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Abstract. A tracking-by-detection framework is proposed that com-
bines nearest-neighbor classification of bags of features, efficient subwin-
dow search, and a novel feature selection and pruning method to achieve
stability and plasticity in tracking targets of changing appearance. Ex-
periments show that near-frame-rate performance is achieved (sans fea-
ture detection), and that the state of the art is improved in terms of
handling occlusions, clutter, changes of scale, and of appearance. A the-
oretical analysis shows why nearest neighbor works better than more
sophisticated classifiers in the context of tracking.

1 Introduction

Visual object tracking is crucial to visual understanding in general, and to many
computer vision applications ranging from surveillance and robotics to gesture
and motion recognition. The state of this art has advanced significantly in the
past 30 years [1–8]. Recently, advances in apparently unrelated areas have given
tracking a fresh impulse: Specifically, progress in the definition of features invari-
ant to various imaging transformations [9, 10], online learning [11, 12], and object
detection [13–16] have spawned the approach of tracking by detection [17–21],
in which a target object identified by the user in the first frame is described by
a set of features. A separate set of features describes the background, and a bi-
nary classifier separates target from background in successive frames. To handle
appearance changes, the classifier is updated incrementally over time. Motion
constraints restrict the space of boxes to be searched for the target.

In a recent example of this approach, Babenko et al. [20] adapt Multiple
Instance Learning (MIL) [12, 11] by building an evolving boosting classifier that
tracks bags of image patches, and report excellent tracking results on challeng-
ing video sequences. The main advantages of tracking by detection come from
the flexibility and resilience of its underlying representation of appearance. Sev-
eral parametric learning techniques such as Support Vector Machines (SVM,
[22]), boosting [20], generative models [23], and fragments [24] have been used
successfully in tracking by detection. More recently, Santner et al. propose a
sophisticated tracking system called PROST [21] that achieves top performance
with a smart combination of three trackers: template matching based on normal-
ized cross correlation, mean shift optical flow [25], and online random forests [26]
to predict the target location.
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However, since computation occurs at frame rate, efficiency in both appear-
ance learning and target/background classification is a paramount consideration
for practical systems. In addition, image boxes that might contain the target
must be enumerated quickly. Finally, and perhaps most fundamentally, the so-
called stability-plasticity dilemma [21] must be addressed: a stable description of
target appearance, based only on the first frame, can handle occlusions well, but
fails to track an object whose appearance changes over time. A more plastic de-
scription can be obtained by updating features from observations in subsequent
frames, but at the cost of potential confusion between target and foreground
when incorrectly classified features contaminate the training sets.

To address these issues, we propose to use Nearest Neighbor (NN) as the
underlying, non-parametric classifier; Efficient Subwindow Search (ESS, [15]) to
hypothesize target locations; and a novel feature updating and pruning method
to achieve a proper balance between plasticity and stability. Despite the simplic-
ity of the NN classifier, Boiman et al. [27] demonstrate its state-of-art perfor-
mance for object categorization. We analyze NN geometrically to suggest why
NN captures appearance change better than competing methods. In addition,
NN requires no training other than data collection, and is efficient when the
size of the data sample is small, as is the case in tracking by detection. Fur-
ther efficiency can be achieved by the use of KD trees. The use of ESS leads
to improved handling of scale changes over existing state-of-the-art trackers [20,
21], which cannot search variable-size windows. For features, we use SIFT [9],
although other, more recent methods such as SURF [10] or Self-Similarity [28]
could be used without further modification. Together with our feature update
and pruning method, this combination leads to a unified tracking-by-detection
framework that handles appearance changes, occlusion, background clutter, and
scale changes in a principled and effective way, as our experiments demonstrate.

2 Tracking with an Online Nearest-Neighbor Classifier

For ease of exposition, we describe our appearance and motion model separately
first. We then show how to integrate them seamlessly via online NN classifica-
tion into a simple and efficient algorithm. Finally, we discuss why our tracking
framework can handle significant background clutter, scale changes, occlusion
and appearance change.

