than a homogeneous bilinear
system (d; = 0 Vi).

Solving a bilinear system in which one of the unknown vectors is a scalar (i.e. m=1orn =1)
reduces to solving a linear system. The case of a homogeneous system with m = 2 or n = 2 reduces
to a generalized eigenvalue problem for two [X n or [X m matrices, respectively. The cases n,m > 3
remain unsolved, and such homogeneous systems can be viewed as generalized eigenvalue problems
for three or more matrices. When there are fewer equations than unknowns in one of y or z, there
may well be a theory of multivariable polynomial solutions which is analogous to the one presented
in section 8.3. In practice, however, the system is likely to be overdetermined and inconsistent.
The best that we could offer in the case of a general bilinear system is a heuristic for finding one
non-trivial solution to a homogeneous bilinear system. We also derived the normal equations for
a least squares solution to an inconsistent system. However, solving the normal equations appears
more difficult than solving a bilinear system.

The solutions to a bilinear system are the common zeros of a collection of multivariable poly-
nomials (i.e. the solution set is an affine variety), namely the second total-degree polynomials
PilYLs oy Ymy Z1oe vy Zn) = yT A;z — d;. The problem of solving bilinear systems, however, is not
as hard as solving a general polynomial system because the p; have a very special structure — all
nonconstant terms have the form y;2,. The key to understanding bilinear systems as well as we
understand linear systems is to exploit this structure.

References

[1] T. Beelen and G. Veltkamp. Numerical computation of a coprime factorization of a transfer
function matrix. Systems & Control Letters, 9(4):281-288, Oct. 1987.

[2] F. R. Gantmacher. Matriz Theory, volume II. Chelsea Publishing Company, 1959.

25

[3]

[7]

G. H. Golub and C. F. Van Loan. Matriz Computations. The Johns Hopkins University Press,
second edition, 1989.

N. Karcanias. Minimal bases of matrix pencils: Algebraic Toeplitz structure and geometric
properties. Linear Algebra and its Applications, 205-206:831-868, July 1994.

N. Karcanias and G. Kalogeropoulos. Right, left characteristic sequences and column, row
minimal indices of a singular pencil. International Journal of Control, 47(4):937-946, Apr.
1988.

M. Raghavan and B. Roth. Solving polynomial systems for the kinematic analysis and synthesis
of mechanisms and robot manipulators. Transactions of the ASME. Journal of Vibration and
Acoustics, 117(3B):71-79, June 1995.

H. Turnbull and A. Aitken. An Introduction to the Theory of Canonical Matrices. Dover
Publications, inc., 1961.

A Tensor MATLAB Code

This section lists a few simple MATLAB functions for manipulating tensors of order 3 (that is, three-
dimensional). This includes the functions tmincol and tzerocol that implement the procedure

de

scribed in section 6.2 that attempts to zero the first column of a tensor by Householder reflections.

The code below is not fully-general tensor manipulation code, but just the bare minimum to

implement the ideas discussed in these notes for people more familiar with matrix notation than

wi

th tensor algebra. Please look at

http : //robotics.stanford.edu/groups/vision/bilinear/tensor

for an online version of this code.

A

* %k

.1 Creation and Access Routines for Tensors

KKAKKK CZETOS .M RKKKKKKK

% make an 1 x m x n tensor of zeros

function t = tzeros(l,m,n)

if

el

nargin == 1,
if length(1l) == 1,
m=1;
n=1;
elseif length(l) == 3,
m = 1(2);
n = 1(3);
1=1(1);
else
error(’input must have either one or three entries’)
end
seif nargin == 2 | nargin > 3,

26

error(’either one or three arguments required’)
end

if l*m*n == 0,
t = [1;
else
cols = m*n+1;
t = zeros(l,cols);
t(1,cols) = m;
end

skkorkokkk trand.m kkEkEkkk

% make a random 1 x m x n tensor

function t=trand(l,m,n)

if nargin == 1,
t = tzeros(l);
elseif nargin == 3,
t = tzeros(l,m,n);
else

error(’either one or three arguments required’)
end

cols = size(t,2)-1;
t(:,1:cols) = rand(1(1),cols);

