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Abstract

How hard is it to solve a system of bilinear equations? No solutions are presented in this
report, but the problem is posed and some preliminary remarks are made. In particular,
solving a system of bilinear equations is reduced by a suitable transformation of its columns
to solving a homogeneous system of bilinear equations. In turn, the latter has a nontrivial
solution if and only if there exist two invertible matrices that, when applied to the tensor
of the coe�cients of the system, zero its �rst column. Matlab code is given to manipulate
three-dimensional tensors, including a procedure that �nds one solution to a bilinear system
often, but not always.
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1 Introduction

One of the most common types of systems of equations that arise in science and engineering is a
linear system

Ax = b (1)

where A 2 Rm�n, x 2 Rn, and b 2 Rm. The system (1) consists of m equations

nX
j=1

aijxj = bi for i = 1; : : : ; m (2)

in n unknowns x1; : : : ; xn. The left-hand side of the ith equation in (2) is the linear form aTi x,
where aTi is the ith row of A.

Adding one dimension to the linear system (2) yields a bilinear system of equations

mX
j=1

nX
k=1

tijkyjzk = di for i = 1; : : : ; l (3)

where the tijk and the di are known real numbers. This system consists of l equations in m + n
unknowns y1; : : : ; ym and z1; : : : ; zn. Here we have two unknown vectors

y = [ y1 � � � ym ]T 2 Rm and

z = [ z1 � � � zn ]
T 2 Rn ;

an order-3 tensor of coe�cients

T = [ tijk ] 2 Rl�m�n ;

and a right-hand side vector

d = [ d1 � � � dl ]
T 2 Rl :

A shorthand notation for the bilinear system (3) is

yTz = d:

A homogeneous bilinear system is a bilinear system with right-hand side d = 0:

mX
j=1

nX
k=1

tijkyjzk = 0 for i = 1; : : : ; l ; (4)

or, in our shorthand notation, yTz = 0.

The system (3) can be written in three alternative forms that make use of matrix notation:

yTAiz = di for i = 1; : : : ; l (5)

B(y)z = d (6)

C(z)y = d ; (7)
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Figure 1: The tensor of the coe�cients of a system of bilinear equations. The two vectors y and
z are placed along the dimensions that they contract. The shaded area is the �rst column of the
tensor (j=k=1).

where

B(y) =
mX
j=1

yjBj (8)

C(z) =
nX

k=1

zkCk ; (9)

and where the matrices

Ai =

2
64

ti11 � � � ti1n
...

. . .
...

tim1 � � � timn

3
75 2 Rm�n for i = 1; : : : ; l (10)

Bj =

2
64
t1j1 � � � t1jn
...

. . .
...

tlj1 � � � tljn

3
75 2 Rl�n for j = 1; : : : ; m (11)

Ck =

2
64
t11k � � � t1mk

...
. . .

...
tl1k � � � tlmk

3
75 2 Rl�m for k = 1; : : : ; n (12)

represent \slices" of the tensor T along its three dimensions (see �gure 1). The representation (5)
makes it clear that the left-hand side of the ith bilinear equation is the bilinear form yTAiz.

1 The

1A more general system of equations includes strictly linear terms in y and z in the left-hand side of each equation.
If the ith equation were yTAiz + eTi y + fT

i z = di, then we would have a system of bia�ne equations. As in the
bilinear case, holding one of the unknown vectors �xed results in a linear system to solve for the other vector. This
is clear if we write the system as B(y)z +Ey + Fz = d, where eTi and fT

i are the ith rows of the matrices E and F ,
respectively. At the present time, we only consider systems in which the left-hand side of each equation is a bilinear
function of y and z.
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representation (6) makes it clear that �xing the vector y results in a linear system to solve for z.
Similarly, the representation (7) shows that �xing the vector z yields a linear system to solve for y.
Therefore, �xing one of the unknown vectors leaves a linear system to solve for the other vector.

A very simple example of a bilinear system is the single equation of a rectangular hyperbola in
the plane:

yz = d; y 2 R; z 2 R; d 2 R: (13)

Our de�nition of a bilinear system also includes the matrix form of equation (13):

Y Z = D; Y 2 Rm�p; Z 2 Rp�n; D 2 Rm�n: (14)

In (14) there are mn equations, one for each entry dij of D, and (m+ n)p unknowns, one for each
entry in Y and Z. Let y 2 Rmp and z 2 Rpn be the vectors formed by the row major and column
major order of the elements in the matrices Y and Z, respectively. Also, let Aij 2 Rmp�pn be the
matrix which has the identity matrix Ip in its (i; j)th p� p block, and zeros elsewhere. Then (14)
is equivalent to the bilinear system

yTAijz = dij ; for i = 1; : : : ; m; j = 1; : : : ; n: (15)

The matrix Aij \picks out" the elements in Y and Z that are multiplied together in forming the
matrix product element dij . Obviously, we can unroll the 2D index into a 1D index to make (15)
look exactly like the form (5).

We would like to understand bilinear systems as well as we understand linear systems. The
following problems arise:

1. Give conditions on the coe�cient tensor T and right-hand side vector d under which the
system (3) admits a solution. In the homogeneous case d = 0, give conditions on T under
which the homogeneous bilinear system admits a nontrivial solution (y; z), y 6= 0, z 6= 0.

2. Describe the set of solutions to a bilinear system.

3. Compute the set of solutions to a bilinear system.

4. If the equations in a bilinear system are incompatible, determine a least squares solution;
that is, �nd a pair (y; z) that minimizes the squared error

e2(y; z) =
lX

i=1

0
@ mX
j=1

nX
k=1

tijkyjzk � di

1
A
2

:

All these problems have been completely solved for linear systems.
This report is organized as follows. In section 2, we study bilinear systems in which one of the

unknown vectors y, z is a scalar (m = 1 or n = 1). Such bilinear systems are thinly veiled linear
systems. In section 3, we characterize the solutions to general homogeneous and non-homogeneous
systems. The zeros of a certain degree 2n polynomial in m variables y1; : : : ; ym are exactly the
vectors y for which there is a solution (y; z) to the homogeneous bilinear system (4); the zeros of a
certain degree 2m polynomial in n variables z1; : : : ; zn are exactly the vectors z for which there is
a solution (y; z) to (4). In section 4, we present some simple results on the existence of solutions
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(nontrivial solutions in the case of homogeneous systems). In section 5, we give a technique for
reducing a non-homogeneous problem to a homogeneous one.

Given that non-homogeneous bilinear systems are no harder than homogenous ones, we address
the solution of homogenous systems in section 6. First we show that �nding a nontrivial solution to
a homogeneous bilinear system is equivalent to �nding invertible matrices which zero the coe�cient
tensor's �rst column (j = k = 1 | see �gure 1) when applied to its j-rows and k-rows. We then
give a heuristic method for zeroing the �rst column of a homogeneous system with Householder
matrices. The method has always succeeded in several random trials when l >> m; n, but fails
often when l is not much larger than m and n. In section 7, we show that homogeneous bilinear
systems generalize the eigenvalue problem to more than two, possibly non-square matrices. With
this fact in mind, we review two matrix eigenvalue problems in section 8, including the case when
the matrices are not square.

In practice, the equations in system (3) usually come from noisy data, and are therefore incon-
sistent. In section 9, we discuss the problem of �nding a least squares solution to an inconsistent
system. In section 10, we pose two problems which are related to, but harder than the problem
of solving bilinear systems. Our concluding remarks in section 11 are followed by two appendices.
Appendix A lists some Matlab code to work with tensors of order-3 (that is, three-dimensional
tensors). This code includes a program that in many cases (but not always) zeros the �rst column
of a tensor by Householder re
ections. Appendix B contains Matlab code that �nds a basis of
solution functions x1(�); : : : ; xp(�) for the eigenvalue problem (A��B)x = 0 when for every � 2 C

A� �B has linearly dependent columns.

2 Bilinear Systems with m = 1

We begin our study of bilinear systems with the simple case m = 1 or n = 1. We shall see in the
next few sections that solving such bilinear systems reduces to solving linear systems. Without loss
of generality, only the m = 1 case is considered.

2.1 Homogeneous Systems with m = n = 1

When m = n = 1, the two unknown vectors y and z, as well as the matrices Ai = ai, are actually
scalars. The homogenous bilinear system is

aiyz = 0 for i = 1; : : : ; l: (16)

It is trivial to see that the solution set is

S = f (y; z) : y = 0 or z = 0 g if 9i ai 6= 0

or

S = f (y; z) : y 2 R; z 2 R g if 8i ai = 0:

In the former case, the solution set is the union of the y-axis and the z-axis. In the latter case, the
solution set is the entire yz-plane. See �gure 2. If we let a = [ a1 � � � al ]

T 2 Rl, then the solution
set is one-dimensional if rank(a) = 1 and two-dimensional if rank(a) = 0.
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Figure 2: Solution Set for a Homogeneous Bilinear System with m = n = 1. (a) The solution set
S to (16) is the union of the y-axis and z-axis when 9i ai 6= 0. (b) The solution set S is the entire
yz-plane when 8i ai = 0.