2.1 Appearance Model

Let V (I) = {(x1,v1), · · · , (xn,vn)} be the set of (SIFT) key points of an image
I where xi ∈ R2 is the 2D coordinate and vi ∈ Rd is the d-dimensional descriptor
vector of the ith feature. We use Θ(W ; I) to represent the set of key point descrip-
tors of I within the window W : Θ(W ; I) ,

{
v ∈ Rd | (x,v) ∈ V (I),x ∈W

}
.

Given an image sequence (I0,W0), (I1,W1), · · · , (Ik,Wk) where Wi is the tracked
window in image Ii, we describe how to compute the features belonging to the
object and the background respectively. Let B ⊂ Rd be the static background
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model and let Ok ⊂ Rd be the dynamic object model updated up to the frame
index k. Initially we set O0 = Θ(W0; I0) and put the rest of the key point
descriptors into the background model B. Given Ok−1 and Wk, we compute:

Ok ← Ok−1
⋃
Fλ [Θ(Wk; Ik),Ok−1,B] (1)

where Fλ : 2R
d × 2R

d × 2R
d → 2R

d

is the filter operator on the feature set:

Fλ [A,B,C] , {v ∈ A | ‖v −NNB(v)‖ < λ‖v −NNC(v)‖} (2)

where NNB(v) , arg minu∈B ‖u− v‖ is the nearest neighbor of v in the set B.
The idea behind the design of Fλ is simple: for each feature a ∈ Θ(Wk; Ik), we

apply the ratio test in (2) to see if a is close enough to the target set Ok−1 when
compared to its distance to the background set B, and we only preserve those
features in Θ(Wk; Ik) that pass the ratio test. Here λ is the selection criterion and
is fixed to 2/3, analogously to the familiar matching criterion used in SIFT[9].
We thus have an model updating scheme that keeps adjusting the appearance
change while avoiding confusion between object and background features.

2.2 Motion Model

GivenOk−1,B,Wk−1 and Ik, the motion model aims to locate an optimal window
Wk that encloses the current object. To this end, we need to evaluate a window
based on its appearance. We propose to use the following score function:

µ(W ;Ok−1,B,Wk−1, Ik) =
∑

v∈Θ(W ;Ik)

sign (Fλ [{v},Ok−1,B])

︸ ︷︷ ︸
appearance similarity

− κ(W,Wk−1)︸ ︷︷ ︸
motion penalty

(3)

where sign(A) = 1 if A 6= ∅ and −1 otherwise. In the implementation, we can
also promote matched features by assigning scores greater than 1. The penalty
function κ(W,Wk−1) measures the difference between the window W and the
window Wk−1 in terms of position drift and shape change. We set:

κ(W1,W2) = γ

‖O1 −O2‖︸ ︷︷ ︸
position drift

+ |h1 − h2|︸ ︷︷ ︸
height

+ |w1 − w2|︸ ︷︷ ︸
width

+s(W1,W2)

 (4)

where ‖O1−O2‖ is the distance between the centroids O1 and O2 of the windows
W1 and W2, and (w1, h1), (w2, h2) are the width and height of W1 and W2. The

term s(W1,W2) , max
{
| h1w1 −

h2
w2
|, |w1

h1
− w2

h2
|
}

then penalizes changes in the

aspect ratio although other more sophisticated penalties are appropriate here as
well. Finally, γ measures the relative importance of the penalty function in the
score µ(W ;Ok−1,B,Wk−1, Ik). The optimal window Wk in Ik is then

Wk = arg max
W

µ(W ;Ok−1,B,Wk−1, Ik) (5)
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where W can be an arbitrary window within the domain of the image Ik. The
presence of the penalty function κ(W,Wk−1) ensures that the current tracked
window cannot drift or change its shape arbitrarily relative to the previous
tracked window. Notice that the motion model does not take advantage of any
motion continuity or locality. In practice, as is typical to many trackers, we
could restrict the search region to a local image patch instead of the entire im-
age domain. Although we believe that the motion model can be improved by
introducing advanced filtering techniques such as a Kalman filter or a parti-
cle filter, we do not include those techniques in order to show that our tracker
already yields excellent tracking results even without them.