>k 5k 5k 5k %k k %k %k tstorage,m >k 5k 5k 5k %k k %k %k

% return the submatrix indices corresponding to the subtensor of t
% specified by the index range arguments; a range argument can be ’:
% (alas, with the quotes) to specify the whole range; also returns

% the dimensions d of the subtensor
function [rows,cols,d] = tstorage(t,ir,jr,kr)

tcols = size(t,2)-1;
tdim = tdimensions(t);

1 = tdim(1);

m = tdim(2);

n = tdim(3);

if ir == ’:’,
ir = 1:1;

end

if jr == ’:’,
jr = 1:m;

end

if kr == ’:?,
kr = 1:n;

end

if any(ir < 1) | any(ir > 1) |
any(jr < 1) | any(jr > m) |
any(kr < 1) | any(kr > n),

27

)

error(’subscript out of range’)
end

rows = ir;

kcols = mk(kr-1);

cols (jr(:)*ones(1,length(kcols))) + (ones(length(jr),1)*kcols(:)’);
cols cols(:);

d = [length(ir) length(jr) length(kr)];

>k 5k 5k 5k %k k %k %k tgetsubtensor,m >k 5k 5k 5k %k k %k %k

% returns the subtensor of t specified by the given index ranges;

% a range argument can be ’:’ (alas, with quotes) to denote the whole
% range; warning: matrix outputs are still represented as tensors;

% use tgetmatrix to get a regular matrix

function ts = tgetsubtensor(t,ir,jr,kr)

[r,c,dim] = tstorage(t,ir,jr,kr);
ts = tzeros(dim);
ts(:,1:(size(ts,2)-1)) = t(r,c);

>k 5k 5k 5k %k k %k %k tputsubtensor,m >k 5k 5k 5k %k k %k %k

% puts the given tensor ts into the subtensor of t specified by the
% given index ranges; a range argument can be ’:’ (alas, with quotes)
% to denote the whole range; warning: matrix outputs are still

% represented as tensors; use tgetmatrix to get a regular matrix

function t = tputsubtensor(ts,t,ir,jr,kr)

[r,c] = tstorage(t,ir,jr,kr);
t(r,c) = ts(:,1:(size(ts,2)-1));

>k 5k 5k 5k %k k %k %k tgetmatrix,m >k 5k 5k 5k %k k %k %k

% returns slice s orthogonal to dimension d from tensor t;
% the result is a matrix

function a = tgetmatrix(t,s,d)

if (d<1]4d>3),
error(’d must be between 1 and 3’)
end

tdim = tdimensions(t);
tdim(d) = s;

from = ones(3,1);

to = tdim;

from(d) = s;

to(d) = s;

a = tten2mat(tgetsubtensor(t,from(1):to(1),from(2):to0(2),from(3):t0(3)));

28

>k 5k 5k 5k %k k %k %k tputmatrix,m >k 5k 5k 5k %k k %k %k

% returns the tensor obtained by inserting the given matrix m
% into slice s orthogonal to dimension d in tensor t

function t = tputmatrix(t,s,d,a)

if (d<1]4d>3),
error(’d must be between 1 and 3’)
end

[ta to] = tmat2ten(a,d);

from = ones(3,1);

from(d) = s;

to(d) = s;

t = tputsubtensor(ta,t,from(1):to(1),from(2):to(2),from(3):t0(3));

kokkockkkkk tdimensions.m kokskskskokoksk

% dimensions of a tensor (returns either a row vector or three scalars)
function [d,m,n] = tdimensions(t)

if size(t) == [0 0],
d = [0 0 0];
else
d = zeros(1,3);
d(1) = size(t,1);
cols size(t,2);
d(2) t(1,cols);
d(3) (cols-1)/4(2);
end

if nargout == 3,

m = d(2);

n = d(3);

d = d(1);
elseif nargout "= 0 & nargout "= 1,

error(’either zero, one or three output variables are required’)
end

fokokkdokkk Tsvd.m kkkokkkokk
% computes the singluar values of all the matrices in tensor t
function [Si,Sj,Sk] = tsvalues(t)