2.2 Homogeneous Systems with m = 1

The case m = 1 with general n is almost as easy as the case m = n = 1 considered in the previous
section. When m = 1, the vector y is a scalar, while the matrices Ai = aTi 2 R1�n are row vectors.
The homogenous bilinear system is

yaTi z = 0 for i = 1; : : : ; l: (17)

When y = 0, any vector z 2 Rn satis�es (17). When y 6= 0, the vector z must be in the nullspace
of the matrix A 2 Rl�n whose rows are the aTi . Hence the solution set is

S = f (0; z) : z 2 Rn g
[

f (y; z) : y 2 R; z 2 null(A) g;

where
A = [ a1 � � � al ]

T :

If we let

P = f (0; z) : z 2 Rn g � f0g �Rn and

Q = f (y; z) : y 2 R; z 2 null(A) g � R � null(A);

then
S = P

[
Q:

Now consider the case m = 1, n = 2. Then P is the plane through the origin in (y; z1; z2)-
space which is perpendicular to the y-axis, and dim(null(A)) 2 f0; 1; 2g. If dim(null(A)) = 0, then
Q = R � f(0; 0)g is the y-axis, and the solution set S = P

S
Q is the union of a plane and a line.
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If dim(null(A)) = 1 with null(A) = span(v), then Q is a plane through the origin spanned by the
vectors (0; v) and (1; 0; 0), and S = P

S
Q is the union of two planes. If dim(null(A)) = 2, then

Q = R � R2, and the solution set is S = Q = R � R2, the whole (y; z1; z2)-space. The three
qualitatively di�erent solution sets S are shown in �gure 3.

2.3 Non-Homogeneous Systems with m = 1

In the previous section we saw that solving a homogeneous bilinear system with m = 1 reduces
to solving a homogeneous linear system Az = 0. We now show that solving a non-homogeneous
bilinear system with m = 1 reduces to solving a non-homogeneous linear system.

Consider the bilinear system

yaTi z = di for i = 1; : : : ; l: (18)

If y = 1, then (18) becomes the linear system

Az = d: (19)

If z is a solution to (19), then obviously (1; z) is a solution to (18) and, more generally, (c; z=c) is
a solution for any c 6= 0. The solution set to (18) is

S = f (c; z=c) : Az = d; c 6= 0 g if d 6= 0:

Of course, the solution set S will be empty if there is no solution to the linear system (19).
If S is empty, we can still ask for a least squares solution to (18). By this we mean a pair (y; z)

that minimizes the squared error
e2(y; z) = jjyAz � djj22:

Note that
e2(c; z=c) = e2(1; z) = jjAz � djj22 8c 6= 0

and
min
z
jjAz � djj22 � jjdjj22 = e2(0; z):

Thus a least squares solution z to the linear system (19) yields least squares solutions (c; z=c) 8c 6= 0
to the bilinear system (18).

3 Characterizing the Solutions

If (y; z) is a solution to the general bilinear system (3), then so is (cy; z=c) for any nonzero constant
c. If d 6= 0, then (y; 0) and (0; z) are not solutions for any y or z. Consequently, solutions to a
non-homogeneous system can be characterized by, say, jjzjj = 1 without loss of generality. If (y; z)
is a solution to the homogeneous system (4), then so is (c1y; c2z) for any constants c1; c2. Therefore,
the nontrivial solutions to a homogeneous system can be characterized by jjyjj = jjzjj = 1 without
loss of generality.

Let us focus for the moment on the homogeneous system

B(y)z = 0:
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Figure 3: Solution Set for a Homogeneous Bilinear System with m = 1, n = 2. (a) The solution
set S to (17) is the union of the plane P = f0g � R2 and the y-axis when dim(null(A)) = 0. (b)
The solution set S is the union of the two planes P and Q = R � null(A) when dim(null(A)) = 1.
(c) The solution set S is the entire (y; z1; z2)-space when dim(null(A)) = 2.
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Recall that B(y) 2 Rl�n. It follows that nontrivial solutions to the homogeneous system exist i�
there exists y 6= 0 such that

rank(B(y)) < n (20)

or, equivalently,

det(BT (y)B(y)) = 0: (21)

For each such y that satis�es (21), any

z 2 null(B(y))

completes a solution (y; z).
Similar observations can be made with the role of B and C, and y and z, reversed because

B(y)z � C(z)y. Here we write the homogeneous bilinear system as

C(z)y = 0:

Recall that C(z) 2 Rl�m. It follows that nontrivial solutions to the homogeneous system exist i�
there exists z 6= 0 such that

rank(C(z)) < m (22)

or, equivalently,

det(CT (z)C(z)) = 0: (23)

For each such z that satis�es (23), any

y 2 null(C(z))

completes a solution (y; z).
In section 5 we show that a non-homogeneous system can be reduced to a homogeneous system.

Thus equation (21) seems to imply that solving the original system (3) is as hard as solving a
polynomial of degree 2n in the m� 1 variables y2; : : : ; ym (if y1 = 1 for normalization). However,
this polynomial has a strong structure because of equation (8), so a solution may be easier to �nd.

4 Some Simple Existence Results

A homogeous linear system has a nontrivial solution whenever the number of equations is less than
the number of unknowns. The bilinear analog to this result is given below.

Theorem 1 Any homogeneous bilinear system de�ned by a coe�cient tensor T 2 Rl�m�n with
l < m or l < n admits a nontrivial solution.

Proof 1 If l < m, then (22) holds for every z because C(z) has fewer rows than columns. Similarly,
l < n implies that (20) holds for every y.

If l < n, the solution set is

Sy = f (y; z) : y 2 Rm; z 2 null(B(y)) g ;
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if l < m, the solution set is

Sz = f (y; z) : y 2 null(C(z)); z 2 Rn g :

Note that the number of equations is compared separately to the number of unknowns in the vectors
y and z, not to the total number of unknowns m+ n.

Another result for linear systems that has an analog for bilinear systems is as follows: Suppose
that the square homogeneous linear system Ax = 0 does not have a nontrivial solution. Then
Ax = b admits a solution for every right-hand side vector b.

Theorem 2 Suppose T 2 R(l=m)�m�n or T 2 R(l=n)�m�n, and that the homogeneous bilinear
system yTz = 0 has no nontrivial solution. Then yTz = d admits a solution for every non-zero
right-hand side vector d.

Proof 2 Suppose T 2 R(l=m)�m�n. Then C(z) 2 Rm�m is a square matrix for every z 2 Rn. We
are given that C(z)y = 0 has no nontrivial solution. This implies that detC(z) 6= 0 for every z.
Consequently, C(z)y = d admits a solution for every z. The case when T 2 R(l=n)�m�n follows
from a similar argument.

Finally, we show that a single, nontrivial bilinear equation (i.e. a bilinear system with l = 1
and A1 6= 0) always admits a solution.

Theorem 3 If A 6= 0, then the single bilinear equation yTAz = d admits a solution.

Proof 3 Let A = U�V T be an SVD of A, ŷ = UTy, and ẑ = V Tz. Then

yTAz = d () ŷT�ẑ = d

()
rank(A)X
j=1

�j ŷj ẑj = d:

Since A 6= 0, we have rank(A) � 1. Set ŷ1 = 1, ẑ1 = d=�1, ŷj = ẑj = 0 for j = 2; : : : ; rank(A). For
arbitrary values of the remaining elements in ŷ and ẑ, the pair (y; z) = (Uŷ; V ẑ) is a solution to
yTAz = d.

In fact, one can pick z or y arbitrarily, except that z 62 null(A) and y 62 null(AT ), and solve
yTAz = d for the other vector. For instance, if w = Az 6= 0, any y on the plane yTw = d will do
(e.g., y = dw=jjwjj2). Similar reasoning applies to v = AT y 6= 0.

