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Abstract: ~ We present a methodology for extracting the vascular net-
work in the human retina using Dijkstra’s shortest-path algorithm. Our
method preserves vessel thickness, requires no manual intervention, and
follows vessel branching naturally and efficiently. To test our method, we
constructed a retinal video indirect ophthalmoscopy (V10) image database
from pediatric patients and compared the segmentations achieved by our
method and state-of-the-art approaches to a human-drawn gold standard.
Our experimental results show that our algorithm outperforms prior state-
of-the-art methods, for both single VIO frames and automatically generated,
large field-of-view enhanced mosaics. We have made the corresponding
dataset and source code freely available online.
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1.

Introduction

Accurate segmentation and evaluation of the anatomical and pathological features of retinal
vessels are critical for the diagnosis and study of many ocular diseases. These include retinopa-
thy of prematurity (ROP). ROP is a disorder of the retinal blood vessels that is a major cause
of vision loss in premature neonates [1]. Important features of the disease include increased
diameter (dilation) as well as increased tortuosity (wiggliness) of the retinal blood vessels in
the portion of the retina centered on the optic nerve (the posterior pole). Increased dilation and
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Fig. 1. Proposed V10O vessel segmentation: In the first stage, V10 images are pre-processed with
directional local-contrast filters (DLCF) and LoG-Gabor filters to eliminate artifacts and increase
contrast. In the second stage, the best, unvisited vessel pixel in the image is repeatedly chosen as
a starting point for a dynamic-programming exploration of the unvisited part of the image. The
result of each exploration yields a new tree in the growing forest of vessels. Forest growth stops
when the best, unvisited vessel pixel is worse than a predefined threshold.

tortuosity of the blood vessels in the posterior pole (called pre-plus in intermediate, and plus in
severe circumstances) is an important indicator of ROP severity. [2]. Subjective assessment of
plus and pre-plus disease leads to poor agreement between examiners [3]. Manual segmentation
of retinal images is not only demanding for experts and excessively time-consuming for clinical
use, but is also inherently subjective, and different annotators often yield different results [4].
To address these difficulties, different approaches for automated segmentation of retinal vessels
have been tried, with varying levels of success.

Prior methods can be roughly classified into region- and path-based methods. Region-based
methods [5-13] classify image pixels directly into vessel and non-vessel pixels. Classification
relies on local appearance, as measured by the responses of suitable filter banks at various scales
and orientations. In unsupervised region-based approaches, these filter responses are combined
into a new image, which is then appropriately thresholded to yield the final classification. Meth-
ods in this category employ matched filters [5], piecewise thresholding [14], local entropy [15],
and quadrature filters [12]. Supervised region-based methods, on the other hand, assemble the
filter responses into feature vectors that are fed to a classifier, which is trained on hand-labeled
data. Techniques used within this framework include ridge detection [10], Gabor wavelet fil-
tering [9], line operators [8], and moment invariants [13]. Other region-based approaches have
used region growing [16], mathematical morphology [17], and multiconcavity modeling [11].

The goal of path-based methods [18-25], on the other hand, is primarily to trace the cen-
terline of individual vessels, rather than classifying every pixel in the image. Many path-based
approaches also estimate vessel thickness as they track each branch, generally by determining
the width of the cross-section perpendicular to the current path. Prior work on two-dimensional
branch extraction has addressed this topological ambiguity semi-automatically by relying on
user-supplied points, requiring either a single seed point [24] or a pair of start- and end-
points [22]. User-supplied one-point methods generally employ ridge detection based on dif-
ferential geometry [26], while two-point methods find a path between the points that minimizes
a cost measure designed to penalize paths that stray from the middle of a vessel. Several of
these methods rely on front propagation algorithms, such as the fast marching method [27]. In
contrast, as described in Section 2, our tracking methodology forgoes the need for external seed
points by being robust to a particular tracker’s initial position.

