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Abstract

Many computer vision systems approximate targets’
shape with rectangular bounding boxes. This choice trades
localization accuracy for efficient computation. We propose
twisted window search, a strict generalization over rectan-
gular window search, for the globally optimal localization
of a target’s shape. Despite its generality, we show that the
new algorithm runs inO(n3), an asymptotic time complexi-
ty that is no greater than that of rectangular window search
on an image of resolution n× n. We demonstrate improved
results of twisted window search for localizing and track-
ing non-rigid objects with significant orientation, scale and
shape change. Twisted window search runs at nearly 10
frames per second in our MATLAB/C++ implementation on
images of resolution 240× 320 on a quad-core laptop.

1. Introduction
Despite the use of a wide variety of features and scoring

schemes, many algorithms in object recognition [31, 32, 20,
10, 11] and tracking [24, 8, 1, 3, 21, 26, 4, 25, 27, 22] can
be summarized as finding a single rectangular window over
which some additive score is maximized. The naive algo-
rithm for this task takes O(n4) on an image of n×n pixels.
Throughout the paper we assume that an image is square
and contains n rows and n columns. Lampert et al. [20] ac-
celerate the average running time of the exhaustive search
to O(n2) using a branch and bound technique, although the
worst case complexity remains O(n4). This algorithm was
subsequently improved to O(n3) in worst case by An [2]
and was further applied in human action categorization [35]
and object tracking [16] with augmented priors.

A rectangle only approximates a target’s shape loosely.
Most daily life objects have much more complex shapes
than rectangles. We propose to represent targets’ shape us-
ing twisted windows, a generalization of rectangular win-
dows. Twisted windows encompass the entire class of con-
vex shapes and some non-convex families. Figure 1 illus-
trates that twisted windows are rich.

Figure 1. Example results of twisted window search on flamingo,
jellyfish, peacock, dancer, snake and swimmer. Scores are gener-
ated in Section 4. All the images and videos used in this paper are
downloaded from Google Image and YouTube. The global opti-
mization takes less than 0.1 seconds for each image running on a
quad-core laptop. The C++/MATLAB implementation is available
at http://www.cs.duke.edu/˜steve/twists.html

The literature in shape localization is rich in both non-
rigid object tracking [18, 9, 28, 7, 19, 14, 17, 15] and object
detection [34, 36, 30]. The techniques used in non-rigid
object tracking include active contours, level sets [18, 9],
background subtraction [17], Hough transform [14, 15], and
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Figure 2. A twisted window intersects an arbitrary horizontal line
in at most one connected component. This connected component
may be a line segment lying in the shape interior or boundaries. It
can also be degenerated to a single point on the boundary.

segmentation [7]. These methods typically rely on sampling
techniques in local regions and do not exhaustively search
for all the possible shapes in an image.

Shape localization methods have also been studied in ob-
ject detection (e.g. [36, 30]). Most algorithms require inter-
mediate representations and abstractions. In the work of
[36], the shape is represented by a ratio contour [33]. Their
search time complexity is super quadratic, too slow for near
real time performance. In [30], a segment graph is first built
from images and the optimization is run on the graph rather
than on individual pixels.

Different from these works, we search for the optimal
twisted window in the entire image domain and at the pixel
level. This accounts for even extreme position drift and sig-
nificant shape deformation. The worst case time complexity
of twisted window search is practically identical to that of
the optimal subwindow search 1, and is adequate for near
real time performance on images of moderate size. More-
over, our method is independent of image segmentation and
requires no intermediate abstractions.

Recently, Felzenszwalb and Veksler [13] gave a tiered
scene labeling algorithm using dynamic programming. Al-
though their objective and application scenarios are very d-
ifferent from ours, we find their algorithm closely related to
twisted window search. The difference is that their objec-
tive is cast in a Markov Random Field and allows only lo-
cal, pairwise smoothness penalties. In our formulation, the
smoothness penalty is imposed globally and allows long-
range shape deformation. Our algorithm follows the theme
line of the optimal subwindow search, and utilizes Kadane’s
linear time algorithm for maximum-sum subarray [6] and
the generalized distance transform [12] for finding an opti-
mal twisted window with maximal score sum.

1The worst-case time complexity of optimal subwindow search is s-
lightly better than O(n3) [29]. But that algorithm is of more theoretical
than practical interest due to its leverage of fast matrix multiplication.

2. Twisted Window Search
We start with a formal definition in the continuous set-

ting and conclude this section with a discrete version of
twisted windows. The twisted window search is cast as a
global discrete optimization on an image grid.

A twisted window is any connected 2D shape that in-
tersects an arbitrary horizontal line (or an arbitrary vertical
line) in at most one connected component (Figure 2). In this
paper, we only look at horizontal lines but both horizontal
and vertical cases are considered twisted windows.