[1 m n] = tdimensions(t);

Si = zeros(l,min(m,n));
Sj = zeros(m,min(1l,n));
Sk = zeros(n,min(l,m));

for i=1:1, Si(i,:) = svd(tgetmatrix(t,i,1))’; end

29

for j=1:m, Sj(j,:)
for k=1:n, Sk(k,:)

svd(tgetmatrix(t,j,2))’; end
svd(tgetmatrix(t,k,3))’; end

A.2 Tensor-Matrix Type Transformations

)kkokkkkk tten2mat .m kkkkFokkk

% transforms a tensor with at least one single-plane dimension into a
% matrix

function a = tten2mat(t)

if isempty(t),
a=[1;
else
% find the single-plane dimension
tdim = tdimensions(t);
[m,d] = min(tdim);
ifm "= 1,
error(’the order of t is 3: cannot convert to a matrix’)
end

% remove the tensor information
a=t(:,(1:size(t,2)-1));

% 1’ matrices are stored as row vectors

if 4 == 1,
a = reshape(a,tdim(2),tdim(3));
end
end

}HHKKKRKRK TMAat2ten.m kkk**kkk

% transforms a matrix into a tensor with the specified single-plane dimension;
% also returns the dimensions of the new tensor

function [t,tdim] = tmat2ten(a,d)

if isempty(a),
t = [1;
else
if d == 1,
tdim = [1 size(a)l;
% ’1’ matrices are stored as row vectors

a=a(:)’;
elseif d == 2,

tdim = [size(a,1) 1 size(a,2)];
elseif d == 3,

tdim = [size(a) 1];
else

error(’d must be between 1 and 3’)
end

t = tzeros(tdim);

30

t(:,1:(size(t,2)-1)) = a;
end

A.3 Tensor Multiplication by Scalar, Vector, Matrix

*HRKKKkK Tgcale.m kkkkkkkk

% multiply a tensor by a scalar
function t = tscale(t,s)

cols = size(t,2)-1;
t(:,1:cols) = t(:,1:cols)*s;

kkkkkkkk tcontract.m kkkskkkksk

% contract the d-th dimension of tensor t with the vector v to produce
% a matrix

function a = tcontract(t,v,d)

tdim = tdimensions(t);

adim = [1;
for p=1:3,
if p "= d,
adim = [adim tdim(p)];
end
end

a = zeros(adim);
for s=1:tdim(d),

a = a + v(s)*tgetmatrix(t,s,d);
end

sxdkorokkkk tleftmult.m **kkkkkkxk

% multiply a tensor t by a matrix m from the left along the slices
% orthogonal to dimension d

function tnew = tleftmult(a,t,d)

olddim = tdimensions(t);
newdim = olddim;
if == 1,
cdim = 2;
else
cdim = 1;
end

newdim(cdim) = size(a,1);

tnew = tzeros(newdim);

31

for s=1:0lddim(d),
tnew = tputmatrix(tnew,s,d,a*tgetmatrix(t,s,d));
end

skdokkkkk trightmult.m *kkkkkkxk
g

% multiply a tensor t by a matrix m from the right along the slices
% orthogonal to dimension d

function tnew = trightmult(t,a,d)