2.3 Algorithm and Implementation

The algorithm for tracking is very simple:

Input: the object model Ok−1, previous window Wk−1 and the image Ik.
Output: the updated object model Ok and the current tracked window Wk.
Step.1: Wk ← arg maxW µ(W ;Ok−1,B,Wk−1, Ik)
Step.2: Fλ ←

{
v ∈ Θ(Wk; Ik) | ‖v −NNOk−1

(v)‖ < λ‖v −NNB(v)‖
}

Step.3: Ok ← Ok−1
⋃
Fλ

The nearest neighbor search can be computed quite efficiently with KD trees
if approximation is allowed. We use published software [29] to compute both
the SIFT descriptors and the nearest neighbor query, with two modifications
for efficiency: First, at any time we keep only features from the most recent τ
frames, so that the total number of features in Ok ranges only from hundreds to
thousands, enabling real time performance. Second, we do not explicitly modify
the KD tree data structure during the update. Instead, we always maintain
1 + τ KD trees, each corresponding to a frame, and whenever a frame is added
or deleted, we add or remove the entire tree associated to that frame. The KD
tree associated to the first frame is never deleted. The background model is
assumed to be static in our implementation. However, we could easily update
the background model as well, similarly to what we do with the object model.

Fig. 1. The method of efficient subwindow search ensures that our tracker can handle
significant scale change efficiently. The video sequence is downloaded from YouTube.
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Fig. 2. Mean distance error for the selected sequences frame by frame

Exhaustive subwindow search is needed in Step.1. Although the worst run-
ning time is O(n2) where n is the number of pixels in the search area, the
actual performance of the optimal window search is often close to sublinear time
thanks to branch and bound [15]. We adapt this Efficient Subwindow Search
(ESS) method by applying a penalty on position drift and shape change. Specif-
ically, let R be the range space containing all possible windows and Wk−1 the
tracked window in the previous frame. The quality function fnew(R) is modified
from the quality function fold(R) by Lampert et al.[15] so that

fnew(R) = fold(R)− min
W∈R

κ(W,Wk−1) (6)

It is not difficult to prove that this quality function satisfies the two constraints
for branch and bound: (1) fnew(R) ≥ µ(W ;Ok−1,B,Wk−1, Ik) for each window
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W ∈ R; and (2)fnew(R) converges to the true score when there is a unique
window in R. The quality function fnew(R) can be evaluated in constant time
by pre-computing the integral image in linear time.

The running time of our algorithm, excluding the time for computing SIFT
descriptors, is close to frame rate in our MATLAB implementation on a single-
core laptop. Computing the key point descriptors is relatively slow ( several
frames per second ) compared to tracking time. However, we compute the SIFT
descriptors for the entire image for the ease of experiment, and this is not nec-
essary. One speed up is that we only compute features in a local image area.
Another speed up comes from other choices of key point descriptors. Finally, we
could port the program to C/C++ and run it on a more advanced computer.

3 Analysis

We explain why our tracking framework can handle background clutter, occlu-
sion, scale and appearance change in a principled way.

Background Clutter. Our tracking framework avoids the confusion between tar-
get and background features by applying the filter operator Fλ on the feature
set within the tracked window. Therefore, only those features that resemble the
features in the current object model are updated.

Scale changes. The tracking model by equation (5) ensures that we search win-
dows with all possible locations and shapes, and this covers even significant scale
changes. The other contributing factor comes from the use of SIFT descriptors
that have been demonstrated to handle partial scale changes well. Notice that
our tracking framework does not depend on a specific key point descriptor, and
should benefit from any improvement in this area. In Figure 1 we show that our
tracker can handle significant scale change.