5 Reduction to a Homogeneous System

In this section, we present a strategy for reducing a non-homogeneous bilinear system to a homo-
geneous one. This technique can be applied to linear systems as well, although it is somewhat
nonstandard. The right-hand side vector d 6= 0 can be transformed by a linear transformation, for
example by a Householder re
ection ([3]), to a vector of the form

d̂ = [ � 0 � � � 0 ]T ;

11



where � 6= 0, and the same transformation can be applied to the columns of the tensor T . If Rd = d̂,
then multiplying both sides of the bilinear system B(y)z = d by R on the left gives

RB(y)z = d̂

R(y1B1 + � � �+ ymBm)z = d̂

(y1(RB1) + � � �+ ym(RBm))z = d̂

(y1B̂1 + � � �+ ymB̂m)z = d̂

B̂(y)z = d̂: (24)

Equation (24) represents the bilinear system with coe�cient tensor T̂ , where the t̂ijk is equal to

the (i; k)th element of B̂j . If Âi is de�ned so that its (j; k)th element is t̂ijk , then the equations in
the transformed bilinear system (24) are

yT Âiz =

(
� if i = 0
0 otherwise

: (25)

If R is invertible, then (y; z) is a solution to the original bilinear system (5) i� (y; z) is a solution
to the transformed bilinear system (25). The equations of (25) for i = 2; : : : ; l form a homogeneous
system. If (y; z) is a unit-norm solution of the latter, the pair (�y; z), where � is an unknown
parameter, can be replaced into the �rst equation (i = 1) to determine �:

�yT Â1z = �

If yT Â1z = 0, this solution is inconsistent with the original system. Otherwise,

� =
�

yT Â1z
:

If this procedure is repeated for all the solutions to the homogeneous system and the inconsistent
solutions are discarded, all consistent solutions to the full system remain.

6 Solving Homogeneous Bilinear Systems

6.1 An Equivalent Problem

Consider now a homogeneous bilinear system, and let (y; z) be a nontrivial solution (i.e. y; z 6= 0).
Then, there exist invertible matrices (e.g., Householder re
ections) Ry; Rz such that

Ryy = �ye
(m)
1 and Rzz = �ze

(n)
1 ;

where �y ; �z 6= 0, and e
(p)
1 is the p-dimensional elementary vector with a 1 in its �rst component

and zeros everywhere else. But then equation (5) can be rewritten as

yTRT
y

�
RT
y

��1
Ai (Rz)

�1Rzz = 0;

or, equivalently, �
e
(m)
1

�T
~Ai e

(n)
1 = 0;
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where
~Ai =

�
RT
y

��1
Ai (Rz)

�1 :

But �
e
(m)
1

�T
~Ai e

(n)
1 = ~a

(i)
11 ;

the �rst entry of ~Ai, so that we have

~a
(i)
11 = 0 for i = 1; : : : ; l :

In conclusion, for every nontrivial solution to a homogeneous system there exist two invertible
matrices that, when applied to the j-rows and the k-rows of the tensor of the homogeneous system,
zero the tensor's �rst column.

The converse of the last statement is also true. Suppose Ry and R
T
z are invertible matrices that

zero the coe�cient tensor's �rst column when applied to the j-rows and the k-rows of the tensor.
Then �

e
(m)
1

�T
RyAiR

T
z e

(n)
1 = 0 for i = 1; : : : ; l ;

and

(y; z) =
�
RT
y e

(m)
1 ; RT

z e
(n)
1

�
is obviously a solution to the homogeneous bilinear system. Since RT

y and RT
z are invertible,

y = RT
y e

(m)
1 and z = RT

z e
(n)
1 are nonzero. Therefore, �nding a nontrivial solution to a homogeneous

bilinear system is equivalent to �nding invertible matrices which zero the coe�cient tensor's �rst
column when applied to its j-rows and k-rows.2 Because the argument above holds also when Ry

and Rz are orthogonal (e.g., Householder re
ections), �nding a unit norm solution to a homogeneous
bilinear system is also equivalent to �nding orthogonal matrices which zero the coe�cient tensor's
�rst column when applied to its j-rows and k-rows.

6.2 Zeroing the First Column of a Homogeneous System

We could not �nd a method for zeroing the �rst column of a tensor by orthogonal matrices applied to
its rows. Here is the rationale behind a simple attempt, which does often work whenever l >> m; n.

Consider for instance the matrices Bj in equation (8). If Bj is rank de�cient, we have a solution

to the homogeneous system, given by y = e
(m)
j and a solution to the linear system Bjz = 0. Assume

now that Bj is full rank for all j. By the minimax characterization of singular values, the smallest

vector that can be formed by a unit-norm linear combination of the columns of Bj is �
(j)
n u

(j)
n , that

is, the smallest singular value of Bj times the corresponding left singular vector. Let now

�n = min
j
�(j)n ;

achieved for j = jmin, and let un and vn be the corresponding left and right singular vectors. The
vector �nun is the smallest among the unit-norm combinations of columns all from B1, or all from

2An analogous result holds for linear systems. A homogeneous linear system admits a nonzero solution i� the �rst
column of its coe�cient matrix can be zeroed by an invertible linear transformation of its columns.
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B2, : : : , or all from Bm. This vector can be brought to the �rst column of the tensor by two
Householder re
ections. In fact, let

h = �house(vn) ;

where house(vn) is the Householder vector for vn (the �rst component of house(vn) is normalized
to be 1). Since the Householder matrix

P (h) = I � 2
hhT

hTh

maps the elementary vector e
(n)
1 into vn, the �rst column of P (h) is equal to

P (h)e
(n)
1 = vn ;

and the �rst column of Bjmin
P (h) is �nun. Because the �rst column of Bjmin

is also a column of
C1 (see equations (7) and (9)), this re
ection has the e�ect of moving the \small" vector �nun to
C1. The same procedure, repeated with the roles of the B and C matrices reversed, will then bring
this \small" vector, or an even smaller one, to the �rst column of the tensor (j = k = 1). The
second re
ection changes the column spaces of the matrices Bj , so there is a chance that another,
smaller vector can be produced by repeating this two-step procedure. This, of course, need not
be the case in general, and in fact for systems where l is not much larger than m and n failure to
converge occurs often. If l >> m; n, on the other hand, this procedure has always succeeded in
several random trials. Perhaps this observation can be of heuristic value in the search for a solution
method.

Of course, zeroing the �rst column of the tensor is not the whole story, since this yields only
one solution to the original system.

7 Homogeneous Bilinear Systems and Eigenvalue Problems

For the special case n = 2, the homogeneous system C(z)y = 0 becomes

(z1C1 + z2C2)y = 0; (26)

where C1; C2 2 Rl�m. If we normalize z so that z1 = 1, and write z = [ 1 �� ]T , A = C1, and
B = C2, then (26) becomes

(A� �B)y = 0: (27)

If l = m, then (27) is the generalized eigenvalue problem. The normalization z1 = 1 results in only a
slight loss of generality because any solution with z1 6= 0 can be divided by z1 to produce a solution
with z1 = 1. Setting z1 = 0 produces an l�m� 1 homogeneous bilinear system

z2C2y = 0:

In section 2.2, we showed that homogeneous bilinear systems in which one of the unknown vectors
is a scalar are essentially equivalent to linear systems. Thus the di�cultly in solving (26) lies in
solving the eigenvalue problem (27).3 Here \solving the eigenvalue problem" means �nding both

3Solving the homogeneous bilinear system (26) entails considering solutions to (27) corresponding to real

eigenvalues.
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the eigenvalues and corresponding eigenvectors. The eigenvalues de�ne z, while the corresponding
eigenvectors give y. When A and B are square, �nding the eigenvalues is a well-studied problem.
Given a �nite set of eigenvalues, the corresponding set of eigenvectors follow easily. Di�culties
arise in �nding the set of eigenvectors when every � 2 C is an eigenvalue.

Removing the l = m restriction results in non-square eigenvalue problems. Considering the case
n > 2 shows that a homogeneous bilinear system generalizes the eigenvalue problem to more than
two matrices

(C1 + z2C2 + � � �+ znCn)y = 0:

The generalized eigenvalue problem (with two, possibly non-square matrices) is the topic of sec-
tion 8.

8 The Generalized Eigenvalue Problem Ax = �Bx

The generalized eigenvalue problem is to solve the equation

Ax = �Bx (28)

for � 2 C and x 6= 0, where A 2 Rn�n and B 2 Rn�n are square matrices. We can rewrite (28) as

(A� �B)x = 0 : (29)

There exists an x 6= 0 that satis�es (29) i� rank(A� �B) < n. For square matrices A and B, this
condition is equivalent to the condition

det(A� �B) = 0: (30)

The eigenvalues of the pair (A;B) are the values of � 2 C that satisfy (30). The set of eigenvalues
of (A;B) is denoted by �(A;B).

De�ne the characteristic polynomial p(�) = det(A��B). Note that p is a polynomial of degree
at most n. If p(�) � � 6= 0, then �(A;B) = ;. If p(�) � 0, then �(A;B) = C. The remaining
possibility is that 1 � deg(p) � n. In this case, the pair (A;B) has exactly deg(p) eigenvalues
� 2 C (counting multiplicities).

If B = In, the n � n identity matrix, then (28) reduces to the ordinary eigenvalue problem
Ax = �x. In fact, the generalized eigenvalue problem reduces to the ordinary eigenvalue problem
B�1Ax = �x if B is invertible. The general case in which B is not necessarily invertible is reviewed
in section 8.1.