Definition 1 (Twisted window) A connected 2D shape
S ⊂ R2 is a twisted window if l

⋂
S has at most one con-

nected component for an arbitrary horizontal line l.

A twisted window is necessarily a shape without holes,
since otherwise there are at least two connected components
in l
⋂
S if l passes through a hole. The shape class of twist-

ed windows is quite general in the sense that any convex
shape is a twisted window! Twisted windows also include
many non-convex shapes. See Figure 1 and Figure 2.

2.1. Discrete Twisted Window

In the discrete setting an image function is defined on a
grid Ω of n rows and n columns. The continuous twisted
window then needs a proper translation to the discrete do-
main. We consider two mappings f and g : [1, · · · , n] →
[1, · · · , n], which map row indices to column indices. We
say f is dominated by g at interval [T,B] ⊆ [1, n], denoted
f ≺[T,B] g, if f [r] ≤ g[r] for each T ≤ r ≤ B. A discrete
twisted window is then described by its top T , bottom B,
and two sides f ≺[T,B] g. The definition follows:

Definition 2 (Discrete Twisted Window) A set S ⊆ Ω is a
discrete twisted window if there exists T ≤ B and f ≺[T,B]

g so that S = {(r, c) ∈ Ω | T ≤ r ≤ B, f [r] ≤ c ≤ g[r]}.

The space of all twisted windows on the image grid Ω is
denoted T (Ω). By listing the top left and lower right corner
of a rectangle, we know that there are in total O(n4) rectan-
gular windows in Ω. The interesting question is how many
discrete twisted windows there are on the image grid Ω. The
answer is easy: For each (T,B) pair we have

(
n
2

)B−T+1

combinations for the choice of f and g, the total number of
discrete twisted windows in Ω is therefore:

|T (Ω)| =
∑

1≤T≤B≤n

(
n

2

)B−T+1

∼ O(n2n)

Despite the dramatic difference in their search spaces
(polynomial versus exponential), we show below that twist-
ed window search has the same (!) asymptotic time com-
plexity as rectangular subwindow search using dynamic
programming. We turn to the optimization part.



2.2. Global Optimization

Let ξ : Ω → R be a score function that takes both pos-
itive and negative values. The most intuitive definition for
twisted window search would be:

max
T≤B,f≺[T,B]g

∑
T≤r≤B

∑
f [r]≤c≤g[r]

ξ(r, c) (1)

Unfortunately the cost ξ(r, c) is imperfect in practice and a
twisted window without proper constraints would be very
sensitive to noisy score functions. We therefore use reg-
ularization, a commonly used strategy for constraining ill
posed solutions, for controlling the smoothness of f and g.
The smoothness of f is measured by the negative of total
variation of f , defined as:

σ(f) = −‖∇f‖1 = −
n−1∑
r=1

| f [r + 1]− f [r] | (2)

Here we use the L1 norm of the gradient of f although other
measures such as the squared Euclidean works equally well.
Clearly the larger σ(f) is, the smoother f becomes.

The global optimization of the twisted window search
therefore integrates both scores and smoothness considera-
tions. We have the following definition:

Definition 3 (Twisted Window Search) Let λ > 0 be a
regularization parameter that balances the data scores and
the smoothness measure. The twisted window search on a
2D image grid is cast as the following global optimization:

max
f≺[T,B]g

λ
σ(f) + σ(g)︸ ︷︷ ︸

smoothness

+
∑

T≤r≤B

∑
f [r]≤c≤g[r]

ξ(r, c)

︸ ︷︷ ︸
data scores


(3)

We remark that as λ→ +∞, the twisted window search
is equivalent to the rectangular window search because then
both f and g are enforced to be vertical line segments. It is
in this sense that twisted window search is a strict general-
ization over rectangular window search.

3. Algorithm
We show how to do the twisted window search of Equa-

tion (3) in O(n3) time where n is the number of rows or
columns of an input image. This time complexity is asymp-
totically equivalent to the subwindow search given in [2].

Our algorithm utilizes two dynamic programming proce-
dures. The first is known as Kadane’s algorithm for finding
the maximum-sum subarray [6]. The second is known as
the generalized distance transform [12], and is equivalent
to computing the lower envelope of cones or parabolas on

Figure 3. Twisted window search for λ = 0, 1, 3, 5, 8, 20. Red and
black dots receive positive and negative scores respectively. λ = 0
corresponds to the twisted window search without regularization
and is very sensitive to imperfect scores. When λ is large (e.g.
λ = 20), the twisted window search is equivalent to rectangular
window search. We fix λ = 1 throughout this paper.

an image grid. Combined together they produce an efficient
algorithm for twisted window search.

