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Abstract

We present a new paradigm for tracking objects in video
in the presence of other similar objects. This branch-and-
track paradigm is also useful in the absence of motion, for
the discovery of repetitive patterns in images. The objec-
t of interest is the lead object and the distracters are ex-
tras. The lead tracker branches out trackers for extras when
they are detected, and all trackers share a common set of
features. Sometimes, extras are tracked because they are
of interest in their own right. In other cases, and perhaps
more importantly, tracking extras makes tracking the lead
nimbler and more robust, both because shared features pro-
vide a richer object model, and because tracking extras ac-
counts for sources of confusion explicitly. Sharing features
also makes joint tracking less expensive, and coordinating
tracking across lead and extras allows optimizing window
positions jointly rather than separately, for better results.
The joint tracking of both lead and extras can be solved op-
timally by dynamic programming and branching is quickly
determined by efficient subwindow search. Matlab experi-
ments show near real time performance at 5-30 frames per
second on a single-core laptop for 240 by 320 images.

1. Introduction
The important problem of tracking objects in video

presents many challenges. The object itself may change in
appearance and configuration; illumination and viewpoint
may vary over time; occlusions may hide the object com-
pletely or in part; the background may be cluttered with
other items similar to the object being tracked.

The rich literature aimed at these challenges describes a
wealth of tracking methods. A majority of these track rect-
angular windows around the object of interest. Conceptu-
ally, the key step in these methods is the search of the one
window whose appearance is most similar to that of a model
derived from the object window in the previous frame:

Ŵk = arg min
Wk∈R

µ (Wk;Wk−1, Ik,Fk−1) (1)

Figure 1. Top row: from left to right are the 1st, 100th and 150th

frame of a video sequence. The target to be tracked is bounded
by a red rectangle in the first frame. Bottom row: Three possible
tracking outcomes for the 200st frame. The appearance change
of the birds are dramatic and the confusion is most significant in
the 150th frame: The second bird resembles the first bird in frame
100 more than the first bird in frame 150 resembles its own image
in frame 100. As a result of this confusion, a typical tracker can
easily follow the wrong target (bottom left), or encompass both
birds (bottom center) if the window is allowed to change shape.
In contrast, our tracker avoids this confusion (bottom right) and
tracks each bird correctly. In addition, each tracker adapts better
to change, because trackers share features. (All demo videos used
in this paper are downloaded from YouTube.)

In this equation, Wk is the window geometry (its position,
size, aspect ratio,...) in the kth frame Ik, and Fk−1 is the
appearance model computed from frames up to Ik−1. The
setR is the space of all windows to be searched in Ik, and µ
is the matching cost that measures dissimilarity of appear-
ance. For instance, in the classical Lucas-Kanade tracker
[17, 21], Fk−1 collects the pixel values in Wk−1 and µ is
the Sum of Squared Differences (SSD) measure. In a more
recent example [7], Fk−1 is a bag of SIFT feature descrip-
tors in Wk−1 and µ accounts for both matching costs and a
measure of geometric closeness between Wk and Wk−1.

We depart from this tradition in order to address a partic-
ularly insidious type of background clutter, that is, the pres-
ence of additional objects that are similar to the one being
tracked. Borrowing motion picture terminology, we call the
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main object of interest the lead object, and the other simi-
lar, distracting objects the extras. For instance, a person in
a crowd is selected as the lead – perhaps by a user or by an
automatic person detector – and the other people around the
lead are the extras. Similarly, we can think of a lead car in
a traffic of extras, or a lead fish in a school of extras.

We contend that the best way to track the lead is to also
track the extras, for several reasons. First, in some cases
we are interested in all objects, such as when we want to
determine traffic patterns or flow to popular destinations.
Second, tracking extras makes each tracker aware of all the
others, even if the lead is the only object of interest. Track-
ing the extras shows how similar they are to the lead, and
this lets the lead tracker determine more appropriate thresh-
olds of similarity. It also informs each tracker of where all
similar objects are, so that the choice of motions that fit all
objects can be made collectively and globally optimal for
all, rather than greedily for each single object. This partic-
ularly important point is illustrated in Figure 1.

A third reason for tracking both lead and extras is that
trackers of similar objects can share appearance models. If
one tracker observes a person from many viewpoints, an-
other person tracker can use the richer appearance model
from the first tracker to adapt more nimbly and flexibly to
changes in pose of its own target.

Conceptually, the fact that there is typically a lead object
suggests a branch and track paradigm. The lead object is
described first, and an automatic process then determines
whether the tracker needs to branch out, that is, to spawn a
new tracker that has initially the same appearance descriptor
as the lead tracker but for a different image window.