Note that equation (28) still makes sense when A 2 Rm�n and B 2 Rm�n are not square. In
this case, the generalized eigenvalue problem asks for nonzero vectors x which are mapped by A
and B into parallel vectors Ax and Bx. We can modify our de�nition of �(A;B) to include the
non-square case:

�(A;B) � f � 2 C : rank(A� �B) < n g:

We will show in section 8.2 that a non-square problem can be reduced to a square problem.
The set of eigenvectors x(A;B) which satisfy (29) is

x(A;B) =
[

�2�(A;B)

null(A� �B):
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For a given �, an SVD of A � �B provides a basis for null(A � �B). If �(A;B) is a �nite set,
we \compute" x(A;B) by computing a basis for null(A � �iB) for each �i 2 �(A;B). Computing
x(A;B) when �(A;B) = C is the subject of section 8.3. This is not an uncommon case. In fact,
�(A;B) = C whenever m < n, since then rank(A� �B) < n.

8.1 The Square Generalized Eigenvalue Problem

Let us assume thatA;B 2 Rn�n. The matrix decomposition which solves the generalized eigenvalue
problem is the generalized Schur decomposition. It states that there exist unitary matrices Q and
Z such that the two matrices

QHAZ = R and (31)

QHBZ = U (32)

are upper triangular. From (31) and (32), it follows easily that

det(A� �B) = det(QZH)
nY
i=1

(rii � �uii) :

If there exists k such that rkk = ukk = 0, then �(A;B) = C. Otherwise,

�(A;B) = f rii=uii : uii 6= 0 g

is the �nite (possibly empty) set of eigenvalues of (A;B).

8.2 The Non-Square Generalized Eigenvalue Problem

Suppose that we want to solve (28) for matrices A;B 2 Rm�n which are not necessarily square.
We now show that the non-square problem can be reduced to a square problem. The following re-
duction is credited in [6] to Professor Gene Golub of the Computer Science Department at Stanford
University.

A key fact to the reduction is that rank(A��B) < n i� rank((A��B)T (A��B)) < n i� there
exists y 6= 0 such that

(A� �B)T (A� �B)y = 0 : (33)

Simple algebraic manipulation of (33) produces the equivalent equation

(�2C + �D+ E)y = 0 (34)

where

C = BTB;

D = �(ATB + BTA); and

E = ATA :

If we let z = �y, then (34) can be rewritten as

z = �y

�Cz + �Dy +Ey = 0 :
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These two equations may be written in matrix form as

"
0 In
E 0

#"
y

z

#
= �

"
In 0
�D �C

# "
y

z

#
: (35)

If we let

F =

"
0 In
E 0

#
2 R2n�2n and

G =

"
In 0
�D �C

#
2 R2n�2n

then (35) is the square generalized eigenvalue problem

F

"
y
z

#
= �G

"
y
z

#
: (36)

The above discussion shows that �; y satisfy (33) i� �; y; z satisfy (36). If y 6= 0, then
h
yT zT

iT
6= 0,

and it follows that �(A;B) � �(F;G). The opposite inclusion �(F;G) � �(A;B) will follow ifh
yT zT

iT
6= 0 implies that y 6= 0. But if y = 0, then z = �y = 0 and

h
yT zT

iT
= 0. Thus we

have proven

�(A;B) = �(F;G) :

8.3 Computing x(A;B) when �(A;B) = C

When �(A;B) = C, then for each value of � there is a nonzero vector x = x(�) that satis�es (29).
We start by looking for real solutions x(�) which are polynomials in �. Suppose we seek a solution
of degree d:

x(�) = x0 + �x1 + �2x2 + � � �+ �dxd (xd 6= 0): (37)

Here each xi is an n-dimensional real vector. Substituting (37) into (29) and equating the coe�cients
of �0; �1; : : : ; �d to zero, we obtain

Ax0 = 0
Ax1 � Bx0 = 0
Ax2 � Bx1 = 0

...
Axd �Bxd�1 = 0

�Bxd = 0:

(38)

We can rewrite (38) as a homogeneous linear system

Td(A;B)x = 0; (39)
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where

Td(A;B) =

2
666666664

A

�B A
�B A

. . .
. . .

�B A

�B

3
777777775
2 R(d+2)m�(d+1)n

and

x =

2
666666664

x0
x1
x2
...

xd�1
xd

3
777777775
2 R(d+1)n:

Any solution x to (39) with xd 6= 0 yields a degree d solution to (29) via (37).
Suppose now that we want to know the degree �1 of the smallest degree polynomial solution

x(�) to (29). We claim that �1 is the least value of the index d for which the sign < holds in the
relation rank(Td(A;B)) � (d+1)n. Otherwise, there would be a non-zero solution to T�(A;B)x = 0
with � < �1. But such a solution vector x would yield an x(�) which has degree less than or equal
to � and, therefore, less than �1.

It turns out that any solution function x(�) to (29) can be written as a linear combination
(where the coe�cients are polynomials in �) of linearly independent polynomial solutions (stated
without proof in a footnote on p. 29 in [2]). A set of k polynomial vectors x1(�); : : : ; xk(�) is
linearly independent i�

q1(�)x1(�) + � � �+ qk(�)xk(�) � 0 () qi(�) � 0 8i:

A basis of polynomial solutions to (29) is formed as follows. The process begins by choosing a
non-zero solution x1(�) of least degree. During the ith step, choose the smallest degree solution
xi(�) which is linearly independent of the previously chosen solutions x1(�); : : : ; xi�1(�). If such
a solution does not exist, then the process stops. The number of linearly independent solutions
to (29) is at most n. If we �nd p basis solutions x1(�); : : :xp(�) of degrees �1; : : : ; �p, then

�1 � �2 � � � � � �p: (40)

A polynomial basis of solutions to (29) is not uniquely de�ned (to within scale factors). However,
any two polynomial bases have the same sequence of degrees (40). The degrees �1; �2; : : : ; �p are
called the column minimal indices (cmi) of the the pencil A � �B. The sequence of distinct cmi's
is written as

�̂1 < �̂2 < � � � < �̂u:

We denote the multiplicity of the cmi �̂i by �i. Note that the number of basis functions is

p =
uX

i=1

�i:
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We shall describe an algorithm due to Karcanias ([4]) which computes a basis of solutions
from the sequence fTk(A;B)g. Although this algorithm is not numerically e�cient, it is simple to
describe and easy to implement in Matlab because it uses only basic linear algebra computations
on real matrices. See [1] for an e�cient algorithm which relies on the generalized Schur form of a
matrix pencil. The output of the Karcanias algorithm is a sequence of matrices N1; : : : ; Nu which
de�nes the polynomial basis x1(�); : : : ; xp(�) as follows. The matrix

Ni =

2
66664

xi0;1 xi0;2 � � � xi0;�i
xi1;1 xi1;2 � � � xi1;�i
...

... � � �
...

xi�̂i;1 xi�̂i;2 � � � xi�̂i ; �i

3
77775 2 R(�̂i+1)n��i

de�nes the �i basis polynomials of degree �̂i. Here each xikj is a vector in Rn. The jth column of
Ni de�nes the basis function

xij(�) =
�̂iX

k=0

xikj�
k:

Before giving the algorithm to compute a basis of solutions, we need to introduce some more
notation. Suppose the matrix M 2 R(d+1)n�r is partitioned as

M =

2
66664
M0

M1
...
Md

3
77775 ;

where Mi 2 Rn�r . Then we de�ne the matrix T k
d (M) for k � d as

T k
d (M) =

2
666666666666666664

M0

M1 M0

� M1
. . .

� �
. . . M0

� � M1

Md � �
Md �

. . . �
Md

3
777777777777777775

2 R(k+1)n�(k�d+1)r ;

Finally, let rk = dim(null(Tk(A;B))) in the algorithm description below.

Algorithm Given a matrix pencil A� �B 2 Rm�n with �(A;B) = C, the following algorithm computes
a polynomial basis of solutions x1(�); : : : ; xp(�) for the eigenvalue problem (A� �B)x = 0.

Step 1 Let �̂1 = minf k : rk > 0 g. Then �̂1 is the smallest cmi and �1 = r�̂1 is its multiplicity. Take
N1 to be any basis matrix for null(T�̂1(A;B)).
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Step 2 Let �̂2 = minf k : rk > �1(k � �̂1 + 1) g. Then �̂2 is the next smallest distinct cmi (�̂2 > �̂1)
and �2 = r�̂2 � �1(�̂2 � �̂1 + 1) is its multiplicity. The vector space null(T�̂2(A;B)) can be
expressed as a direct sum

null(T�̂2(A;B)) = range(T �̂2
�̂1
(N1))� V2;

where dim(V2) = �2. Take N2 to be any basis matrix for the vector space V2. If Z2 and R2

are orthonormal basis matrices for null(T�̂2(A;B)) and range(T �̂2
�̂1
(N1)), respectively, then N2

may be chosen as a basis matrix for range(Z2 � R2(R
T
2Z2)).