Occlusion. We follow the bag-of-features approach which naturally handles oc-
clusion. The score of a window is high if there are enough matched features inside
the window. If only few matched features are present, there is a strong indica-
tion that the object is occluded. The current window Wk stays stable relative to
the previous window Wk−1 when occluded because of the penalty enforced by
κ(Wk,Wk−1). We exhibit different cases of occlusion in Figure 4.

Appearance Changes. The most challenging part of tracking-by-detection sys-
tems is perhaps how to adapt to the appearance change incrementally. We
show in the left column of Figure 6 that our tracker can adjust to appear-
ance change fairly well. Interestingly we can directly estimate the “shape” of
the object feature space, the set Fλ(Rd, O,B) where O and B are the set of
object and background features. As a result, we can predict the set of features
that is allowed in the object model O. We recall from classical geometry that
for λ < 1, the inequality ‖x − a‖ < λ‖x − b‖ defines a d-dimensional hyper
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Fig. 3. The two dimensional object feature space ( the pink shaded area) generated by
linear (left) and nonlinear (middle) support vector machines and the nearest neighbor
classifier (right) where the blue and red dots are the features belonging to the object
and the background. The ratio test with the NN classifier produces an object feature
space that is bounded by the union of a set of two dimensional disks.

ball: Bλ(a,b) ,
{
x ∈ Rd | ‖x− a−λ2b

1−λ2 ‖ < λ
1−λ2 ‖a− b‖

}
with centroid located

at a−λ2b
1−λ2 and radius equal to λ

1−λ2 ‖a−b‖. We therefore can quantify the volume

of the object feature space Fλ(Rd, O,B) using the intersection of Voronoi regions.
Let Vor(v;S) ,

{
x ∈ Rd | NNS(x) = v

}
be the Voronoi region of v spanned by

S and let I(S1, S2) = {(a,b) ∈ S1 × S2 | Vor(a;S1)
⋂

Vor(b;S2) 6= ∅} be the
intersection of the Voronoi regions of the set S1 and S2 respectively. We have:

Theorem 1 (Ball Cover). The object feature space is bounded by the union of
a set of d-dimensional hyper balls: Fλ(Rd, O,B) ⊆

⋃
(a,b)∈I(O,B) Bλ(a,b)

Proof. Since the set of nearest neighbors to the feature v ∈ O is expressed by
v’s Voronoi region spanned by O, we can rewrite the object feature space:

Fλ(Rd, O,B) =
⋃
a∈O

⋃
b∈B

[
Vor(a;O)

⋂
Vor(v;B)

⋂
Bλ(a,b)

]
(7)

=
⋃

(a,b)∈I(O,B)

[(
Vor(a;O)

⋂
Vor(b;B)

)⋂
Bλ(a,b)

]
(8)

⊆
⋃

(a,b)∈I(O,B)

Bλ(a,b) . (9)

The ball cover theorem has many appealing properties: First, it shows that
the object feature space is well bounded by our selection criterion. This is in
contrast to the typical use of classifiers such as linear or non-linear SVM where
the object feature space is unbounded. We illustrate this difference in the 2D
cartoon in Figure 3. Second, for a,b ∈ O with ‖a−NNB(a)‖ > ‖b−NNB(b)‖,
a contributes more than b to the object feature space. In other words, the more
discriminative (between target and background) the feature is, the larger the
feature space it generates (i.e., the larger the radius of the hyper ball).
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4 Experiments

We test our new NN-based tracker on 8 video sequences from multiple data sets
[30, 31, 5, 20, 21] and compare it to the state-of-art tracking methods: AdaBoost
[18], Online Random Forests [26], Fragments [5], Multiple Instance Learning
[20] and PROST [21]. In the comparison, we directly quote the results from
[21] where the best results from each method were reported. This comparison is
summarized in Table 1. In Figure 4 and Figure 6, we show the actual performance
of the different trackers. The selected error plots are shown in Figure 2. For
more results and comparisons, please see the supplementary material. In the
experiment, we fix the parameters once for all (i.e. λ = 2

3 , γ = 0.1) and use the
default SIFT parameters in [29]. The evaluation criterion is the same as what is
used in [20, 21] except that we only compute the mean distance error e:

e =
1

n

n∑
i=1

‖Oi −Ogi ‖ (10)

where n is the number of frames and ‖Oi−Ogi ‖ is the Euclidean distance between
the tracked window centroid Oi and the ground truth window centroid Ogi .