olddim = tdimensions(t);
newdim = olddim;
if == 3,
cdim = 2;
else
cdim = 3;
end

newdim(cdim) = size(a,2);
tnew = tzeros(newdim);
for s=1:0lddim(d),

tnew = tputmatrix(tnew,s,d,tgetmatrix(t,s,d)*a);
end

A.4 Householder Transformations for Matrices and Tensors

RAAKKKKRK NOUSE .M KKK KF KKK

% given an n-vector x, this function computes an n-vector v with v(1)
% = 1 such that (I - 2%xv*v’/(v’*v))*x is zero in all but the first
% component (from Golub and Van Loan, page 196)

function v = house(x)

n = length(x);
mu = norm(x);

v = X3

if mu "= 0,
beta = x(1) + sign(x(1))*mu;
v(2:n) = v(2:n)/beta;

end

v(1l) = 1;

sxforkkkk lefthouse.m **¥kkkkxk

% given an m-by-n matrix A and a nonzero m-vector v with v(1) = 1, the
% following algorithm returns PA where P = I - 2%v*v’/(v’*v)

% (this is row.house(4,v) in Golub and Van Loan, page 197)

function A = lefthouse(v,A)

beta = -2/(v’#*v);

32

beta*A’*v;
A+ vxw’;

sxfokkkkk righthouse.m **¥kkkkxk
g

% given an m-by-n matrix A and a nonzero n-vector v with v(1) = 1, the
g y

% following algorithm returns AP where P = I - 2%v*v’/(v’*v)

% (this col.house(A,v) in Golub and Van Loan, page 197)

function & = righthouse(4,v)

beta = -2/(v’#*v);

W = betaxl*v;
A=A+ wkv’;

sxforkkkk tlefthouse.m **kkkkkxk

% Householder-rotate a tensor t from the left along the slices
% orthogonal to dimension d, using Householder vector h

function t = tlefthouse(h,t,d)
dim = tdimensions(t);
for s =1:dim(d),

t = tputmatrix(t,s,d,lefthouse(h,tgetmatrix(t,s,d)));
end

sxfkkkkk trighthouse.m *%kkkkkxk
g

% Householder-rotate a tensor t from the right along the slices
% orthogonal to dimension d, using Householder vector h

function t = trighthouse(t,d,h)
dim = tdimensions(t);
for s =1:dim(d),

t = tputmatrix(t,s,d,righthouse(tgetmatrix(t,s,d),h));
end

A.5 Application Routines

*okkkkokkk example.m kkkkkkokk

% create a random tensor system for testing

% tensor dimensions
1=40;
m=10;
n=2;

% elements of the right-hand side
t = trand(1l,m,n);

33

y=rand(m,1);
z=rand(n,1);
z=z/norm(z) ;

% right-hand side
b = tcontract(t,y,2)*z;

% Householder-rotate the system so that b becomes (b1, 0, ..., 0)’
h = house(b);

t = tlefthouse(h,t,3); % could also do this along the j dimension
b = lefthouse(h,b);

% reduced homogeneous system
tr = tgetsubtensor(t,2:1,%:7,%:°);

*kokkkkk tMincol .m kkkkkkkk

% makes the first column of a slice in dimension d of tensor t as small
% as possible by a right Householder rotation of t; also returns the

% Householder vector h, the norm nmin of the first column, and the slice
% number smin

function [t,h,nmin,smin] = tmincol(t,d)
dim = tdimensions(t);

nmin=Inf;
for s=1:dim(d),
a = tgetmatrix(t,s,d);
[u sigma v] = svd(a,0);
c size(a,2);
n = sigma(c,c);
if n < nmin,
= n;
s;
v(:,c);

]
=

. He .
]

n o1

-house(vmin);
trighthouse(t,d,h);

KHAKKKKK TZETOCOL .M KKKk Fkkk

% attempts to zero the first column of tensor t by Householder rotations
function [t,nmin] = tzerocol(t)

threshold = eps;

d = 3;
[t,h,n,s] = tmincol(t,d);
nmin = n;

nold = ntthreshold+i;
clc;home;disp(0);disp(nmin)