...

Step i Let �̂i = minf k : rk >
Pi�1

j=1 �j(k � �̂j + 1) g. Then �̂i is the next smallest distinct cmi

(�̂i > �̂i�1 > � � �> �̂1) and �i = r�̂i �
Pi�1

j=1 �j(�̂i � �̂j + 1) is its multiplicity. The vector space
null(T�̂i(A;B)) can be expressed as a direct sum

null(T�̂i(A;B)) = range(Hi)� Vi;

where

Hi =
h
T �̂i
�̂1
(N1) T �̂i

�̂2
(N2) � � � T �̂i

�̂i�1
(Ni�1)

i
2 R

(�̂i+1)n �
Pi�1

j=1
�j(�̂i��̂j+1);

and dim(Vi) = �i. Take Ni to be any basis matrix for the vector space Vi. If Zi and Ri are
orthonormal basis matrices for null(T�̂i(A;B)) and range(Hi), respectively, then Ni may be
chosen as a basis matrix for range(Zi � Ri(RT

i Zi)).

...

End The number of basis polynomials p � minfm;ng, and therefore the algorithm halts during
step i� if the computation of �̂i� considers a candidate k > minfm;ng. Obviously, at most
minfm;ng steps are required.

A Matlab implementation of this algorithm is given in appendix B.

9 Least Squares Solutions of Inconsistent Equations

In practice, the equations in system (3) usually come from noisy data, and are therefore inconsistent.
The solution to the system can then be required to be optimal in the sense of least squares:

min
y;z

e2(y; z) = min
y;z

lX
i=1

mX
j=1

nX
k=1

(tijkyjzk � di)
2 :

This leads to a system of equations of the third degree. In fact, by using notations (6) and (7) we
have

e2(y; z) = kB(y)z � dk2 = zTBT (y)B(y)z � 2zTBT (y)d+ dTd

e2(y; z) = kC(z)y � dk2 = yTCT (z)C(z)y � 2yTCT (z)d+ dTd:
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The normal equations are

1

2

@e2

@y
= CT (z)C(z)y� CT (z)d = 0

1

2

@e2

@z
= BT (y)B(y)z � BT (y)d = 0 :

The resulting system

CT (z)C(z)y = CT (z)d

BT (y)B(y)z = BT (y)d

has m equations in the �rst part and n in the second, is biquadratic (that is, separately quadratic
in y and in z), and of total degree 3. Note that (y; z) = (0; 0) is always a solution to the normal
equations.

10 Related, Harder Problems

10.1 Extreme Singular Values of a Unit-Norm Linear Combination of Matrices

Solving a homogeneous bilinear system B(y)z = 0 means �nding vectors y 2 Rm for which B(y)
does not have full column rank. As mentioned in section 3, we may assume jjyjj = 1 WLOG. Under
this assumption, B(y) is a unit norm linear combination of matrices of size l � n:

B(y) = y1B1 + � � �+ ymBm jjyjj = 1:

If l < n, then for every y B(y) is not full column rank. If l � n, then B(y) is not full column rank
i� its smallest singular value �n(B(y)) = 0. Therefore, the homogeneous bilinear system B(y)z = 0
with l � n has a nontrival solution i�

min
jjyjj=1

�min(y1B1 + � � �+ ymBm) = 0:

A more general optimization problem is

Problem 1 Given l matrices A1; : : : ; Al 2 Rm�n, �nd a unit norm vector � = [ �1 � � � �l ]
T that

minimizes (maximizes) the smallest (largest) singular value of the linear combination
Pl

i=1 �iAi.

As detailed above, an algorithm to solve the minimization version of problem 1 can be applied to
determine the existence of a solution to a homogeneous bilinear system.

A solution to the maximization version of problem 1 may also prove useful in the theory of
bilinear systems. The singular value decomposition (SVD) of a matrix A yields a least squares
solution to the linear system Ax = b. Is there a \tensor SVD" of T that yields a least squares
solution to yTz = d? One possible strategy is to examine matrix SVD properties and try to extend
them naturally to order-3 tensors. For example, it is well known that

max
jjxjj=jjyjj=1

xTAy = max
jjxjj=jjyjj=1

mX
i=1

nX
j=1

aijxiyj = �1 at x = u1; y = v1:

A natural extension to the above maximization problem is
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Problem 2 Find

�1 = max
jjxjj=jjyjj=jjzjj=1

lX
i=1

mX
j=1

nX
k=1

tijkxiyjzk

and unit norm vectors x = u1; y = v1; z = w1 at which the maximum is achieved.

Do �1, u1, v1, and, w1 play a role in a least squares solution of bilinear systems? We currently
do not have an answer to this question. The most concrete link that we can establish between
problem 2 and bilinear systems is via problem 1 for which we have already established a clear
connection with bilinear systems.

We now show that problem 2 reduces to problem 1. Let

f(x; y; z) =
lX

i=1

mX
j=1

nX
k=1

tijkxiyjzk ;

and let Ai be the m� n matrix

Ai = [ tijk ]
k=1;:::;n
j=1;:::;m; i = 1; : : : ; l:

Then we may write f(x; y; z) as

f(x; y; z) =
lX

i=1

bixi = bTx;

where

bi =
mX
j=1

nX
k=1

tijkyjzk = yTAiz:

Clearly,

max
jjxjj=jjyjj=jjzjj=1

f(x; y; z) = max
jjxjj=jjyjj=jjzjj=1

bTx

and

max
jjxjj=1

bTx = jjbjj at x =
b

jjbjj
:

Therefore we can solve problem 2 by maximizing jjbjj for jjyjj = jjzjj = 1.

Note that

jjbjj2 = bTb =
lX

i=1

b2i =
lX

i=1

yTAizz
TAT

i y:

Therefore we may write

jjbjj2 = yTBy;

where

B =
lX

i=1

Aizz
TAT

i =
lX

i=1

cic
T
i ; ci = Aiz:
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Finally, viewing matrix multiplication as the process of summing outer products of columns and
rows, we can express B as the product B = CCT , where C = [ c1 � � � cl ]. Now we know that

max
jjyjj=1

jjbjj2 = max
jjyjj=1

yTBy = �1(B) at y = v1(B); B = V �V T :

Therefore we want to maximize �1(B) = �1(B(z)) for jjzjj = 1.
Using the simple obersvation that �1(B) = (�1(C))

2, we see that maximizing �1(B(z)) for
jjzjj = 1 is equivalent to maximizing �1(C(z)), the largest singular value of C, for jjzjj = 1. Note
that C = [ A1z � � � Alz ] and consider Cw for jjwjj = 1. We have

Cw =
lX

i=1

wi(Aiz) =

 
lX

i=1

wiAi

!
z = Dz;

where D is the unit norm linear combination of the matrices

D =
lX

i=1

wiAi:

Summarizing,

max
jjzjj=1

�1(C(z)) = max
jjzjj=1

max
jjwjj=1

jjC(z) wjj = max
jjwjj=1

max
jjzjj=1

jjD(w) zjj = max
jjwjj=1

�1(D(w)):

Here we have written C(z) and D(w) to make the dependence of C and D on z and w explicit. We
can therefore solve problem 2 by �nding a unit norm vector w = w� which makes the maximum
singular value of D(w) = w1A1+ � � �+wnAn as large as possible. This is exactly the maximization
version of problem 1.

Once we have w�, unit norm vectors x�; y�; z� which maximize f(x; y; z) are

z� = v1(D(w�))

y� = v1(B(z�))

x� =
b(y�; z�)

jjb(y�; z�)jj
:

The desired maximum value of f(x; y; z) is

max
jjxjj=jjyjj=jjzjj=1

f(x; y; z) = jjb(y�; z�)jj:

10.2 Simultaneous, Connected Eigenvalue Problems

A bilinear system may be viewed as a linear system with a nonlinear constraint. Let

A =

2
66664
t111 t112 � � � t11n t121 � � � t12n � � � t1m1 � � � t1mn

t211 t212 � � � t21n t221 � � � t22n � � � t2m1 � � � t2mn

...
tl11 tl12 � � � tl1n tl21 � � � tl2n � � � tlm1 � � � tlmn

3
77775
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and

x =

2
66666666666666666666664

y1z1
y1z2
...

y1zn
y2z1
...

y2zn
...

ymz1
...

ymzn

3
77777777777777777777775

: (41)

The ith row of the matrix A is the matrix Ai in row major order, and the vector x collects the mn
unknown products yjzk . The bilinear system (3) may be written as an l �mn linear system

Ax = d: (42)

A solution x to the linear system (42) yields a solution to the bilinear system (3) if x is constrained
as in (41). If the linear system (42) does not have a solution, then the bilinear system (3) does not
have a solution either.