Existing methods in both categories have been developed primarily for use on high qual-
ity retinal fundus images, such as those obtained with the RetCam imaging system (Clarity
Medical Systems, Inc., Pleasanton, CA). However, the usual method for diagnosing ROP is the
indirect ophthalmoscope (10). More recently, Video Indirect Ophthalmoscopy (V10), in which
the physician wears a head-mounted video camera during 10 evaluations, has emerged as an
economical and convenient method for capturing digital retinal images during ROP examina-
tions. In contrast to RetCam, however, VIO data is often of low quality, fraught with reflections
from the 10 lens, motion blur, low resolution, and sensor noise. A previous study reported that
only 24% of randomly selected video sequences can be utilized for semi-automated evaluation
of retinal vessel morphology in ROP [24].



Fig. 2. DLCF exudate removal: (a) An image from the STARE dataset [14]. (b) The image after
DLCF. (c) Matched filtering [5] applied to (a). (d) Matched filtering applied to (b). The non-
vascular filter responses around the exudates have been eliminated in (d) without affecting the
true vessel responses.

In this paper, we propose a hybrid method that extends the path-based methodology into a
region-based segmentation scheme for detecting retinal vessels. Our complete approach works
in two stages, as illustrated in Fig. 1. The first stage pre-processes the input image to remove
both lens and motion artifacts, and to construct a high-contrast vessel map. The second stage
builds a forest of tree-like vessel regions through a sequence of exploration waves on the vessel
map: the most vessel-like pixel sq in the image is used as the starting point for an exploration
wave that searches for the best tree-like vessel region in the image around s by means of the
single-source, multi-destination version of Dijkstra’s shortest path algorithm [28]. This explo-
ration returns an entire tree region for part of the vessel system, that is, it handles branching
naturally and efficiently, and preserves vessel thickness. When this exploration ends, a new
exploration begins at the best remaining starting point s; in the unexplored part of the image,
which yields a new vessel tree region. Our method stops constructing new regions when the
best unexplored starting point is no longer likely to be part of the vessel system. Unlike existing
single-source, single-destination vessel analysis methods [20-23], our single-source, multiple-
destinations approach automatically explores the complete vasculature in a retinal image, and
requires no user intervention whatsoever.

Furthermore, the initial single-frame image enhancement step can be optionally replaced by
a multi-frame image mosaicing technique. We have recently developed such a technique to
combine several low-quality VIO frames into a high-quality, large field-of-view (FOV) com-
posite [29]. As our results in Section 3 show, our approach obtains superior segmentation re-
sults on both types of —raw and composite— VIO images compared to current state-of-the-art
segmentation methods.

The rest of this paper is organized as follows: we first detail our automated dynamic-
programming segmentation method in Section 2 and then describe our experiments in Section 3.
We present the experimental results in Section 4 and discuss their significance and explore fu-
ture directions in Section 5.

2. Exploratory Dijkstraforest based vessel segmentation method

We represent each VIO image (or composite) as a graph of nodes, G = (V, E), where each node
corresponds to a pixel and the links connecting the nodes are called arcs. In this formulation, the
ordered pair of node and arc sets are represented by V and E, respectively. Path-based methods
for vessel extraction define the cost of traversing the arc that connects any two neighboring pix-
els in the image in such a way that arcs between vessel pixels are more likely to have lower cost.
Vessel extraction then looks for paths that traverse the image from neighbor to neighbor and
have minimum aggregate cost, and are thereby likely to follow vessels. If the cost aggregation
rule is associative, minimum-cost paths can be found efficiently [30].

We depart from previous work within this framework in two major ways. First, we find vessel
regions, rather than simply vessel paths. In other words, we preserve vessel thickness, rather
than merely finding the skeleton, or centerline, of each vessel. This is important, because eye
disease diagnosis often requires consideration of vessel thickness. Second, we employ a se-
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Fig 3. LoG-Gabor filtering: (a) A sample VIO frame. (b) Frame after LoG-Gabor filtering. (c)
A sample mosaic. (d) Mosaic after LoG-Gabor filtering. The isotropic LoG filtering enhances
vessel contrast, while the anisotropic Gabor wavelets selectively enhance elongated structures.

quence of searches for vessel regions that start at source pointssg, S, . . . automatically selected
in decreasing order of their likelihood to be part of a vessel, as detailed in Subsection 2.4. This
novelty eliminates the need for a user to select vessel starting points by hand.