This paradigm is surprisingly useful. First, literal
branching – one object that becomes many over time –
is pervasive in nature. Cells divide into multiple copies
(Figure 2); bacteria multiply (ibidem); clouds shred into
cloudlets in the wind; rivers branch into multiple streams
around obstacles; plant twigs spawn more twigs.

Another source of branching is just visual and relates to
image projection, with its tendency to occlude objects from
view and then reveal them again. For instance, a queue of
people can appear as a single person if the camera is facing
the person in front. As the camera travels around the queue,
more people come into view.

The branching from lead to extras need not occur over
time, but can be merely conceptual, and arise even when
motion is minimal or nonexistent. For instance, a user or an
automatic detector selects a single flower, and the “tracker”
branches out to find other flowers in the meadow (Figure 3).

In summary, the branch and track paradigm addresses
in a unified way at least three seemingly different tasks:
tracking genuine branching processes (Figure 2), tracking
a lead object surrounded by extras, and filling in a region
with repetitive patterns and identifying similar objects.

Figure 2. Cell division (top and middle row) and bacterial growth
(bottom row). Red rectangles are the targets to be tracked. Our
tracker handles these natural branching processes well.

Figure 3. Each row exhibits a video sequence and the left colum-
n shows a sample frame from each video. The initial window is
placed on the frame shown in the middle column and similar ob-
jects are found and tracked in successive frames – or, if desired,
in the same frame, fed repeatedly to the algorithm. The shape of
the windows can vary, and the filling process takes from several
frames to several hundred frames to finish (right column), depend-
ing on the extent of appearance change.

The rest of the paper is organized as follows: Section
2 compares our work in previous literature, and clarifies in
particular the key differences from methods for multiple ob-
ject tracking. The problem formulation and algorithms are
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presented in Section 3. Experimental results are presented
in Section 4 and Section 5 concludes.

2. Previous Work
The state of the art of visual tracking has advanced sig-

nificantly in the past 30 years [17, 21, 9, 3, 22, 1]. On one
hand, feature detectors and descriptors [21, 16, 4, 20, 6]
have been developed for capturing visual appearance in an
invariant way. On the other hand, online learning algo-
rithms such as Random Forests [2], Boosting [23], Multiple
Instance Learning [1] and Nearest Neighbor [7] have been
proposed to enhance the trackers’ adaptivity to changes of
illumination, scale, cluttered background and occlusion.

It is important to distinguish our work from that on multi-
object tracking [14, 19, 10, 12, 8, 18, 13], which has focused
mostly on vehicles and pedestrians. While people or vehi-
cles do appear as split or merged in the videos considered in
this type of work [18], these methods are mainly concerned
with trajectory analysis and either data association or iden-
tity management [14, 12]. In these methods, each tracker
has a separate state. The goal is then to maintain the trajec-
tories of individual trackers and avoid confusion between
different people or vehicles.

While our work of course benefits from these insights,
our trackers share appearance models and coordinate their
processes of window selection, primarily for tracking a sin-
gle window in a more reliable way! The introduction of a
branching process also naturally defines a dependency rela-
tion among the lead and the extras and between extras and
extras. We can use this dependency to optimize the track-
ing result in a global way and improve data association by
asking for an optimal configuration across trackers, similar
to the matching of pictorial structures [5].

Our contributions First, to the best of our knowledge,
ours is the first work to instantiate model sharing through an
explicit branching process with the goal of eliminating tar-
get confusion and to enrich models by feature sharing. Sec-
ond, we exploit the branching relation for both lead and ex-
tras to jointly track multiple windows. The branching pro-
cess uses Efficient Subwindow Search ( ESS )[11] to handle
scale change and a coordinated, structural configuration is
tracked efficiently by dynamic programming [5].

3. Branch and Track
For ease of exposition, we start with the the description

of our basic tracking module for a single window. We then
describe the branching conditions and the notion of branch-
ing tree, and show how to use branching trees to cast the
tracking of both lead and extras as a global optimization.
We describe a feature sharing mechanism that helps indi-
vidual trackers adapt to appearance change. We also give

Figure 4. A school of yellow tang. The fish with the red dots and
the maximal rectangle is the lead and the rest are the extras. The
blue dashed lines among the trackers are the arcs in the branching
tree and encode pairwise spatial constraints.

an efficient algorithm to do the branch and track.