Table 1 shows that despite the simplicity of the proposed method, our tracker
yields excellent tracking results often close to or even better than the state-of-
art methods, which rely on more sophisticated online learning methods. More
specifically, our tracker achieves the best result in the sequences Girl, Faceocc2,
Board and Liquor, and the second best result in the sequences David and Box.
These results verify that our tracking framework can handle significant occlusion,
background clutter and appearance change. Our tracker can successfully and
closely follow the object in 7 out of the 8 video sequences and wins in the
highest number of trials. PROST achieves excellent results as well, followed by
the MIL and Frag tracker.

Table 1. Mean distance error to the ground truth. Bold: best. Underlined: second best.

Sequences # Frames AdaBoost ORF FragTrack MILTrack PROST NN

Girl [30] 502 43.3 – 26.5 31.6 19.0 18.0
David [31] 462 51.0 – 46.0 15.6 15.3 15.6
Faceocc1 [5] 886 49.0 – 6.5 18.4 7.0 10.0
Faceocc2 [20] 812 19.6 – 45.1 14.3 17.2 12.9
Board [21] 698 – 154.5 90.1 51.2 37.0 20.0
Box [21] 1161 – 145.4 57.4 104.6 12.1 16.9
Lemming [21] 1336 – 166.3 82.8 14.9 25.4 79.1
Liquor [21] 1741 – 67.3 30.7 165.1 21.6 15.0
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4.1 Failure Modes

Our tracker is not without its limitations. For instance, it failed to follow the
target closely in the Lemming sequence ( Figure 5 ). There are three major
limiting factors: First, experiments show that the SIFT descriptor cannot handle
motion blur well, because no features are found in regions of uniform texture.
For the same reason, very few features can be reliably found on the body of the
lemming even when the object is static. Therefore, the current NN tracker would
benefit from descriptors that capture uniform regions and motion blur better.
Second, our tracker does not utilize any advanced motion models. Consequently,
if the feature matching step fails completely, i.e. generates uniform matching
scores at all the pixels, our tracker stays still due to the presence of a motion
penalty. How to use advanced filtering technique to cope with matching failure
under heavy background clutter is left for future work. Third, the current tracker
cannot localize objects very precisely when the object’s shape deforms. This
is because a rectangle that is axis-parallel to the image boundaries is used to
bound the target. How to localize regions of varying shape and orientations in
an efficient manner is an interesting challenge.

5 Conclusions and Future Work

The combination of nearest-neighbor classification of bags of features, efficient
subwindow search, and our novel feature selection and pruning method yields
a simple and efficient tracking-by-detection algorithm that handles occlusions,
clutter, and significant changes of scale and appearance. Computation occurs at
near-frame-rate (without counting feature detection) even in a relatively naive
Matlab implementation. Performance quality in terms of stability and plasticity
is competitive and often better than the previous state of the art. Our theo-
retical analysis suggests some of the reasons why nearest neighbor works better
than more sophisticated classifiers in this context. Immediate future work en-
tails improvements of implementation, as suggested earlier, for true real-time
performance, and the use of more recent feature detection schemes. Longer term
questions concern the incorporation of more detailed motion models, backup
search strategies for lost objects, tracking complex objects by parts, the ex-
ploitation of a priori appearance models for certain categories of targets (e.g.,
people, cars), and how to select target without user intervention.
Acknowledgement: This material is based upon work supported by the NSF
under Grant IIS-1017017 and by the ARO under Grant W911NF-10-1-0387.
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Fig. 6. Each column (left: board; middle:liquor; right:box) shows the performance of
NN, MIL, Frag, PROST and ORF on selected frames. NN typically outperforms all
other methods in cases with significant occlusion, scale and appearance change.