Thus, we use the single-source, multiple-destination version of Dijkstra’s shortest path algo-
rithm [28], rather than the single-source, single-destination version used in prior work. In other
words, rather than connecting a start point with a destination point, our method exploresthe im-
age outward from an (automatically selected) source point. This exploratory strategy has two
advantages: it eliminates the need for selecting a destination point manually, and it finds vessels
as tree-like image regions, thereby accounting for vessel branching naturally and efficiently.

The computational cost of this important change of perspective is trivial, as the only dif-
ference between the single-destination and multi-destination algorithms is when they stop:
the single-destination algorithm stops when it reaches the designated vertex, while the multi-
destination algorithm stops when a target threshold on the path cost has been reached. Both ver-
sions of Dijkstra’s algorithm have the same computational complexity of O(|E|+ [V|log|V|),
where |- | indicates the cardinality or size of a set. This complexity is achievable with a heap-
based priority queue implementation [31].

2.1. Arcsand Arc Costs

We view each VIO color image as an X x Y x 3 matrix |. Prior to processing, we first remove
the image’s artifacts by using directional local contrast filtering (DLCF) as defined in [29].
Figure 2 illustrates the effect of this image enhancement step. A pixel position in | is given by
a two-dimensional vector of integers, p = [x,y] T. The value at each pixel position is given by a
three-dimensional vector | (p) of red, green, blue values normalized between 0 and 1.

We define two features that determine the arc costs at each pixel p: the green channel intensity
lg(p) and the inverted response F(p) to a Laplacian-of-Gaussian filter followed by a Gabor
filter bank, or Laplace-Gabor filtering, as detailed in [29]. The vessel map F maximizes the
discriminability of vessels, as illustrated in Fig. 3.

To apply Dijkstra’s algorithm to I, we define a weighted lattice graph on the setV = {p} of
all pixel locations in the image. There is an arc e= (v,v’) in the arc set E for this directed graph
G = (V,E) for any ordered pair of 8-neighbors, that is, whenever

max(|x— x|, ly—y|) =1. @
A non-negative cost is defined on each arc, with the intent that arcs inside and along vessels

cost less than arcs that have one or both endpoints outside any vessel. Specifically, we define
the cost of arc e as the following convex linear combination:

4 4
ce) =Y wme®™®  where S Wi =1 2)
m=1 m=1

and zn(e) indicates the m-th element in the following four-dimensional feature vector:



2(6) = 2(v,v') = [1g(v'), lg(v) = 1g(V)|, F(V),[F(v) = F(v)) ] - ®)

Therefore, a low-cost arc is an arc whose destination point v” is dark (I4(v') << 1) and has a
low inverted Laplace-Gabor response (F(v’) << 1), and such that the two arc endpoints are
similar in both brightness (|14(v) — 1g(V")| << 1) and Laplace-Gabor response (|F (v) — F(v’)]).
The exponential in Eq. 2 provides a non-linear scaling of the arc’s features that emphasizes
the divide between vascular and non-vascular feature values, and the scalar o controls the
growth rate of the exponential term. In our experiments, we set the values of both o and the
coefficients wy, based on training images from our dataset, as explained in Section 3.

Input: Graph G, source vertex s, threshold .
Output: Dijkstra region R.
Q=initializepriority_queue();
push(Q,s,0);
whilenot_empty (Q) do
Ve, o.c] = pop (Q) ;
if not_visited (v¢) then
set_visited (G, V¢);
V¢ =neighbors (G, V¢);
foreach v € V¢ do

h=c(¥(s,vc)) +¢c(ve, V);

if h< tthen

| push(Q, v, h);

end

end

end

end

R=visited (G);
Algorithm 1. Exploratory Dijkstra vessel segmentation: starting from a single pixel, the algorithm progressively
explores the rest of the image such that every unvisited pixel has a higher minimum path cost than every visited pixel.
The algorithm keeps adding pixels until a cost boundary is reached.