Now consider the homogeneous case d = 0. The linearized version of a homogeneous bilinear
system is

Ax = 0: (43)

If f x1; : : : ; xf g is a basis for null(A), then

x = s1x1 + � � �+ sfxf 2 Rmn

is a solution to (43) 8s = [ s1 � � �sf ]
T , and x = 0 i� s = 0. Switching from mn-dimensional vectors

to m� n matrices (where contiguous vector elements form the rows of the corresponding matrix),

X = s1X1 + � � �+ sfXf 2 R
m�n (44)

and X = 0 i� s = 0. The constraint (41) can be expressed as

X = yzT :

In words, X must be a rank one matrix if it yields a nontrivial solution to the homogeneous bilinear
system (4).

The condition that X is rank one means that column two of X is a multiple of column one,
column three is a mulitple of column two, : : : , column n is a multiple of column n� 1 (and not all
columns are zero). If we collect all jth columns of Xi's into an m � f matrix Wj , then the rank
one condition can be expressed as a set of simultaneous connected eigenvalue problems

Wj+1s = �jWjs for j = 1; : : : ; n� 1:

24



Each vector s 6= 0 which is a generalized eigenvector for the n � 1 pairs of matrices (W2;W1),
(W3;W2), : : : , (Wn;Wn�1) yields a rank one matrix X via (44). If an SVD of X is X = U�V T =
�1u1v

T
1 , then, for example, (y; z) = (�1u1; v1) is a solution to (4).

The general problem can be stated as follows (in more familiar notation).

Problem 3 Given l � 2 matrices A1; : : : ; Al 2 Rm�n, compute

S =
l�1\
i=1

f x 6= 0 : 9� 2 R such that Ai+1x = �Aix g :

Note that an eigenvector x 2 S may correspond to di�erent eigenvalues for di�erent pairs of
matrices:

S = f x 6= 0 : 9�1; : : :�l�1 2 R such that Ai+1x = �iAix g :

When l = 2, problem 3 reduces to the generalized eigenvalue problem discussed in section 8.

11 Conclusion

This report introduced the problem of solving a system of bilinear equations yTAiz = di, for
i = 1; : : : ; l. If y 2 Rm and z 2 Rn, then there are m + n unknowns. We showed that a non-
homogeneous bilinear system is no more di�cult to solve (in theory) than a homogeneous bilinear
system (di = 0 8i).

Solving a bilinear system in which one of the unknown vectors is a scalar (i.e. m = 1 or n = 1)
reduces to solving a linear system. The case of a homogeneous system with m = 2 or n = 2 reduces
to a generalized eigenvalue problem for two l�n or l�mmatrices, respectively. The cases n;m � 3
remain unsolved, and such homogeneous systems can be viewed as generalized eigenvalue problems
for three or more matrices. When there are fewer equations than unknowns in one of y or z, there
may well be a theory of multivariable polynomial solutions which is analogous to the one presented
in section 8.3. In practice, however, the system is likely to be overdetermined and inconsistent.
The best that we could o�er in the case of a general bilinear system is a heuristic for �nding one
non-trivial solution to a homogeneous bilinear system. We also derived the normal equations for
a least squares solution to an inconsistent system. However, solving the normal equations appears
more di�cult than solving a bilinear system.

The solutions to a bilinear system are the common zeros of a collection of multivariable poly-
nomials (i.e. the solution set is an a�ne variety), namely the second total-degree polynomials
pi(y1; : : : ; ym; z1; : : : ; zn) = yTAiz � di. The problem of solving bilinear systems, however, is not
as hard as solving a general polynomial system because the pi have a very special structure | all
nonconstant terms have the form yjzk. The key to understanding bilinear systems as well as we
understand linear systems is to exploit this structure.
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A Tensor Matlab Code

This section lists a few simple Matlab functions for manipulating tensors of order 3 (that is, three-
dimensional). This includes the functions tmincol and tzerocol that implement the procedure
described in section 6.2 that attempts to zero the �rst column of a tensor by Householder re
ections.
The code below is not fully-general tensor manipulation code, but just the bare minimum to
implement the ideas discussed in these notes for people more familiar with matrix notation than
with tensor algebra. Please look at

http : ==robotics:stanford:edu=groups=vision=bilinear=tensor

for an online version of this code.

A.1 Creation and Access Routines for Tensors

******** tzeros.m ********

% make an l x m x n tensor of zeros

function t = tzeros(l,m,n)

if nargin == 1,
if length(l) == 1,
m = l;
n = l;

elseif length(l) == 3,
m = l(2);
n = l(3);
l = l(1);

else
error('input must have either one or three entries')

end
elseif nargin == 2 | nargin > 3,
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error('either one or three arguments required')
end

if l*m*n == 0,
t = [];

else
cols = m*n+1;
t = zeros(l,cols);
t(1,cols) = m;

end

******** trand.m ********

% make a random l x m x n tensor

function t=trand(l,m,n)

if nargin == 1,
t = tzeros(l);

elseif nargin == 3,
t = tzeros(l,m,n);

else
error('either one or three arguments required')

end

cols = size(t,2)-1;
t(:,1:cols) = rand(l(1),cols);

******** tstorage.m ********

% return the submatrix indices corresponding to the subtensor of t
% specified by the index range arguments; a range argument can be ':'
% (alas, with the quotes) to specify the whole range; also returns
% the dimensions d of the subtensor

function [rows,cols,d] = tstorage(t,ir,jr,kr)

tcols = size(t,2)-1;
tdim = tdimensions(t);
l = tdim(1);
m = tdim(2);
n = tdim(3);

if ir == ':',
ir = 1:l;

end
if jr == ':',
jr = 1:m;

end
if kr == ':',
kr = 1:n;

end

if any(ir < 1) | any(ir > l) | ...
any(jr < 1) | any(jr > m) | ...
any(kr < 1) | any(kr > n),
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error('subscript out of range')
end

rows = ir;
kcols = m*(kr-1);
cols = (jr(:)*ones(1,length(kcols))) + (ones(length(jr),1)*kcols(:)');
cols = cols(:);

d = [length(ir) length(jr) length(kr)];

******** tgetsubtensor.m ********

% returns the subtensor of t specified by the given index ranges;
% a range argument can be ':' (alas, with quotes) to denote the whole
% range; warning: matrix outputs are still represented as tensors;
% use tgetmatrix to get a regular matrix

function ts = tgetsubtensor(t,ir,jr,kr)

[r,c,dim] = tstorage(t,ir,jr,kr);
ts = tzeros(dim);
ts(:,1:(size(ts,2)-1)) = t(r,c);

******** tputsubtensor.m ********

% puts the given tensor ts into the subtensor of t specified by the
% given index ranges; a range argument can be ':' (alas, with quotes)
% to denote the whole range; warning: matrix outputs are still
% represented as tensors; use tgetmatrix to get a regular matrix

function t = tputsubtensor(ts,t,ir,jr,kr)

[r,c] = tstorage(t,ir,jr,kr);
t(r,c) = ts(:,1:(size(ts,2)-1));

******** tgetmatrix.m ********

% returns slice s orthogonal to dimension d from tensor t;
% the result is a matrix

function a = tgetmatrix(t,s,d)

if (d < 1 | d > 3),
error('d must be between 1 and 3')

end

tdim = tdimensions(t);
tdim(d) = s;
from = ones(3,1);
to = tdim;
from(d) = s;
to(d) = s;

a = tten2mat(tgetsubtensor(t,from(1):to(1),from(2):to(2),from(3):to(3)));
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******** tputmatrix.m ********

% returns the tensor obtained by inserting the given matrix m
% into slice s orthogonal to dimension d in tensor t

function t = tputmatrix(t,s,d,a)

if (d < 1 | d > 3),
error('d must be between 1 and 3')

end

[ta to] = tmat2ten(a,d);
from = ones(3,1);
from(d) = s;
to(d) = s;
t = tputsubtensor(ta,t,from(1):to(1),from(2):to(2),from(3):to(3));

******** tdimensions.m ********

% dimensions of a tensor (returns either a row vector or three scalars)

function [d,m,n] = tdimensions(t)

if size(t) == [0 0],
d = [0 0 0];

else
d = zeros(1,3);
d(1) = size(t,1);
cols = size(t,2);
d(2) = t(1,cols);
d(3) = (cols-1)/d(2);

end

if nargout == 3,
m = d(2);
n = d(3);
d = d(1);

elseif nargout ~= 0 & nargout ~= 1,
error('either zero, one or three output variables are required')

end

******** tsvd.m ********

% computes the singluar values of all the matrices in tensor t

function [Si,Sj,Sk] = tsvalues(t)

[l m n] = tdimensions(t);