34

iter = 1;

while nold-nmin > threshold,
d = 5-d;
[t,h,n,s] = tmincol(t,d);
if n >= nmin, break, end
nold = nmin;
nmin = n;
home;disp(iter);disp(nmin)
iter = iter+i;

end

B Cspsolve MATLAB Code

This section lists MATLAB routines which implement the algorithm described in section 8.3 to
compute a polynomial basis of solutions z1(A), ..., z,(\) for the eigenvalue problem (A —AB)z =0
when A(A, B) = C (i.e. when A — AB is a column singular pencil). Please look at

http : //robotics.stanford.edu/groups/vision/bilinear/cspsolve

for an online version of this code.

B.1 Basis Computation

*okkkkokkk CSpSolve.m kkkkkokkok

% Given a matrix pencil (A - lambda B) with lambda(4,B) = C (i.e.

% (A - lambda B) is a column singular pencil), cspsolve(4,B)computes
% a basis of polynomial solutions x_1(lambda), ... , x_p(lambda)

% for the eigenproblem (A - lambda B) x = 0. It uses the helper

% function computeHi.

% Output description:

0

%

% X is an (epsilon(p)+1) by p matrix, the jth column of which represents
% the jth polynomial solution x_j(lambda) in R°n[lambdal]. All entries

% in column j after the first (epsilon(j)+1)n rows are zero. If the

% possibly nonzero rows of column j are partitioned into epsilon(j)+1

% column vectors x_0,j (row 1 to n), x_1,j (row n+l to 2n), ...

% x_epsilon(j),j (row ep51lon(J)n+1 to (eps1lon(J)+1)n of length n,

% then the jth basis solution is

% epsilon(j)
% x_j(lambda) = sum x_k,j lambda“k.
h k=0

% epsilon(j), j=1..p, is the degree of the jth basis solution. Here
% epsilon(1) <= epsilon(2) <= ... <= epsilon(p).

% p is the number of basis solutions.

% epsilonhat is a vector of the u unique degrees in epsilon. Here
% epsilonhat(1) < epsilonhat(2) < ... < epsilonhat(u).

% rho(i), i=1..u, is the multiplicity of the degree in epsilonhat(i).

35

% Note that p is the sum of the rho(i)’s.
h

% u is the number of unique degrees in epsilon.
function [X, epsilon, p, epsilonhat, rho, ul = cspsolve(A,B)

[m,n] size(4);

minmn = min(m,n);

epsilon = zeros(1l,minmn);
epsilonhat = zeros(1,minmn); rho

zeros(1,minmn) ;

Tk = [1; X = [1;
i=1; k=-1; rk=-1; p=0; q = 0;
while (1)

while ((rk <= (k+1)*p-q) & (k <= min(m,n)))

[Tk zeros((k+2)*m,n); zeros(m, (k+2)*n)];
Tk((k+1)*m+1 (k+2)*m, (k+1)*n+1 (k+2)*n) = A;
Tk((k+2)*m+1: (k+3)*m, (k+1)*n+1: (k+2)*n) -B;
k = k+1;

= (k+1)*n-rank(Tk);

end
if (k > min(m,n)) break; end;
epsilonhat (i) = k;
rho(i) = rk-((k+1)*p-q);
M = computeHi(i,n,p,q,X,rho,epsilonhat);
[U,s,V] = svd(l);
if (M "= [1) sigmal = S(1,1); else sigmal = 0; end
rankM = sum(diag(S) > max(51ze(M))*51gma1*eps)
N = null(Tk);
N1 = U(:,1:rankM);
if (N1 “= [1) P = N-N1*N1’*N; else P = N; end
[U,5,V] = svd(P);
if (P "= [1) sigmal = S(1,1); else sigmal = 0; end
rankP = sum(diag(S) > max(size(P))*sigmal*eps);
N2 = U(:,1:rankP);
if (i > 1)
X = [X; zeros((epsilonhat(i)-epsilonhat(i-1))*n,p)];
end