3.1. The Single Tracking Model

Although many tracking methods can form a basis for
branch and track, we use the nearest-neighbor based track-
er in [7] for its simplicity and straightforward implementa-
tion. The tracker accumulates object and background mod-
els over frames and each model is composed of SIFT fea-
tures associated to the object and background respectively.
The equation for tracking a single optimal window Ŵk is:

Ŵk = arg min
Wk∈R

 E(Wk)︸ ︷︷ ︸
visual inconsistency

+λ κ(Wk,Wk−1)︸ ︷︷ ︸
motion discontinuity


(2)

The term E(Wk) sums the cost of each feature within
that window and the cost of a feature is based on its rela-
tive closeness to both object model and background model.
κ(Wk,Wk−1) penalizes window geometry change includ-
ing window position, width, height and aspect ratio varia-
tion between Wk and Wk−1. The regularization parameter
λ balances visual inconsistency and motion discontinuity.
R contains all possible rectangular shapes within the image
domain. In [7], searching for the optimal window is fast
thanks to the efficient subwindow search method [11].

3.2. Branching Conditions

How should one decide if the current tracker is to s-
pawn another tracker for extra targets? Our basic idea is
as follows: For each frame and each individual tracker, we
first determine a single, optimal window using Equation (2).
Then, recursively, we look for a second-best window in the
rest of the search space, if there is any that is similar enough
to the best window and – to avoid branching to the paren-
t itself – in a different enough position in the image. In
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Figure 5. Matching of two branching trees in consecutive frames.

addition, branching is discouraged if the appearance of the
current parent window has changed dramatically since its
inception. This last condition is introduced to prevent triv-
ial branching, in cases where the current parent window has
lost most of its features as a result of occlusion or dramatic
changes of appearance. Thus, a parent tracker can spawn a
child tracker if the parent has

a) small overlap with the window of the child tracker;

b) sufficient similarity to the child window;

c) sufficient similarity to its own appearance at inception.

These conditions can be formalized as follows:

Definition 1 (Branching condition) Let W i
k be the win-

dow of the ith tracker at frame k and let α(i) be the index
of the first frame in which tracker i is born. A test window
W t
k is spawned from W i

k if:

1

ζ
E(W i

α(i)) ≤ E(W i
k) ≤ ζE(W t

k \W i
k) (3)

where ζ > 1 controls the stability of the branching process
andE(W t

k\W i
k) evaluates the visual consistency of window

W t
k excluding the content belonging to W i

k. This exclusion
copes with condition a). The first inequality in Equation
(3) addresses condition c), and uses the evaluation score of
the appearance of the ith tracker at its inception to decide
if the tracker in its current state is sufficiently reliable. The
second inequality complies with condition b) by comparing
the similarity of the child and parent window.

3.3. Branching Tree and Joint Tracking

The fact that a tracker is branched from its parent tracker
naturally defines a dependency relation:

Definition 2 The branching tree associated to the kth im-
age Ik is a directed tree Tk = 〈Vk, Ek〉 with Vk the set of
trackers and Ek the arc set encoding branching relations.

In other words, (W i
k,W

j
k ) ∈ Ek implies that the trackerW j

k

was branched out from tracker W i
k at some frame before

the kth frame. Figure 4 shows the tree among a school of
fishes. Note that the branching tree is a dynamic tree with
structure updated online frame by frame. The joint tracking
is formulated as finding the optimal tree:

T̂k = argmin
Tk

 E(Tk)︸ ︷︷ ︸
visual inconsistency

+λ κ(Tk, Tk−1)︸ ︷︷ ︸
structural difference

 (4)

The formulation is clearly a generalization of Equation (2).
In particular, we express E(Tk) as the summation of the
visual inconsistency of each tracker belonging to Vk:

E(Tk) =
|Vk−1|∑
i=1

E(W i
k) (5)

The structural difference term κ(Tk, Tk−1) compares all
corresponding pairs of windows of Tk and Tk−1 in terms
of their spatial geometry. Let ei,jk−1 = (W i

k−1,W
j
k−1) be a

window pair in Ek−1 and its corresponding candidate win-
dow pair at frame k be (W i

k,W
j
k ) (Figure 5). We specify:

κ(Tk, Tk−1) =
∑

ei,jk−1∈Ek−1

‖(W i
k−W

j
k )−(W

i
k−1−W

j
k−1)‖

2

(6)
We represent W i

k as a two dimensional vector that en-
codes the spatial (x, y) coordinate of the center of the win-
dow, and ‖u‖2 is the squared Euclidean norm of the two
dimensional vector u. Note that the size of each window is
assumed to be fixed for all the frames after its birth. But d-
ifferent trackers can have different window sizes depending
on how each window is initialized in branching.

3.4. The Algorithm

We give a practically efficient algorithm for branch and
track. The general framework is fairly simple. The input is
the branching tree Tk−1 in the previous frame, the accumu-
lated object and background models, and the current frame
Ik. The output is the updated tree in the current frame, to-
gether with the updated object and background models.