2.2. Path Costs

A path y between any two nodes v, v’ in V is composed of a sequence of neighboring lattice
locations:

')/(V,VI):(V:V17V2,...,Vk:VI), (4)

subject to the constraint that (vi,vit1) € E, fori € [1,k—1]. In short, y is a curve discretized as
a sequence of neighboring pixels. The cost of y is defined as the sum of the costs of its arcs:

k—1
c(y) = Y, Vi, Vis1) - (5)
i=1

The associative nature of this definition allows splitting a path’s total cost into disjoint sub-path
costs at any point along v:

c(y(v,V)) =c(y(v,vi)) +c(y(vi,v'))  forany i€ (2,k-1], (6)
with which we can efficiently determine the minimum cost path between any two nodes v and
V'. That is, we use Dijkstra’s algorithm to compute:

¥(v.V') = argmin c(y), @)
yel(v,v)

where T'(v,V’) is the set of all possible paths between the two nodes.



Fig. 4. VEVIO images: Two pairs of manually selected frames (a), (c) and two automatically
generated mosaics (b), (d). Although each pair was obtained from the same video, the manual
frames were not used to generate the mosaics. The mosaics were constructed using selected
source frames as described in [29].

2.3. Exploratory Dijkstra Segmentation

Dijkstra” minimum cost algorithm solves Eq. 7 for any graph with non-negative arc costs [28].
More generally, it finds a minimum cost path ¥(s,v) between a single source vertex s and
(potentially) every other vertex v in the graph.

As discussed earlier, instead of simply connecting user-defined points, we employ an ex-
ploratory strategy by using the single-source, many-destinations version of Dijkstra’s method.
Starting from a single position s on a major vessel, this strategy enables us to segment this ma-
jor vessel and all the less prominent vessels that branch out of it, without any need for setting
any destination point. Instead, we set an exploration threshold 7 on the cost of any path, and
find all the minimum-cost paths ¥ from sin G such that c(¥) < 7. Algorithm 1 outlines our
exploratory Dijkstra vessel segmentation method.

With the lattice arc costs defined in Eq. 2, the exploratory Dijkstra algorithm will preferen-
tially visit vascular pixels before exploring non-vascular ones, since the cost to reach the latter
is generally much higher. When it stops, it will have visited the Dijkstra region:

Re(s) ={v[¥(sv) <7}. ®)
The segmentation’s accuracy is thus dependent on the value of 7. However, our choice of ©
is made less sensitive by the exponential in Eq. 2, which increases the separation between
the vascular and non-vascular pixel classes. This lower sensitivity reduces both the problem of
“leakage”, in which a segmentation goes beyond the correct vessel boundary and the problem of
stopping too soon. For our experiments, we set T based on the training set images, as explained
in Section 3.

Input: Graph G over image domain V, inverted Laplace-Gabor responses F, exploratory threshold t,
filtering threshold .
Output: Dijkstra forest R.
R=0;
whiles < y do
Ss=argminy (F);
R=-exploratory dijkstra(G,s,1);
R=RUR;
V =V\R;
end
Algorithm 2. Dijkstra forest vessel segmentation: The algorithm adds disjoint Dijkstra regions until the minimum
inverted Laplace-Gabor response at the source pixel exceeds y. The operation V \ R represents {x € V | x ¢ R}.

2.4. Dijkstra Forest

The exploratory Dijkstra method outlined in Subsection 2.3 efficiently segments a Dijkstra
region R;(s) given a single source vertex s. As Fig. 3 (d) exemplifies, however, the vasculature



Fig. 5. VEVIO ROI: (a) The original mosaic. (b) The blnary mask outlining the ROI for the
mosaic in (a). (c) The corresponding manual gold standard. Only pixels that appear white in (b)
are taken into account for the metrics tallied in our results.

in the retina extends from more than one primary vessel. Furthermore, the low quality and blur
of VIO frames can obscure large sections of the vascular network, and break up the vasculature
into several disconnected regions. Therefore, in order to segment all visible vessels better, we
extend the single source method to multiple sources.

