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Abstract. We propose a theoretical construct coined nested pictorial
structure to represent an object by parts that are recursively nested.
Three innovative ideas are proposed: First, the nested pictorial structure
finds a part configuration that is allowed to be deformed in geometric
arrangement, while being confined to be topologically nested. Second,
we define nested features which lend themselves to better, more detailed
accounting of pixel data cost and describe occlusion in a principled way.
Third, we develop the concept of constrained distance transform, a vari-
ation of the generalized distance transform, to guarantee the topological
nesting relations and to further enforce that parts have no overlap with
each other. We show that matching an optimal nested pictorial structure
of K parts on an image of N pixels takes O(N K) time using dynamic pro-
gramming and constrained distance transform. In our MATLAB/C++
implementation, it takes less than 0.1 seconds to do the global optimal
matching when K = 10 and N = 400 x 400. We demonstrate the useful-
ness of nested pictorial structures in the matching of objects of nested
patterns, objects in occlusion, and objects that live in a context.

1 Introduction

We study explicit, visual nesting relations in images. Nested visual patterns are
commonly seen in our daily life. To name a few examples: a pupil is contained
in an eye contained in a face contained in a person. A portrait is contained in a
painting contained in a frame contained in a wall. In general, a texture is often
contained in a part contained in an object contained in a context contained in a
scene. In the literature of computer vision, most nesting relations are modeled
implicitly. In this paper we present nested pictorial structure to explicitly model
the nesting relation among textures, parts, objects, and contexts. Figure 1 illus-
trates that a nested pictorial structure represents parts in a possibly complex
topological nesting relation.

1.1 Three New Ideas

To the best of our knowledge, the nesting relation is rarely explicitly modeled in
the computer vision literature, and in particular within the context of a pictorial
structure. This paper introduces a mathematical and computational model that
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Fig. 1. Each red rectangle represents a part that can be recursively nested. The part
arrangement is allowed to deform significantly in the image domain while keeping the
nesting relations unchanged. Each part has its own cost function (e.g. +, —, , etc), and
a single sliding window without nesting would over-count the data cost. This issue is
addressed by nested features in a principled way.

accounts for the recursive nesting relations among parts and objects. Three
innovative ideas are presented:

First, we define nested pictorial structure, a concept that is rooted in the
conventional pictorial structure (e.g. [1,2]), but enforces that parts conform to
a given topological nesting relation. Moreover, parts are allowed to deform in
their geometric arrangement and the matching of a nested pictorial structure
is cast as a global optimization on the pixel level. This enriches the common
understanding of the pictorial structure framework and suggests possibly new
directions and novel computational schemes for the optimal matching.

Second, we define the notion of nested features. Nested features provide a
better, more detailed accounting of pixel costs when parts are recursively nested.
For instance, if part B is contained in part A, the spatial extent of A then needs to
exclude the spatial extent of B. The conventional way of using a sliding window
for the cost evaluation may involve significant “over-counting” of pixel costs when
one part resides within another part (Figure 1 and Figure 2). Consequently,
a typical detection algorithm may fail to localize an object under significant
occlusion due to the lack of features and to the fact that the visible spatial
extent is distributed on the boundaries rather than the interior. Nested features
address this problem in an explicit and principled way.

Third, we develop non-overlapping constraints and the constrained distance
transform, a variation of the generalized distance transform by Felzenszwalb and
Huttenlocher [3], for the efficient, global matching of a nested pictorial structure.
The constrained distance transform guarantees that no two parts overlap with
each other in the deformable template matching. This transform enhances the
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stability in the geometric part arrangement and rules out the otherwise possible
degenerate cases in which parts are collapsed together. Our algorithm runs in
O(NK) time for matching a nested pictorial of K parts on an image of N pixels.
This is asymptotically optimal and enables real time computation.

1.2 Related Work

Pictorial structures, a.k.a. deformable models or constellation models, have been
studied for decades, spanning from early work [1,4-7] to more recent contribu-
tions in recognition [8-14] and scene understanding [15]. A pictorial structure is
typically represented as a graph G = (V,E) where V is a set of symbolic parts.
Each part v € V is further represented by a rectangular window W, C Z? of
fixed size in the 2D image domain. Let f,(W,) be the cost of placing part v at
window W,,. Let the deformation cost between part v and v be §(W,,, W,,) that
measures the discrepancy between the vector linking u to v and their template
configuration. The commonly used objective is to find an optimal part allocation
through the following global optimization:

W =ar v A (W, Wy 1
{(W.} = arg min Z JAUSESNDY ) (1)
(u,v)€E
data cost deformation cost

where A is a regularization parameter that balances the data cost and deforma-
tion cost. The intuition is clear: we want an arrangement of parts that matches a
given object template in both appearance (minimizes the data cost) and spatial
configuration (minimizes the deformation cost).