Si = zeros(l,min(m,n));
Sj = zeros(m,min(l,n));
Sk = zeros(n,min(l,m));

for i=1:l, Si(i,:) = svd(tgetmatrix(t,i,1))'; end
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for j=1:m, Sj(j,:) = svd(tgetmatrix(t,j,2))'; end
for k=1:n, Sk(k,:) = svd(tgetmatrix(t,k,3))'; end

A.2 Tensor-Matrix Type Transformations

******** tten2mat.m ********

% transforms a tensor with at least one single-plane dimension into a
% matrix

function a = tten2mat(t)

if isempty(t),
a = [];

else
% find the single-plane dimension
tdim = tdimensions(t);
[m,d] = min(tdim);
if m ~= 1,
error('the order of t is 3: cannot convert to a matrix')

end

% remove the tensor information
a = t(:,(1:size(t,2)-1));

% 'i' matrices are stored as row vectors
if d == 1,
a = reshape(a,tdim(2),tdim(3));

end
end

******** tmat2ten.m ********

% transforms a matrix into a tensor with the specified single-plane dimension;
% also returns the dimensions of the new tensor

function [t,tdim] = tmat2ten(a,d)

if isempty(a),
t = [];

else
if d == 1,
tdim = [1 size(a)];
% 'i' matrices are stored as row vectors
a = a(:)';

elseif d == 2,
tdim = [size(a,1) 1 size(a,2)];

elseif d == 3,
tdim = [size(a) 1];

else
error('d must be between 1 and 3')

end

t = tzeros(tdim);
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t(:,1:(size(t,2)-1)) = a;
end

A.3 Tensor Multiplication by Scalar, Vector, Matrix

******** tscale.m ********

% multiply a tensor by a scalar

function t = tscale(t,s)

cols = size(t,2)-1;
t(:,1:cols) = t(:,1:cols)*s;

******** tcontract.m ********

% contract the d-th dimension of tensor t with the vector v to produce
% a matrix

function a = tcontract(t,v,d)

tdim = tdimensions(t);

adim = [];
for p=1:3,
if p ~= d,
adim = [adim tdim(p)];

end
end

a = zeros(adim);

for s=1:tdim(d),
a = a + v(s)*tgetmatrix(t,s,d);

end

******** tleftmult.m ********

% multiply a tensor t by a matrix m from the left along the slices
% orthogonal to dimension d

function tnew = tleftmult(a,t,d)

olddim = tdimensions(t);
newdim = olddim;
if d == 1,
cdim = 2;

else
cdim = 1;

end
newdim(cdim) = size(a,1);

tnew = tzeros(newdim);
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for s=1:olddim(d),
tnew = tputmatrix(tnew,s,d,a*tgetmatrix(t,s,d));

end

******** trightmult.m ********

% multiply a tensor t by a matrix m from the right along the slices
% orthogonal to dimension d

function tnew = trightmult(t,a,d)

olddim = tdimensions(t);
newdim = olddim;
if d == 3,
cdim = 2;

else
cdim = 3;

end
newdim(cdim) = size(a,2);

tnew = tzeros(newdim);

for s=1:olddim(d),
tnew = tputmatrix(tnew,s,d,tgetmatrix(t,s,d)*a);

end

A.4 Householder Transformations for Matrices and Tensors

******** house.m ********

% given an n-vector x, this function computes an n-vector v with v(1)
% = 1 such that (I - 2*v*v'/(v'*v))*x is zero in all but the first
% component (from Golub and Van Loan, page 196)

function v = house(x)

n = length(x);
mu = norm(x);
v = x;
if mu ~= 0,
beta = x(1) + sign(x(1))*mu;
v(2:n) = v(2:n)/beta;

end
v(1) = 1;

******** lefthouse.m ********

% given an m-by-n matrix A and a nonzero m-vector v with v(1) = 1, the
% following algorithm returns PA where P = I - 2*v*v'/(v'*v)
% (this is row.house(A,v) in Golub and Van Loan, page 197)

function A = lefthouse(v,A)

beta = -2/(v'*v);

32



w = beta*A'*v;
A = A + v*w';

******** righthouse.m ********

% given an m-by-n matrix A and a nonzero n-vector v with v(1) = 1, the
% following algorithm returns AP where P = I - 2*v*v'/(v'*v)
% (this col.house(A,v) in Golub and Van Loan, page 197)

function A = righthouse(A,v)

beta = -2/(v'*v);
w = beta*A*v;
A = A + w*v';

******** tlefthouse.m ********

% Householder-rotate a tensor t from the left along the slices
% orthogonal to dimension d, using Householder vector h

function t = tlefthouse(h,t,d)

dim = tdimensions(t);
for s =1:dim(d),
t = tputmatrix(t,s,d,lefthouse(h,tgetmatrix(t,s,d)));

end

******** trighthouse.m ********

% Householder-rotate a tensor t from the right along the slices
% orthogonal to dimension d, using Householder vector h

function t = trighthouse(t,d,h)

dim = tdimensions(t);
for s =1:dim(d),
t = tputmatrix(t,s,d,righthouse(tgetmatrix(t,s,d),h));

end

A.5 Application Routines

******** example.m ********

% create a random tensor system for testing

% tensor dimensions
l=40;
m=10;
n=2;

% elements of the right-hand side
t = trand(l,m,n);
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y=rand(m,1);
z=rand(n,1);
z=z/norm(z);

% right-hand side
b = tcontract(t,y,2)*z;

% Householder-rotate the system so that b becomes (b1, 0, ..., 0)'
h = house(b);
t = tlefthouse(h,t,3); % could also do this along the j dimension
b = lefthouse(h,b);

% reduced homogeneous system
tr = tgetsubtensor(t,2:l,':',':');

******** tmincol.m ********

% makes the first column of a slice in dimension d of tensor t as small
% as possible by a right Householder rotation of t; also returns the
% Householder vector h, the norm nmin of the first column, and the slice
% number smin

function [t,h,nmin,smin] = tmincol(t,d)

dim = tdimensions(t);

nmin=Inf;
for s=1:dim(d),
a = tgetmatrix(t,s,d);
[u sigma v] = svd(a,0);
c = size(a,2);
n = sigma(c,c);
if n < nmin,
nmin = n;
smin = s;
vmin = v(:,c);

end
end

h = -house(vmin);
t = trighthouse(t,d,h);

******** tzerocol.m ********

% attempts to zero the first column of tensor t by Householder rotations

function [t,nmin] = tzerocol(t)

threshold = eps;

d = 3;
[t,h,n,s] = tmincol(t,d);
nmin = n;
nold = n+threshold+1;
clc;home;disp(0);disp(nmin)
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iter = 1;
while nold-nmin > threshold,
d = 5-d;
[t,h,n,s] = tmincol(t,d);
if n >= nmin, break, end
nold = nmin;
nmin = n;
home;disp(iter);disp(nmin)
iter = iter+1;

end

B Cspsolve Matlab Code

This section lists Matlab routines which implement the algorithm described in section 8.3 to
compute a polynomial basis of solutions x1(�); : : : ; xp(�) for the eigenvalue problem (A��B)x = 0
when �(A;B) = C (i.e. when A� �B is a column singular pencil). Please look at

http : ==robotics:stanford:edu=groups=vision=bilinear=cspsolve

for an online version of this code.

B.1 Basis Computation

******** cspsolve.m ********

% Given a matrix pencil (A - lambda B) with lambda(A,B) = C (i.e.
% (A - lambda B) is a column singular pencil), cspsolve(A,B)computes
% a basis of polynomial solutions x_1(lambda), ... , x_p(lambda)
% for the eigenproblem (A - lambda B) x = 0. It uses the helper
% function computeHi.