X = [X N2];
epsilon(p+1:p+rho(i)) = k*ones(1,rho(i));
p = ptrho(i);
q = gqtrho(i)*epsilonhat(i);
i = i+1;
end
u=1i-1;

epsilon = epsilon(i:p);
epsilonhat = epsilonhat(1:u); rho = rho(il:u);

*okkkkokkk computeHi.m #kkkkkokx

% computeHi constructs the matrix

% Hi = [T_(epsilonhat(1))~(epsilonhat(i))(N_1) ...
% T_(epsilonhat(i-1))~(epsilonhat(i)) (N_(i-1))]

% for the cspsolve routine. The individual component matrices
% are created via calls to the helper function computeTdk.

36

function Hi = computeHi(i,n,p,q,X,rho,epsilonh)

k = epsilonh(i);
Hi = zeros((k+1)*n, (k+1)*p-q);

lastcolX = 0;

lastcolHi = 0;

for 1=1:i-1
d = epsilonh(1);
N1 = X(1:(d+1)#*n,lastcolX+1:lastcolX+rho(1));
Hi(:,lastcolHi+1:lastcolHi+(k-d+1)*rho(1l)) = computeTdk(d,k,N1);
lastcolX = lastcolX+rho(1l);
lastcolHi = lastcolHi+(k-d+1)*rho(1l);

end

koK ok ok ok ok ok ok computerk,m koK ok ok ok ok ok ok

% computeTdk(d,k,M) computes the matrix T_d"k(M). See the
% text of the paper for the definition of T_d k(M).

function Tdk = computeTdk(d,k,M)
if (k < d) error(’must have k >= d’); end

[rowsizeM,colsizeM] = size(M);

if (rem(rowsizeM,d+1) ~= 0)

error(’rowsize of M must be divisible by d+1’);
end
n = rowsizeM/(d+1);

r = colsizelM;
Tdk = zeros((k+1)*n,(k-d+1)*r);

for j=1:k-d+1
Tdk((j—1)*n+1:(j-1)*n+rowsizeM, (j-1)*r+1l:j*r) = M;
end

B.2 Basis Verification

koK ok ok ok ok ok ok checkcspsolve,m koK ok ok ok ok ok ok

% checkcspsolve checks the solution returned by cspsolve for

% the eigenvalues specified in the vector lambda. Each solution
% function is checked at all values in lambda with a call to the
% helper function checkcspsoln. The output maxres is the largest
% value of ||(4 - 1 B) x(1)||_2 over all 1 in lambda and x(1)

% in X. The output matrix res is defined by

% res(i,j) = |1(4 - lambda(i) B) x_j(lambda(i))||_2.

function [maxres,res] = checkcspsolve(A,B,lambda,X,epsilon)
[m,n] = size(4);
p = size(X,2);

nlambda = length(lambda);
res = zeros(nlambda,p);

37

maxres = —inf;

for j=1:p
x = X(1:(epsilon(j)+1)*n,j);
[maxresj, res(:,j)] = checkcspsoln(A,B,lambda,x,epsilon(j));
if (maxresj > maxres) maxres = maxresj; end

end

koK ok ok ok ok ok ok checkcspsoln,m koK ok ok ok ok ok ok

% checkcspsoln(4,B,lambda,x,d) checks the degree d solution
% x(1) for each value 1 in lambda. The output maxres is the
% largest value of ||(A — 1 B) x(1)||_2 over all 1 in lambda.
% The output column vector res is defined by

% res(i) = || (4 - lambda(i) B) x(lambda(i))||_2. Evaluating
% the vector polynomial x at 1 is done via a call to the

% helper function evalvecpoly.