We first note that the score sum of any interval a-
long each row can be evaluated in O(1) time if we pre-
compute an integral image. That is,

∑
f [r]≤c≤g[r] ξ(r, c) =

Fr(f [r], g[r]) where Fr is a n×nmatrix and Fr(a, b) mem-
orizes the summation of scores from column a to column b
at row r when a ≤ b. When a > b, we set Fr(a, b) = −∞.
Equation (3) can be expanded and simplified as:

max
T,B:1≤T≤B≤n

max
f,g

{
B∑
r=T

Fr(f [r], g[r])

−λ
B−1∑
r=T

(|f [r + 1]− f [r]|+ |g[r + 1]− g[r]|)

} (4)

where we have dropped the condition f ≺[T,B] g because
the cost Fr(a, b) = −∞ whenever a > b, and such a com-
bination is avoided implicitly because of the maximization.

To further expose the structure of the optimization, it is
best to view (f [r], g[r]) as a 2D point pr rather than two
separate numbers. The benefit is that the smoothness term
|f [r+1]−f [r]|+|g[r+1]−g[r]| is now simplified to ‖pr+1−
pr‖1, the L1 norm of the 2D vector difference pr+1 − pr.
Equation (4) can further be simplified and written as:

max
T≤B

max
{pr}Br=T

{
B∑
r=T

Fr(pr)− λ
B−1∑
r=T

‖pr+1 − pr‖1

}
(5)

3.1. Kadane’s Idea

Let Er(pr) be the optimal score at point pr of row r.
There are two choices: Either the top side of the twisted
window starts at row r, and in this case the score is simply



Figure 4. Twisted window search vs. subwindow search [20, 2].

the data score Fr(pr) alone. Or the twisted window contin-
ues from the previous row and in this case the score is:

Fr(pr) + max
pr−1

{Er−1(pr−1)− λ‖pr − pr−1‖1}︸ ︷︷ ︸
Sr(pr)

(6)

where Sr(pr) accumulates the previous data scores and the
consecutive smoothness scores. The final score Er(pr) is
then the maximum of the scores produced by the two choic-
es, and can be compacted into the following state equation:

Er(pr) = Fr(pr) + max {Sr(pr), 0} (7)

This equation means that whenever the score Sr(pr)
drops below zero, we can safely discard the previous solu-
tion and place the top side of the twisted window at the cur-
rent row. This idea is essentially the same as Kadane’s al-
gorithm for computing the maximum-sum subarray. To find
the optimal solution one needs to memorize the pr that re-
ceives the maximal score Er(pr), and a linear scan suffices
for tracing back the twisted window. Er(pr) is evaluated for
each pr at each r (O(n3) positions in total) and each evalu-
ation involves computing Sr(pr) which takes O(n2) time if
computed naively. The overall time complexity is therefore
O(n5). Next we improve the complexity toO(n3) using the
generalized distance transform.

3.2. Felzenszwalb’s Distance Transform

The challenge is to compute Sr(pr) in amortized O(1)
time instead of O(n2) time for each pr. We recognize that
Sr is in the form of a generalized distance transform:

Sr(pr) = max
pr−1

Er−1(pr−1)︸ ︷︷ ︸
,−µ(pr−1)

−λ‖pr − pr−1‖1


= min
pr−1

{µ(pr−1) + λ‖pr − pr−1‖1}

(8)

which is equivalent to computing the lower envelope of
cones placed at a two dimensional grid. It is known [12]

that this lower envelope can be computed in O(n2) time on
a n × n matrix. The amortized complexity for evaluating
each single Sr(pr) is therefore O(1).

In summary, the optimization of Equation (3) can be
computed in O(n3) time. We remark that this complexity
remains the same even if we replace the L1 norm in Equa-
tion (2) with the squared Euclidean metric or a truncation
is applied because the generalized distance transform work-
s for all three cases with the same time complexity. This
concludes the computation for twisted window search.

4. Experiments
We apply twisted window search to the tracking and lo-

calization of non-rectangular, non-rigid objects. There is a
single parameter λ in twisted window search. To understand
its effect we first do the twisted window search on synthet-
ically generated scores (Figure 3) with different choices of
λ. It is clear that a tiny λ ≈ 0 makes the localization sensi-
tive to imperfect scores while a large λ reduces the twisted
window search to optimal subwindow search. We find em-
pirically that λ ∈ [1, 3] works generally well provided that
both positive and negative scores are of the same order of
magnitude. We fix λ = 1 throughout the experiments.

4.1. Score Generation

In the first frame, we require a user to mark the object to
be tracked by clicking 5 points in the interior of the object
and an additional 5 points in the background. For each point
we collect its R,G,B colors stacked as a 3D vector. We keep
features simple because we expect the global optimization
of twisted window search to compensate for this simplici-
ty. More sophisticated, well engineered, high dimensional
features such as SIFT [23] or SURF [5] should enhance the
robustness of feature matching in object tracking, but with a
greater running time. They fit into our framework for score
generation as well, as exposed below.