To this end, we first generate the initial region Ry = R;(sy) from a first source point sq as
described above. We then select a new source vertex s; from those vertices in V that are not
part of Ry, and generate a new region Ry from it, such that Ry "Ry = 0. By repeating, we thus
form a Dijkstra forest:

Here, v is a threshold on the highest allowable inverted Laplace-Gabor response. We stop
adding new regions to the forest when the highest response outside R is higher than y. Algo-
rithm 2 outlines the complete Dijkstra forest computation. As with 7, we determine y in our
experiments using the training set of images in our database (Section 3). In our experiments,
each image requires around 10 source vertices.

3. Experiments

To validate the effectiveness of our proposed segmentation method, we collected a new VIO
retinal vessel dataset from pediatric patients and manually segmented the corresponding vas-
cular system to produce the associated ground truth. In this section, we outline the dataset
construction process and our methodology for comparing the various segmentation methods to
the ground truth.

3.1. Benchmark dataset

Existing benchmark retinal vessel segmentation datasets such as the DRIVE [32], STARE [14]
and REVIEW [33] databases do not include VIO images. The relatively lower quality and ar-
tifacts in V1O images present a number of unique challenges for automated analysis methods.
Thus, there is a need for a benchmark VIO dataset. To address this issue, we constructed a
thirty-two image database of VIO images, the Vessel Extraction in Video Indirect Ophthal-
moscopy (VEVIO) dataset. VEVIO consists of sixteen manually selected frames and sixteen
corresponding enhanced large FOV mosaics from sixteen different premature infants imaged.
All images are of each patient’s right eye. Figure 4 showcases some of the frames and mosaics
in the dataset. Four steps were needed to construct the VEVI10 dataset: video recording, manual
frame selection, automatic mosaicing and manual vessel segmentation.

3.1.1. VIO recording

This study was approved by the Duke University Institutional Review Board. Informed consent
was obtained from parents or legal guardians of all participating infants. All VIO videos were
acquired during ROP clinical bedside examinations at the Duke Medical Center, Durham, NC,
USA. Each examination was carried out between August and October 2010. The videos were



Table 1. Segmentation results on the test set: The resultsinclude the twenty-two test
images: eleven manual frames and eleven automatic mosaics. Existing methods were
applied to both the raw frames and the frames pre-processed with DL CF. Our proposed
method outperforms existing approaches, even with pre-processing, regardless of metric.

Method

F-measure

Kappa

Accuracy

A

The proposed method

Matched filters®
Local entropy?®”
GMM Gabor?”
Matched filters®™
Local entropy®”
GMM Gabor®*

K-means Gabor”

K-means Gabor®”

0.5228 (+ 0.07)
0.489 (& 0.09)
0.4504 (+ 0.11)
0.3234 (+0.19)
0.3847 (£ 0.17)
0.2808 (+ 0.23)
0.2861 (+ 0.2)
0.1777 (+ 0.12)
0.1536 (& 0.12)

0.4987 (4 0.07)
0.4646 (& 0.09)
0.4049 (+ 0.16)
0.3046 (+ 0.19)
0.3313 (+0.2)
0.2545 (& 0.22)
0.2652 (& 0.19)
0.1667 (+ 0.12)
0.1411 (+ 0.12)

0.9337 (& 0.05)
0.9322 (& 0.05)
0.8839 (& 0.19)
0.9341 (+ 0.04)
0.7481 (£ 0.34)
0.892 (& 0.17)
0.9304 (& 0.04)
0.9328 (& 0.04)
0.9308 (& 0.04)

0.8647 (& 0.06)
0.7977 (& 0.08)
0.7104 (+ 0.1)
0.7921 (+ 0.17)
0.7682 (£ 0.1)
0.7106 (£ 0.1)
0.7716 (& 0.18)
0.7727 (& 0.16)
0.7599 (& 0.17)

2 Raw frames. P Pre-processed frames. * F-measure: p < 0.05.

recorded using a Keeler Wireless Digital Indirect Ophthalmoscope (Keeler Instruments Inc,
Broomall, PA, USA). An assistant operated the video recording software provided by Keeler
on a computer at the bedside. Each video was recorded at a resolution of 720 x 576 pixels in
24-bit color and saved as an interlaced, compressed Audio Video Interleaved (AVI) file.