function [maxres,res] = checkcspsoln(4,B,lambda,x,d)

nlambda = length(lambda);
res = zeros(nlambda,1);

maxres = —inf;

for i=1:nlambda
res(i) = norm((A-lambda(i)*B)*evalvecpoly(x,d,lambda(i)));
if (res(i) > maxres) maxres = res(i); end

end

koK ok ok ok ok ok ok evalvecpoly,m koK ok ok ok ok ok ok

% evalvecpoly(x,d,lambda) returns the vector p obtained by
% evaluating the vector polynomial x of degree d at the
% value lambda.

function p = evalvecpoly(x,d,lambda)

nx = length(x);
if (rem(nx,d+1) “= 0)
error(’length of x must be divisible by d+1’);
end
n = nx/(d+1);
p = zeros(n,1);

lambda_raisedto_j = 1;
for j=0:d
p = ptlambda_raisedto_j*x(j*n+1:(j+1)*n);

lambda_raisedto_j = lambda_raisedto_j*lambda;
end

B.3 Basis Display

koK ok ok ok ok ok ok showcspsolns,m koK ok ok ok ok ok ok

% showcspsolns(X,epsilon,lambda) makes a simultaneous plot of

38

% all the solutions functions specified in X. Here epsilon is

% the vector of solution degrees, and lambda is a vector of

% eigenvalues to use in the plot. The showlambda argument is

% optional and indicates whether or not to show the eigenvalues

% in the plot (default is NOT to show the eigenvalues). The real
% work is done in showcspsoln, which makes the plot for ome

% solution. See the showcspsoln documentation for more plot

% details. Note that this routine first clears the current figure.

function showcspsolns(X,epsilon,lambda,showlambda)

[m,p] = size(X);
if (rem(m,epsilon(p)+1) ~= 0)
error (’number of rows in X must be divisible by epsilon(p)+1’);
end
n = m/(epsilon(p)+1);
if (nargin < 4) showlambda = 0; end

clf;

for j=1:p
showcspsoln(X(1: (epsilon(j)+1)*n,j),epsilon(j),lambda,showlambda);
hold on;

end

koK ok ok ok ok ok ok showcspsoln,m koK ok ok ok ok ok ok

% showcspsoln(x,d,lambda) plots the degree d polynomial solution

% function x(1) = (x1(1),x2(1),...,xn(1l)) forall 1 in lambda. This

% function requires n >= 2 and plots as many of the xi(lambda) as

% possible. The showlambda input argument is optional and defaults
% to 0 (false). If showlambda is true (i.e. any value other than 0),
% then a 3d plot of lambda vs. x1(lambda) vs. x2(lambda) is made. If
% showlambda is false, then a 2d plot x1 vs. x2 is made for n=2 and
% a 3d plot x1 vs. x2 vs. x3 is made for n >= 3.

function showcspsoln(x,d,lambda,showlambda)

nx = length(x);
if (rem(nx,d+1) “= 0)

error(’length of x must be divisible by d+1’);
end
n = nx/(d+1);
if (n < 2) error(’n must be at least 2’); end
if (nargin < 4) showlambda = 0; end

nlambda = length(lambda);
V = zeros(n,nlambda);

for j=1:nlambda
V(:,j) = evalvecpoly(x,d,lambda(j));
end

zlabelstr = ’’;
if (showlambda)
graphtitle = ’lambda vs. x(lambda) = (x1(lambda),x2(lambda))’;

xlabelstr = ’lambda’;
ylabelstr = ’x1(lambda)’;
zlabelstr = ’x2(lambda)’;

39

plot3(lambda,V(1,:),V(2,:));
elseif (n == 2)

graphtitle = ’eigenvectors x
xlabelstr = ’x1’;

ylabelstr = ’x27;
plot(V(1,:),V(2,:));

else

graphtitle = ’eigenvectors x
xlabelstr = ’x1’;

ylabelstr = ’x27;

zlabelstr = ’x3’;

plot3(V(1,:),V(2,:),V(3,:));
end

title(graphtitle);
xlabel(xlabelstr);
ylabel(ylabelstr);
zlabel(zlabelstr);

(x1 x2)7;

(x1 x2 x3)7;

40