Let O be the collection of object features and B be the
collection of background features. Let vp be the 3D color
vector of pixel p. Then for each pixel p, we compute the
ratio γ(p) between the distances between vp and its nearest
neighbors in B and O respectively:

γ(p) =
minu∈B ‖u− vp‖
minu∈O ‖u− vp‖

(9)

and we assign the score based on the ratio:

ξ(p) =

 +1 if γ(p) > 3
2

−1 if γ(p) < 2
3

− 1
2 otherwise

(10)

We remark that the numbers 3
2 and 2

3 are also used in SIFT
[23] for the robust discriminative feature matching.



Table 1. Twisted window search vs. rectangular window search

pheasant plane fish1 dolphin diver

Baseline ([20, 2]) 0.41 0.48 0.76 0.54 0.52
Twisted 0.69 0.75 0.91 0.85 0.77

jellyfish1 jellyfish2 fish2 surfer

Baseline ([20, 2]) 0.60 0.80 0.40 0.47
Twisted 0.86 0.94 0.86 0.82

We run twisted window search on the image with com-
puted scores twice, once horizontally and once vertical-
ly. The final shape is the one that has the maximal score.
In each successive frame, we compute the scores using
the same formula of Equation (10). Both the object and
background models are updated for adapting to appearance
changes. This is realized by adding sampled features on the
tracked object and background respectively, and excluding
features that live beyond a chosen time stamp. The selected
features anchored to the first frame are kept for reference.
We use no motion or locality constraints to showcase that
twisted window search is a global optimization that handles
extreme position and shape changes.

4.2. Proof of Concept

We collect 9 simple videos from YouTube and provide
detailed shape masks as ground truth for selected frames.
Let M be the mask shape and T be a twisted window. The
accuracy is measured by the ratio:

ρ(M,T ) =
|M
⋂
T |

|M
⋃
T |

(11)

It is clear that ρ(M,T ) = 1 if M = T and ρ(M,T ) = 0
if M

⋂
T = ∅. Since we use particularly simple features,

we focus on twisted window’s ability to localize highly de-
formed objects. We treat subwindow search (e.g. [20, 2]) as
the baseline method, and compare twisted window search
to subwindow search using the same pixel scores.

Table 1 compares subwindow search and twisted win-
dow search in terms of average accuracy. It is clear that
twisted window search leads to better shape localization in
all the test cases. Since both subwindow search and twisted
window search are computed on the same scores and have
the same worst case complexity, the results showcase the
advantages of twisted window search over rectangular win-
dow search for objects of complex shapes. Figure 4 gives
a visual comparison of subwindow search and twisted win-
dow search. More results are in Figure 6.

Figure 5. Twisted window search may connect multiple large pos-
itive regions into a single one. This presents difficulty for tracking
a single object in the presence of multiple objects of similar ap-
pearance. One simple solution is to cut touching boundaries and
take the connected component with the largest score summation.

4.3. Caveats and Remedies

We find that twisted window search works generally well
when positive scores are highly concentrated. There is a
subtle issue when positive scores are distributed in multiple
locations (e.g. in the presence of multiple similar objects).
The phenomenon is that the optimal twisted window tries
to connect multiple positive regions with very thin strip-
s of typical width only 1 pixel (Figure 5). This is logical
because the overall score summation is maximized when
multiple positive regions are combined with minimal neg-
ative paths. The easiest way to avoid this unnatural shape
interpretation is perhaps to cut the found twisted window
to multiple pieces. The cut is performed at 1-pixel width
strips. This can be realized by traversing the boundary of
the twisted window only once and the additional processing
time is minimal compared to the O(n3) algorithm.

On the other hand, such a shape interpretation may be
useful for tracking a group of objects as a whole rather than
separately. We therefore let users decide whether a post
processing step is necessary after twisted window search.

4.4. Running Time

Twisted window search is as efficient as the optimal sub-
window search in terms of worst case complexity. In prac-
tice we find it runs in 10 frames per second on images of
resolution 240×360 in our MATLAB/C++ implementation
on a quad core computer. The code is available at http:
//www.cs.duke.edu/˜steve/twists.html.

5. Conclusions
We propose twisted window search as a strict general-

ization of rectangular subwindow search and demonstrate
improved localization of non-rectangular, non-rigid object-
s. We show that twisted window search, cast as a global
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optimization at pixel level, can be solved in O(n3) time on
an image of n rows and columns. We favor twisted window
over rectangular subwindow search because it requires the
same amount of computation but achieves better shape
localization. It remains an open question whether there is a
faster algorithm for twisted window search.
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Figure 6. From top to bottom: pheasant, plane, fish1, dolphin, diver, jellyfish1, jellyfish2, fish2 and surfer. Twisted windows overlayed.