3.1.2. Manually selected frames

During the recording of the bedside examination, the assistant viewed a real-time feed of the
video being recorded and manually screen-captured a number of frames, using Keeler’s record-
ing software, when she considered that the video feed was well-centered and in focus. One
of the authors (MTC) later examined each set of manually captured frames and selected the
highest quality image of each right eye.

3.1.3.  Automatic mosaics

To generate the corresponding ten mosaics, we applied our automatic mosaicing pipeline [29]
to each video. The set of frames suitable for mosaicing into a single image were automatically
selected by our method and did not rely on the manually captured frames. From the thousands
of frames in each video, our method retained the twenty frames with the highest frame-quality
scores. Each mosaic was constructed from five of those twenty frames. While it is possible to
construct the mosaic from the highest five scoring frames directly, to ensure that the mosaics
had the widest possible field of view we manually selected the final five frames.

3.1.4. Manual vessel segmentation

In order to provide a quantitative assessment of the various automated methods’ performance,
we produced a gold standard segmentation by manually tracing all the visible retinal vessels
in each of the twenty VIO images. MTC, a practicing ophthalmologist, traced each image in
Adobe Photoshop CS3 (Adobe Systems Inc., San Jose, CA) using a Wacom Intuous3 graphics
tablet (Wacom Co. Ltd, Kazo-shi, Saitama, Japan). This tablet uses a pressure-sensitive pen that
mimics a real brush, thus allowing the user to dynamically alter the thickness of a pen stroke.
The set of vessel tracings for each VIO image were then saved as a separate binary image mask.

3.2. Comparison to other methods

We divided the VEVIO dataset into a training set of ten images and a test set of twenty-two
images. Each set included frame/mosaic pairs taken from the same videos, so that there was
no overlap between the training and test patients. In order to compare our method to existing
methods fairly, we contacted a large number of research groups who had developed methods



Table 2. Segmentation results on the single (not mosaiced) test frames: Each method was
trained or optimized using the framesin the training set and the parameters where then
kept fixed for thetesting stage. Existing methods were applied to both the raw frames and
the frames pre-processed with DL CF.

Method

F-measure

Kappa

Accuracy

A

The proposed method

Matched filters®
Local entropy®”
GMM Gabor?”
Matched filters®™
Local entropy®”
GMM Gabor®*

K-means Gabor”

K-means Gabor®”

0.5403 (< 0.06)
0.5025 (& 0.07)
0.4347 (+ 0.1)
0.2297 (+ 0.19)
0.2938 (+ 0.18)
0.0955 (& 0.15)
0.1549 (+ 0.15)
0.1348 (+ 0.12)
0.0866 (& 0.1)

0.5127 (4 0.06)
0.4745 (& 0.07)
0.3646 (+ 0.2)
0.2128 (+ 0.18)
0.2078 (+ 0.19)
0.0638 (< 0.15)
0.134 (< 0.13)
0.1258 (& 0.12)
0.0746 (& 0.09)

0.9101 (& 0.06)
0.9086 (& 0.06)
0.8123 (+ 0.25)
0.9153 (& 0.05)
0.5402 (£ 0.4)
0.8284 (+ 0.22)
0.908 (& 0.05)
0.916 (& 0.05)
0.9121 (& 0.05)

0.8773 (& 0.06)
0.7735 (+ 0.1)
0.7092 (& 0.05)
0.7182 (& 0.18)
0.7144 (+ 0.11)
0.7097 (& 0.05)
0.6771 (& 0.17)
0.7085 (& 0.17)
0.6761 (& 0.17)

2 Raw frames. P Pre-processed frames. * F-measure: p < 0.05.

for retinal vessel segmentation. The results presented here were all obtained using the source
code of the groups that kindly made their methods available to us.

