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ABSTRACT

We build on the current understanding of mean shift as an optimization procedure. We

demonstrate that in the case of piecewise constant kernels mean shift is equivalent to Newton’s

method. Further, we prove that for all kernels the mean shift procedure is a quadratic bound

maximization.

INDEX TERMS

Mean shift, bound optimization, Newton’s method, adaptive gradient descent, mode seeking.

I. I NTRODUCTION

Mean shift is a nonparametric, iterative procedure introduced by Fukunaga and Hostetler [1]

for seeking the mode of a density function represented by a setS of samples. The procedure

uses so-calledkernels, which are decreasing functions of the distance from a given pointt to a

point s in S.

For every pointt in a given setT , the sample means of all points inS weighted by a kernel at

t are computed to form a new version ofT . This computation is repeated until convergence. The

resulting setT contains estimates of the modes of the density underlying setS. The procedure

will be reviewed in greater detail in Section II.

Cheng [2] revisited mean shift, developing a more general formulation and demonstrating

its potential uses in clustering and global optimization. Recently, the mean shift procedure

has met with great popularity in the computer vision community. Applications range from

image segmentation and discontinuity-preserving smoothing [3], [4] to higher level tasks like

appearance-based clustering [5], [6] and blob tracking [7].

Despite the recent popularity of mean shift, few attempts have been made since Cheng [2]

to understand the procedure theoretically. For example, Cheng [2] showed that mean shift is

an instance of gradient ascent and also notes that, unlike naı̈ve gradient ascent, mean shift has

an adaptive step size. However, the basis of step size selection in the mean shift procedure has

remained unclear. We show that in the case of piecewise constant kernels the step is exactly the

Newton step and in all cases it is a step to the maximum of a quadratic bound.

Another poorly understood area is that of mean shift with an evolving sample set. Some

variations on the mean shift procedure use the same set for samples and cluster centers. This
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causes the sample set to evolve over time. The optimization problem solved by this variation on

mean shift has yet to be characterized.

In this paper, we build on the current understanding of mean shift as an optimization procedure.

Fukunaga and Hostetler [1] suggested that mean shift might be an instance of gradient ascent.

Cheng [2] clarified the relationship between mean shift and optimization by introducing the

concept of theshadow kerneland showed that mean shift is an instance of gradient ascent

with an adaptive step size. We explore mean shift at a deeper level by examining not only the

gradient but also the Hessian of the shadow kernel density estimate. In doing so, we establish

a connection between mean shift and the Newton step, and we demonstrate that in the case of

piecewise constant kernels mean shift is equivalent to Newton’s method optimization. Further,

we prove that for all kernels the mean shift procedure is a quadratic bound maximization (see

Fig. 1), and we show that this characterization also holds for mean shift with evolving sample

sets.

In Section II-A we provide a brief review of the mean shift procedure, and in Section II-B we

provide a brief overview of bound optimization. In Section III-A we examine the gradient and

the Hessian of the shadow kernel density estimate and establish a relationship between mean

shift and Newton’s method. In Section III-B we then prove that the mean shift procedure is

a bound optimization. In Section IV we discuss implications and the resulting strengths and

weaknesses of the mean shift procedure.

II. BACKGROUND ON MEAN SHIFT AND BOUND OPTIMIZATION

A. A Review of the Mean Shift Procedure

In this paper, we examine the generalized version of the mean shift procedure developed by

Cheng [2]. We initially restrict ourselves to the case whereS is a stationary set of samples. The

mean shift procedure also allowsS andT to be the same set, whereT is the set of means. We

address the case of evolving sample sets at the end of our analysis.

The concept of akernel (see Def. 2) is fundamental to the mean shift procedure, and indeed

mean shift is conventionally defined in terms of a kernel. However, in this paper we define mean

shift in terms of aprofile (see Def. 1). This improves the clarity of our analysis and does not

stray far from the conventional definition.
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Fig. 1. Quadratic bound (solid) of the shadow density estimate (mesh). The point of tangency

is marked with a black arrow. One iteration of the mean shift procedure maximizes this bound.

These data were generated by drawing 100 random, normally distributed samples from each of

5 random, normally distributed means.

Definition 1: A profile k is a piecewise continuous, monotonically nonincreasing function

from a nonnegative real to a nonnegative real such that the definite integral
∫∞

0
k(r)dr < ∞.