Step.1: Process image Ik and evaluate E(W i
k) for each

possible window location and tracker index i. Then
compute the optimal tree T̂k using Equation (4);

Step.2: Apply branching tests of Equation (3) to each node
tracker of T̂k and recursively spawn new trackers using
Equation (2) if they pass the branching tests;

Step.3: Update the child-parent relations of T̂k and update
both object and background models accordingly. Set
the frame counter k = k + 1.
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Figure 6. Branch and track on a video sequence where birds with similar appearance appear one after another. Note that the appearance
change of the birds is sometimes large and the background clutter caused by the extras makes a single tracker difficult to follow the target
correctly. Our framework handles this case well and each bird gets tracked correctly in all the 500 frames.

We analyze the complexity of each step. In Step.1, after
SIFT detection, evaluating the consistency for each possible
window position is fast using the integral image representa-
tion. The optimal tree configuration by Equation (4) can be
found efficiently by dynamic programming, similar to the
matching of pictorial structures [5].

The branching process in Step.2 uses the Efficient Sub-
widnow Search method [11], which in practice reduces the
typical running time for searching for an optimal window
drastically to sub-linear time with respect to the image size,
instead of the otherwise quadratic complexity. Of course
the actual running time depends on the size of the tree and
also on how many new trackers are spawned.

The last step is efficient as well. The model updating
scheme is the same as in [7] and we basically include all the
matched features into the current object model and discard
old features in a First-In-First-Out order. The model created
by the first frame is always kept for reference.

3.5. Feature Sharing

Different from single object tracking, the branch and
track paradigm provides a natural way to learn and share
features among both lead and extras. Let F ik be the indi-
vidual object feature set (i.e. the set of SIFT features) for
tracker W i

k at the kth frame. We use all the features accu-
mulated by each single tracker to probe new windows in the
next frame. The shared feature set, denotedFk, is therefore:

Fk =

|Vk|⋃
i=1

F ik (7)

This simple feature sharing scheme is surprisingly useful
as the shared feature set actively gathers appearance infor-
mation in a more global way and hence enables each indi-
vidual window to be matched more reliably than what local
methods can do. The additional advantage of feature shar-
ing is the speedup in matching features. Instead of matching
individual trackers one by one, we can now match all track-
ers in a batch processing mode.

4. Experiments
Our experiments are mainly proof-of-concept. In the first

experiment, we test our trackers on both natural and visual
branching process. Sample results are shown in Figure 2,
Figure 3, and Figure 6.

In the second experiment, we show in Figure 7 that
branch and track can also be useful in discovering repeti-
tive patterns and filling a coherent region if we treat a static
image as a fake video sequence.

The proposed branch and track algorithm is efficient in
practice. Excluding the time for SIFT detection, the com-
putation can be performed in 5 − 30 frames per second
on a single-core laptop for video sequences of resolution
320× 240, which contain 2 to 20 similar objects. The pro-
gram is written in MATLAB and modules of Efficient Sub-
window Search and dynamic programming are implement-
ed in C++/Mex. More video demos and the code are avail-
able at www.cs.duke.edu/˜steve/branch_and_
track.html.

4.1. Limitations

The limitations of the current framework are threefold:
First, we assume that the branching tree never shrinks for
simplicity. This is not realistic in practice and we expect one
can also handle shrinking cases by determining in addition
whether a tracker is lost or not.

Second, we find that branching is sensitive to the shape
of the window. For instance, if the initial window already
covers many similar objects and leaves few similar objects
outside, the branching seems unlikely to happen. The im-
provement could be to automatically find the pattern in im-
ages and adjust the window to fit the pattern scale.

Third, the SIFT features seem not very reliable in places
of motion blur and uniform texture. Therefore, our tracking
result should benefit from better feature descriptors.

5. Conclusion and Future Work
Branch-and-track is a simple and effective method for

tracking a lead object in the presence of multiple distracters
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Figure 7. Branch and track on static images from [15]. The left
column shows the image with one or two windows specified by a
user. The right column shows the results of spatial tracking.

– the extras – and can also be used for the detection of repet-
itive patterns in still images. Tracking extras makes tracking
the lead nimbler and more robust, both because shared fea-
tures provide a richer object model, and because tracking
extras accounts for sources of confusion explicitly.

Coordinating tracking across lead and extras allows opti-
mizing window positions jointly rather than separately, for
better results. The optimization is highly efficient thanks
to dynamic programming and efficient sub-window search,
which can handle large motions and changes in object size.

Future work includes the design of feature descriptors
to better capture motion blur and appearance change. We
also favor an algorithm that automatically detects spatial
temporal patterns among similar objects.
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