In this work, we were able to test both supervised and unsupervised state-of-the-art ap-
proaches. We obtained source code for the unsupervised methods of Chaudhuri et al. (matched
filters) [5] and Chanwimaluang and Fang (local entropy) [15]. We also obtained code for the
supervised classification based on Gabor responses of Soares et al. [9]. For the latter, we tested
two types of classifiers: Gaussian mixture models (GMM) and K-nearest neighbors (KNN).

For the supervised methods, we trained the different classifiers on the training data using the
learning code made available by Soares et al. [9]. For the unsupervised methods, we optimized
their parameters by exhaustively determining the values which resulted in the best possible
F-measure for the training set. We then kept the parameters fixed for the testing stage. The
optimal thresholds for each method are summarized in Table 4. We tested each existing method
on the manually selected frames in two ways: (1) using the raw frames directly captured from
the video and (2) using the frames after DLCF pre-processing. The raw frames capture how
existing methods fare on VIO data as is, while the pre-processed images allowed us to gauge
how our Dijkstra forest segmentation itself compared to other methods on the same source data.

4. Results

Our experimental results are summarized in Tables 1, 2 and 3. Each table is ranked according
to the F-measure (Appendix A) in the first column. Table 1 includes all twenty-two testing
set images (eleven frames and eleven mosaics). As noted above, the testing data includes only
data from new patients that were not part of the training data. This table illustrates how a
method generalizes to novel data, regardless of image type. The subscripts next to each state-
of-the-art method indicate whether we used the raw frames or the frames after DLCF filtering.
For all methods, the filtered frames allowed significantly better results. Table 2 includes the
segmentation results for the test frames, while Table 3 tallies the results for the test mosaics.
Each table includes the mean F-measure, Cohen’s Kappa [34], accuracy (Appendix A), and
area under the ROC curve (A;) for each method with the corresponding standard deviation in
parentheses. For each image, each metric was calculated inside a region-of-interest (ROI) that
only includes the image’s retinal pixels. We obtained each image’s ROI by applying our hue
masking method outlined in [29]. In short, hue masking retains only those pixels that match the
color profile of the current retina. Figure 5 illustrates the ROl mask for a particular mosaic.
Each metric was determined on a pixel-by-pixel basis. For a given automatic segmentation,
a pixel is considered a true positive if both it and the matching pixel in the ground truth image
are ones. If both are zero, it corresponds to a true negative. A mismatch in which the automatic



Table 3. Segmentation results on the test mosaics: Each method wastrained or optimized
using the mosaics in the training set and the parameters were then kept fixed for the

testing stage.
Method F-measure Kappa Accuracy A
Theproposed method  0.5053 (+ 0.08)  0.4847 (+0.08)  0.9573 (+0.01) 0.8522 (+ 0.05)
Matched filters 0.4755 (+£0.1) 04547 (£0.1)  0.9559 (+0.01)  0.8219 (+ 0.04)
Local entropy 0.466 (+ 0.1) 0.4453 (£ 0.1)  0.9556 (+ 0.01)  0.7115 (+ 0.14)
GMM Gabor 0.4172 (+ 0.15)  0.3964 (+ 0.15)  0.9529 (+0.01)  0.8461 (+ 0.12)

K-means Gabor* 0.2205 (+0.11)  0.2076 (+-0.1)  0.9496 (+ 0.01)  0.8368 ( 0.12)

* F-measure: p < 0.05.

segmentation produced a one and the ground truth had a zero is a false positive. The converse
mismatch is a false negative.