Definition 2: A kernel K is a function from a vectorx in the n-dimensional real Euclidean

space,X, to a nonnegative real, such thatK(x) = k(‖x‖2), for some profilek.

We reason in terms of profiles for two reasons. First, we spend much time considering first

and second derivatives of profiles. One cannot differentiate a kernel directly. Rather one must

differentiate the profile of the kernel. Reasoning in terms of kernels creates an additional and

unnecessary layer of indirection. Second, in Section III-B we will consider a space that is closely

related to our definition of mean shift in terms of profiles.

The generalized mean shift procedure given by Cheng [2], rewritten in terms of a profile,

follows.

Definition 3: Let X be ann-dimensional real Euclidean space andS a set of sample vectors

in X. Let w be a weight function from a vector inX to a nonnegative real. Let thesample

meanm with profile k at x ∈ X be defined such that

m(x) =

∑
s∈S k(‖s− x‖2)w(s)s∑
s∈S k(‖s− x‖2)w(s)

. (1)

Let M(T ) = {m(t) : t ∈ T}. One iteration of mean shift is given byT ← M(T ). The full

mean shift procedure iterates until it finds a fixed pointT = M(T ).
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Note 1: Since we will make frequent use of norms like‖s− x‖2, from here on we will use

the shorthandr = ‖s− x‖2.

In addition to generalizing mean shift, Cheng [2] demonstrated that mean shift with fixedS

seeks the modes of the density estimate given by ashadow profile.

Definition 4: A profile h is said to be theshadowof a profilek iff

h(r) = b + c

∫ ∞

r

k(t)dt, (2)

whereb is a real andc is a positive real. It follows thath is a shadow ofk if k is the negative

of the derivative ofh, possibly scaled.

Cheng [2] defined the shadow profile such thatb was replaced by a piecewise constant

function. This suggests that shadow profiles exist which are not continuous and therefore not

continuously differentiable. We define shadow profiles such that their continuity, and therefore

their differentiability, is guaranteed.

Theorem 1 (Cheng [2]):Mean shift with profilek seeks the modes of the density estimate

q(x) =
∑
s∈S

h(r)w(s), (3)

whereh is a shadow of the profilek.

Althoughh may be any shadow ofk, the modes of the density estimate obtained usingh will

always be the same, since all shadows ofk are equivalent up to a scale factor and a translation.

This brief overview of mean shift should give sufficient insight into the procedure to support

the following analysis. For a more detailed explanation of the procedure, its definitions and

constraints please refer to Fukunaga and Hostetler [1] and Cheng [2].

B. An Overview of Bound Optimization

A bound optimization algorithm can be constructed for any objective function which possesses

a structure that can be exploited to find a lower bound (see Def. 5). One well known example

is the EM algorithm, described as a bound optimization by Neal and Hinton [8].

Definition 5: Let q(x) be the objective function, wherex is in the spaceX. The (lower)

bounding functionρ(x) is a function such thatρ(x0) = q(x0) at some point of tangencyx0 ∈ X

andρ(x) ≤ q(x) for everyx ∈ X.

If there exists a bounding functionρ tangent to the objective functionq for everyx0 ∈ X and

it is significantly less computationally expensive to maximizeρ thanq, then we can construct a
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bound optimization algorithm forq by simply finding and maximizing the bound ofq until we

reach a stationary point.

III. A NALYSIS OF THE MEAN SHIFT PROCEDURE

A. The Relationship Between Mean Shift and Newton’s Method

We can derive the gradient and the Hessian with respect tox of the densityq from its definition

(see Eqn. 3):

∇q = −2
∑
s∈S

h′(r)w(s)(s− x) (4)

∇2q = 2
∑
s∈S

(w(s)(h′(r)I+

2h′′(r)(s− x)(s− x)T )). (5)

Indeed Eqn. 4 is the gradient reported by Cheng [2].

By Def. 1, a profilek is nonnegative and the integral
∫∞
0

k(r)dr < ∞. It follows that

lima→∞ k(a) = 0. This leads to the analytic first and second derivatives of the profileh, where

h is the shadow of the profilek (see Eqn. 2);

h′(r) = −ck(r) (6)

h′′(r) = −ck′(r). (7)

It is possible fork to have a finite number of discontinuities at whichk′, and thereforeh′′, will

not be defined. For the case of piecewise constant profiles, we definek′ to be zero. We argue

that since the left derivative and the right derivative are both zero, it is reasonable to interpolate

k′ at discontinuities ink in order to preserve continuity ink′.