% Output description:
%
% X is an (epsilon(p)+1) by p matrix, the jth column of which represents
% the jth polynomial solution x_j(lambda) in R^n[lambda]. All entries
% in column j after the first (epsilon(j)+1)n rows are zero. If the
% possibly nonzero rows of column j are partitioned into epsilon(j)+1
% column vectors x_0,j (row 1 to n), x_1,j (row n+1 to 2n), ... ,
% x_epsilon(j),j (row epsilon(j)n+1 to (epsilon(j)+1)n of length n,
% then the jth basis solution is
%
% epsilon(j)
% x_j(lambda) = sum x_k,j lambda^k.
% k=0
%
% epsilon(j), j=1..p, is the degree of the jth basis solution. Here
% epsilon(1) <= epsilon(2) <= ... <= epsilon(p).
%
% p is the number of basis solutions.
%
% epsilonhat is a vector of the u unique degrees in epsilon. Here
% epsilonhat(1) < epsilonhat(2) < ... < epsilonhat(u).
%
% rho(i), i=1..u, is the multiplicity of the degree in epsilonhat(i).
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% Note that p is the sum of the rho(i)'s.
%
% u is the number of unique degrees in epsilon.

function [X, epsilon, p, epsilonhat, rho, u] = cspsolve(A,B)

[m,n] = size(A);
minmn = min(m,n);
epsilon = zeros(1,minmn);
epsilonhat = zeros(1,minmn); rho = zeros(1,minmn);
Tk = []; X = [];

i = 1; k = -1; rk = -1; p = 0; q = 0;
while (1)
while ((rk <= (k+1)*p-q) & (k <= min(m,n)))
Tk = [Tk zeros((k+2)*m,n); zeros(m,(k+2)*n)];
Tk((k+1)*m+1:(k+2)*m,(k+1)*n+1:(k+2)*n) = A;
Tk((k+2)*m+1:(k+3)*m,(k+1)*n+1:(k+2)*n) = -B;
k = k+1;
rk = (k+1)*n-rank(Tk);

end
if (k > min(m,n)) break; end;
epsilonhat(i) = k;
rho(i) = rk-((k+1)*p-q);
M = computeHi(i,n,p,q,X,rho,epsilonhat);
[U,S,V] = svd(M);
if (M ~= []) sigma1 = S(1,1); else sigma1 = 0; end
rankM = sum(diag(S) > max(size(M))*sigma1*eps);
N = null(Tk);
N1 = U(:,1:rankM);
if (N1 ~= []) P = N-N1*N1'*N; else P = N; end
[U,S,V] = svd(P);
if (P ~= []) sigma1 = S(1,1); else sigma1 = 0; end
rankP = sum(diag(S) > max(size(P))*sigma1*eps);
N2 = U(:,1:rankP);
if (i > 1)
X = [X; zeros((epsilonhat(i)-epsilonhat(i-1))*n,p)];

end
X = [X N2];
epsilon(p+1:p+rho(i)) = k*ones(1,rho(i));
p = p+rho(i);
q = q+rho(i)*epsilonhat(i);
i = i+1;

end

u = i-1;
epsilon = epsilon(1:p);
epsilonhat = epsilonhat(1:u); rho = rho(1:u);

******** computeHi.m ********

% computeHi constructs the matrix
%
% Hi = [T_(epsilonhat(1))^(epsilonhat(i))(N_1) ...
% T_(epsilonhat(i-1))^(epsilonhat(i))(N_(i-1))]
%
% for the cspsolve routine. The individual component matrices
% are created via calls to the helper function computeTdk.
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function Hi = computeHi(i,n,p,q,X,rho,epsilonh)

k = epsilonh(i);
Hi = zeros((k+1)*n,(k+1)*p-q);

lastcolX = 0;
lastcolHi = 0;
for l=1:i-1
d = epsilonh(l);
Nl = X(1:(d+1)*n,lastcolX+1:lastcolX+rho(l));
Hi(:,lastcolHi+1:lastcolHi+(k-d+1)*rho(l)) = computeTdk(d,k,Nl);
lastcolX = lastcolX+rho(l);
lastcolHi = lastcolHi+(k-d+1)*rho(l);

end

******** computeTdk.m ********

% computeTdk(d,k,M) computes the matrix T_d^k(M). See the
% text of the paper for the definition of T_d^k(M).

function Tdk = computeTdk(d,k,M)

if (k < d) error('must have k >= d'); end

[rowsizeM,colsizeM] = size(M);
if (rem(rowsizeM,d+1) ~= 0)
error('rowsize of M must be divisible by d+1');

end
n = rowsizeM/(d+1);
r = colsizeM;
Tdk = zeros((k+1)*n,(k-d+1)*r);

for j=1:k-d+1
Tdk((j-1)*n+1:(j-1)*n+rowsizeM,(j-1)*r+1:j*r) = M;

end

B.2 Basis Veri�cation

******** checkcspsolve.m ********

% checkcspsolve checks the solution returned by cspsolve for
% the eigenvalues specified in the vector lambda. Each solution
% function is checked at all values in lambda with a call to the
% helper function checkcspsoln. The output maxres is the largest
% value of ||(A - l B) x(l)||_2 over all l in lambda and x(l)
% in X. The output matrix res is defined by
% res(i,j) = ||(A - lambda(i) B) x_j(lambda(i))||_2.

function [maxres,res] = checkcspsolve(A,B,lambda,X,epsilon)

[m,n] = size(A);
p = size(X,2);
nlambda = length(lambda);
res = zeros(nlambda,p);
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maxres = -inf;
for j=1:p
x = X(1:(epsilon(j)+1)*n,j);
[maxresj, res(:,j)] = checkcspsoln(A,B,lambda,x,epsilon(j));
if (maxresj > maxres) maxres = maxresj; end

end

******** checkcspsoln.m ********

% checkcspsoln(A,B,lambda,x,d) checks the degree d solution
% x(l) for each value l in lambda. The output maxres is the
% largest value of ||(A - l B) x(l)||_2 over all l in lambda.
% The output column vector res is defined by
% res(i) = ||(A - lambda(i) B) x(lambda(i))||_2. Evaluating
% the vector polynomial x at l is done via a call to the
% helper function evalvecpoly.

function [maxres,res] = checkcspsoln(A,B,lambda,x,d)

nlambda = length(lambda);
res = zeros(nlambda,1);

maxres = -inf;
for i=1:nlambda
res(i) = norm((A-lambda(i)*B)*evalvecpoly(x,d,lambda(i)));
if (res(i) > maxres) maxres = res(i); end

end

******** evalvecpoly.m ********

% evalvecpoly(x,d,lambda) returns the vector p obtained by
% evaluating the vector polynomial x of degree d at the
% value lambda.

function p = evalvecpoly(x,d,lambda)

nx = length(x);
if (rem(nx,d+1) ~= 0)
error('length of x must be divisible by d+1');

end
n = nx/(d+1);
p = zeros(n,1);

lambda_raisedto_j = 1;
for j=0:d
p = p+lambda_raisedto_j*x(j*n+1:(j+1)*n);
lambda_raisedto_j = lambda_raisedto_j*lambda;

end

B.3 Basis Display

******** showcspsolns.m ********

% showcspsolns(X,epsilon,lambda) makes a simultaneous plot of
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% all the solutions functions specified in X. Here epsilon is
% the vector of solution degrees, and lambda is a vector of
% eigenvalues to use in the plot. The showlambda argument is
% optional and indicates whether or not to show the eigenvalues
% in the plot (default is NOT to show the eigenvalues). The real
% work is done in showcspsoln, which makes the plot for one
% solution. See the showcspsoln documentation for more plot
% details. Note that this routine first clears the current figure.

function showcspsolns(X,epsilon,lambda,showlambda)

[m,p] = size(X);
if (rem(m,epsilon(p)+1) ~= 0)
error('number of rows in X must be divisible by epsilon(p)+1');

end
n = m/(epsilon(p)+1);
if (nargin < 4) showlambda = 0; end

clf;
for j=1:p
showcspsoln(X(1:(epsilon(j)+1)*n,j),epsilon(j),lambda,showlambda);
hold on;

end

******** showcspsoln.m ********

% showcspsoln(x,d,lambda) plots the degree d polynomial solution
% function x(l) = (x1(l),x2(l),...,xn(l)) forall l in lambda. This
% function requires n >= 2 and plots as many of the xi(lambda) as
% possible. The showlambda input argument is optional and defaults
% to 0 (false). If showlambda is true (i.e. any value other than 0),
% then a 3d plot of lambda vs. x1(lambda) vs. x2(lambda) is made. If
% showlambda is false, then a 2d plot x1 vs. x2 is made for n=2 and
% a 3d plot x1 vs. x2 vs. x3 is made for n >= 3.

function showcspsoln(x,d,lambda,showlambda)

nx = length(x);
if (rem(nx,d+1) ~= 0)
error('length of x must be divisible by d+1');

end
n = nx/(d+1);
if (n < 2) error('n must be at least 2'); end
if (nargin < 4) showlambda = 0; end

nlambda = length(lambda);
V = zeros(n,nlambda);

for j=1:nlambda
V(:,j) = evalvecpoly(x,d,lambda(j));

end

zlabelstr = '';
if (showlambda)
graphtitle = 'lambda vs. x(lambda) = (x1(lambda),x2(lambda))';
xlabelstr = 'lambda';
ylabelstr = 'x1(lambda)';
zlabelstr = 'x2(lambda)';
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plot3(lambda,V(1,:),V(2,:));
elseif (n == 2)
graphtitle = 'eigenvectors x = (x1 x2)';
xlabelstr = 'x1';
ylabelstr = 'x2';
plot(V(1,:),V(2,:));

else
graphtitle = 'eigenvectors x = (x1 x2 x3)';
xlabelstr = 'x1';
ylabelstr = 'x2';
zlabelstr = 'x3';
plot3(V(1,:),V(2,:),V(3,:));

end

title(graphtitle);
xlabel(xlabelstr);
ylabel(ylabelstr);
zlabel(zlabelstr);
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