Each of the four metrics captures some form of similarity between a method’s output and the
corresponding ground truth. The retinal vessel segmentation literature has traditionally favored
accuracy and area under the ROC curve, Az, as the primary metrics [5-11, 13,14, 32]. While A,
is an adequate measure of classifier robustness, as we argue in Appendix A, we believe the F-
measure is a much more appropriate measure than accuracy for analyzing segmentation results
in this type of data. Due to the very low prior probability of a pixel being part of a vessel,
methods that only segment a small fraction of each image will still obtain competitive accuracy
scores. The F-measure, on the other hand, provides a ratio-independent summary of the overlap
between two segmentation’s pixel labels. Therefore, the approach of labeling very few pixels
as vascular will yield a very low F-measure score due to the large number of false negatives.

We applied a Wilcox signed-rank test between our proposed method’s F-measure distribu-
tion and the F-measures of every other method [35]. Methods for which the difference was
statistically significant (p < 0.05) are marked with an = in each table.

5. Discussion

As Tables 1, 2 and 3 show, our proposed method compares favorably to existing supervised and
unsupervised methods. Regardless of metric, our method consistently outperformed existing
state-of-the-art approaches in our experiments by better balancing the likelihood of false posi-
tives and negatives. In contrast, Fig. 6 illustrates how a method such as the GMM classifier has
good recall, but poor precision, while a more conservative method such as the KNN classifier
has better precision, but worse recall. In the first case, the segmentation has too many non-
vascular pixels, while the latter segmentation misses a significant portion of the vasculature.
Our method’s connectivity contraints allow us to strike a good balance between these two ob-
jectives by better disambiguating between similarly valued pixels. In other words, our method
is more likely to label a pixel as vascular if it can be directly connected to a large vascular
region than if it is isolated, since the latter case is more indicative of noise rather than an actual
vessel.

Finally, it is also worth noting how DLCF pre-processing has a sizable impact on the segmen-
tation results of existing methods. All state-of-the-art methods performed significantly better on
pre-processed frames than raw frames. As an extreme example, note in Table 2 the four-fold
improvement in the F-measure of the matched filters method when using pre-processed frames.

In the future, we wish to expand our VEVIO database with more images from more patients.
The presented experimental results highlight the challenges that VIO data present for vessel
segmentation methods. The F-measures reported in this paper indicate significant room for
further improvement. To encourage further research in this area, we have made the VEVIO
dataset and the MATLAB code that we have developed for this project publically available at
http://www.duke.edu/~sf59/Estrada BOE 2012.htm
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Fig. 6. Vessel segmentation on a mosaic: (a) Original image (b) Manual segmentation (c) Dijk-
stra forest (d) Matched filters (€) Local entropy (f) GMM classifier (g) KNN classifier
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A. F-measurevs. accuracy

Traditionally, accuracy has been one of the key metrics for evaluating vessel segmentation
results. For a binary classification, this metric is defined thus:

tp+tn
tp+tn+ fp+ fn
where t, and f,, indicate true and false positives respectively, while t, and f, tally true and false
negatives. The unbiased F-measure, on the other hand, is given by:
. precision - recall

F1= 2 recision+ recall 11
' precision -+ recall (11)

accuracy = (10)

where precision and recall are defined as:

tp . recall = | (12)
tp+ fp tp+ fn

Accuracy becomes less informative when one of the two classes if far more likely than the
other, as is the case for vascular vs. non-vascular pixels. On average, vascular pixels only com-
prise about 5-10% of an image. This means that a classifier that labels all pixels as non-vascular
can already boast a 90-95% accuracy. The F-measure, on the other hand, provides a better bal-
ance between labeling pixels correctly or incorrectly, since it is not affected by class sizes.

precision =

B. Parameter values
Table 4. Parameter values

The proposed method ~ Exploratory threshold: 5 x 10-° Filtering threshold: 0.7
Matched filters Raw threshold: 0.5 Pre-processed threshold: 0.2254
Local entropy Raw threshold: 0.5253 Pre-processed threshold: 0.7677
GMM Gabor Raw threshold: 0.5 Pre-processed threshold: 0.5

K-means Gabor Raw threshold: 0.77 Pre-processed threshold: 0.82