By substitution we can obtain the gradient and Hessian in terms of the profilek,

∇q = 2c
∑
s∈S

k(r)w(s)(s− x) (8)

∇2q = −2c
∑
s∈S

(w(s)(k(r)I+

2k′(r)(s− x)(s− x)T )). (9)

Theorem 2:The mean shift procedure with a piecewise constant profilek is equivalent to

Newton’s method applied to a density estimate using the shadow ofk.
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Proof: If k is piecewise constant, the Hessian ofq is,

∇2q = −2c
∑
s∈S

k(r)w(s)I. (10)

So, if k is piecewise constant, the Newton stepp follows,

p = − (∇2q
)−1∇q (11)

=

∑
s∈S k(r)w(s)(s− x)∑

s∈S k(r)w(s)
. (12)

One iteration of Newton’s method yields,

x + p = x +

∑
s∈S k(r)w(s)(s− x)∑

s∈S k(r)w(s)
(13)

=

∑
s∈S k(r)w(s)s∑
s∈S k(r)w(s)

, (14)

which is one step of the mean shift procedure.

Cheng [2] showed that mean shift is gradient ascent with an adaptive step size, but the theory

behind the step sizes remained unclear. We see now that the size (and direction) of a step of

mean shift with a piecewise constant profile is precisely the size (and direction) of the Newton

step applied to the densityq (see Eqn. 3).

B. Mean Shift as a Quadratic Bound Maximization

Given Thm. 2, we can make a general statement that applies to any profile, not just piecewise

constant profiles, about the optimization problem that the mean shift procedure solves atx0 ∈ X.

Theorem 3:At x0 ∈ X, the mean shift procedure maximizes the functionρ(x) = a −
c
∑

s∈S k(r0)w(s)r, wherea is a constant andc is a positive real satisfying Eqn. 6.

Proof: We find the gradient and Hessian of the functionρ.

ρ(x) = a− c
∑
s∈S

k(r0)w(s)r (15)

∇ρ = 2c
∑
s∈S

k(r0)w(s)(s− x) (16)

∇2ρ = −2c
∑
s∈S

k(r0)w(s)I (17)

We observe that, atx = x0 (and r = r0), ∇q = ∇ρ and B = ∇2ρ. ρ is a quadratic, so the

Newton step finds the exact maximum ofρ.
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(a) Seeking the mode.
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(b) Detail.

Fig. 2. The mean shift procedure seeking the mode of a density estimate (dashed-dotted) with

successive quadratic bounds (solid). The shade of the bound grows darker as mean shift nears

the mode. Samples are the radial velocities of galaxies [9].

It follows from Theorem 3 that the mean shift procedure is performing a quadratic maximiza-

tion (see Figs. 1 and 2). However, to prove that the mean shift procedure is a bound optimization

we must show thatρ is a lower bound onq. In order to do so we will first prove a short lemma.

Lemma 1:A shadow profile is a convex function.

Proof: We observe from Eqn. 6 that−1
c
h′(r) must also be a profile and therefore the

slope of shadow profileh must be monotonically nondecreasing. Therefore the value ofh at

the midpoint of any continuous interval in its domain cannot be larger than the average of the

values ofh at the ends of the interval.

Theorem 4:The mean shift procedure using profilek is a quadratic bound maximization over

a density estimate using a continuous shadow ofk.

Proof: Given Theorem 3, we need only show that fora such thatρ(x0) = q(x0), ρ(x) ≤
q(x), for everyx ∈ X. Let ρ(x0) = q(x0), and therefore

a =
N∑

i=1

a(i) =
N∑

i=1

w(s(i))(h(r
(i)
0 )− h′(r(i)

0 )r
(i)
0 ), (18)

whereN is the number of samples.
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Considerρ andq as functions of the vector

r =




r(1)

...

r(N)


 =




‖s(1) − x‖2

...

‖s(N) − x‖2


 . (19)

Observe that giving one value inr will restrict the other values inr, but for the moment assume

thatr can be any vector in theN -dimensional space of positive reals,R, whereN is the number

of samples. In this space,a(i) + h(r(i))w(s(i)) is a convex function andq, the sum of convex

functions, is also convex. In addition, in this space,a(i) + h′(r(i)
0 )w(s(i))r(i) is a hyperplane

tangent toh(r(i))w(s(i)) andρ is a hyperplane tangent toq at r0 (see Fig. 3), where

r0 =




r
(1)
0

...

r
(N)
0


 =




‖s(1) − x0‖2

...

‖s(N) − x0‖2


 . (20)

Thus the hyperplaneρ can never exceed the convex functionq.

As a final note consider that giving one valuer ∈ r corresponding to some samples restricts

the position ofx0 to a hypersphere arounds with radiusr. This restricts the other values ofr.

The functionsq andρ exist in the subspace ofR in which the values of the vectorr are spatially

possible given the samplesS in the spaceX. This proof subsumes this subspace in showing

that for anyr ∈ R the functionρ is less than or equal to the density estimateq.

Now let us consider the mean shift procedure with an evolving sample set. Observe that

Theorem 3 holds regardless of whether the sample set is stationary or evolving.

Corollary 1 (to Theorem 4):Theorem 4 holds for the mean shift procedure with an evolving

sample set and fixed sample weights.

Proof: Mean shift chooses the vectorr to maximize some objective function. In the case

of stationary samples, the restrictions onr are knowna priori. In the case of evolving samples

we do not know what subspace ofR valid values ofr live in, so we do not know the density

estimate that we are maximizinga priori. However, we do know that, if our sample weights are

fixed, the valid values ofr will form a subspace ofR. Since we know thatρ lower boundsq

in the spaceR, we know that Theorem 4 holds for the case of evolving sample sets with fixed

sample weights.
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Fig. 3. With respect tor, mean shift finds a linear bound (solid) of the shadow density estimate

(mesh). An example with two samples,s1 ands2. Ther(1)-axis increases with the square of the

distance froms1 and ther(2)-axis increases with the square of the distance froms2. The point

of tangency,r0, is at (1, 1).

IV. D ISCUSSION ANDCONCLUSIONS

We have shown that the mean shift procedure with fixed sample weights is a quadratic bound

maximization both for stationary and evolving sample sets. A number of important consequences

follow directly from this fact. Most significantly, unlike Newton’s method, each iteration of mean

shift is guaranteed to bring us closer to a stationary point (see Fig. 4).1 Observe that if mean

shift at x0 yields x1 such thatx1 6= x0, then q(x1) ≥ ρ(x1) > ρ(x0) = q(x0). On the other

hand, like Newton’s method, mean shift can get stuck at a saddle point or mistake a start at a

local minimum for a local maximum.

A number of less obvious consequences follow as well. Given this description of the mecha-

nism behind the mean shift procedure, we may consider extensions to the procedure that were not

possible before. For example, mean shift currently operates in a Euclidean space with Euclidean

distances. We can substitute non-Euclidean norms into Eqn. 15 and maximize this bound at each

1As we have shown, piecewise constant profiles are a subcase in which mean shift is equivalent to Newton’s method. In this

subcase, the quadratic lower bound found by mean shift is equivalent to the quadratic approximation found by Newton’s method.

This equivalence does not hold generally.
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(a) Overshooting.
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(b) Seeking the wrong root.

Fig. 4. The quadratic bound of the mean shift procedure (solid) and the quadratic approximation

of Newton’s method (dashed) seeking the mode of a density estimate (dashed-dotted). The

starting point is indicated by a circle, while the sample mean is indicated by a square and the

Newton step by a diamond. Notice that in both cases the Newton step actually results in a

decreasein the value of the objective function. Samples are the radial velocities of galaxies [9].

iteration.

Another question to ask is whether or not we can speed up mean shift by tightening the

bound. Naturally if we make no assumptions aside from those in Definition 1 we have no

guarantees, except that a convex shadow exists, and we cannot tighten the bound. However, the

mean shift procedure typically employs Gaussian and truncated Gaussian kernels (exponential

and truncated exponential profiles). We can use this extra information about profile shape to

tighten the bound; the difficulty is in finding a bound which is computationally easy to maximize.

Such an enhancement would provide an additional speedup to existing techniques such as locality

sensitive hashing [10].

Until now, the internal mechanism behind the mean shift procedure had been poorly under-

stood. We expect that our new insights will pave the way for many new extensions to the mean

shift algorithm.
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APPENDIX

Please refer to the URLhttp://www.cs.duke.edu/˜mark/meanshift/ for support-

ing files, including functions to generate figures like those presented in this paper.
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