The computational challenge is to efficiently compute an optimal matching
of a pictorial structure against a template. For instances, in some previous work
[6,9], the location of each part is confined to a sparse set of points for practical
processing. Felzenszwalb and Huttenlocher [16,2] show that when the spatial
constraints form a tree and when the deformation cost ¢ is in a special form,
the optimal allocation of a pictorial structure takes linear time in the size of an
image, multiplied by the number of parts. Moreover, the optimization works on
the image pixel level. The underlying technique of [2] is coined the generalized
distance transform [3], and is equivalent to computing the lower envelope of an
array of cones or parabolas. Combined with HoG features [17] and latent SVM,
Felzenszwalb et al. [13] demonstrate a state-of-the-art recognition system [18].

Also remotely related are the works in occlusion reasoning [19-21] and con-
text or scene recognition [22-24]. The nested pictorial structure is expected to
be applicable but not limited to these two areas. The notable difference is that
instead of detecting occlusion boundaries, the occlusion itself is inherently en-
coded in the nested model and is therefore enforced in an explicit way. Instead of
dividing an image into a spatial grid of cells, nested models represent an image
as a foliation of windows, one enclosing another, arranged in a possibly complex
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Fig. 2. A nested pictorial structure conformal to a nesting tree. Part a is maximal
because it is not contained in any other part. Shaded connected regions are the spatial
extent of each part.
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inclusion relation. Instead of being rigid, nested parts are allowed to deform
significantly in their geometric arrangement. The concept of a nested pictorial
structure is new to the best of our knowledge.

2 Nested Pictorial Structures

We use a < b to represent that part a is enforced to be contained in part b. That
is, any window W, associated to part a must be contained in any window W}
associated to part b: W, C W,. We have the following definition:

Definition 1 (Nesting Graph) Given a set of parts V and their inclusion
relations <, the nesting graph is represented by G = (V,E) where £ is the edge
set. Edge (u,v) € € if u < v and there does not exist | € V such that u <1 < v.
Part u is called maximal if u is not contained in any other part. A window set
{Wy ey is said to be conformal to G if W,, C W, for all (u,v) € .

It follows that the constructed graph G is a forest (a collection of trees) by
observing that the graph is acyclic and each child node has at most one par-
ent node by construction. If there is only a single maximal part, G is reduced
to a tree. Figure 2 visualizes each level of a nesting tree. In the figure each
connected component represents a single node. The nesting graph encodes topo-
logical nesting relations and complements the pairwise spatial relations defined
in conventional pictorial structures.
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2.1 Nested Features

We describe the visual content of each part using its histogram representation.
Applicable descriptors include color histogram, histogram of oriented gradient
(HoG) [17], their possible concatenations and more. The difference is that the
spatial extent of each part is inherently nested and the histogram needs to be
modified accordingly. Let h : 2 — Z” be a histogram of L bins calculated in the
image region {2. h[i] is the number of occurrences of ¢ in {2 and is nonnegative.
Histograms have an important property that for any A, B C {2:

h(AUB) =h(A)+ h(B) — h(ANB) (2)
A natural consequence is that for A C B,
h(B\ A) = h(B) — h(4) (3)

The subtractive property of Equation (3) is important for computing the
histogram of each part in the nested model. Let C, = {W, | (u,v) € £} be the
set of child windows of part v. We require that no two child windows overlap
with each other, that is, (1S = () for any S C C,. This constraint is imposed
in the global matching of a pictorial structure (See Section 2.4 for details). The
histogram of part v is therefore computed as:

hv(Wv;Cv) £ h(Wv) - Z h(W) (4)
wec,

We normalize h, to h, by dividing the area of part v:

7 . _ hy (Wy; Cy) _ h(Wy) — ZWeC’U h(W)
ho(Wy; Cy) = W\ UG] W~ Swee, W1 (5)

so that Zle ho[l] = 1. h, may be interpreted as a sample probability distribu-
tion (e.g. color distribution) of part v.

2.2 Data Cost

We score each nested part using a linear SVM classifier. Let «, and 3, be the
trained normal vector of the learnt classification boundary and the bias term
respectively for part v. We define the data cost of part v as:

po(Wy3 Cy) = {a, (Wi Cy) ) + By (6)

Let Ay = [Wy| = X wee, IW] be the area of part v. We can further expand
Equation (6) by substituting Equation (5):

SOU(WMCU) = )\i <O‘vah(Wv) - Z h(W)> + By
v wec,

= L@ b))~ Y 5 (@, hOW)) + 6,

A
v wec, Y
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Fig. 3. Additional spatial constraints combine the nesting forest (red) and any spanning
tree of the maximal parts (black).

The term % (o, h(W)) can be expanded as:

1 1 & . yll
I (aw, h(W)) = X ;O&y []hli] = Z ;v[p]] (8)

v peEW

where [[p] is the bin index of pixel p. This way of converting vector dot product
to per-pixel computation is also presented in Lampert et al. [25]. We define:

o(p) = 9)

Then, Equation (7) can be rewritten as:

@v(WMCv) = Z Ev(p) - Z Z gv(p) + Bv (10)

pEW, wel, peWw

The total data cost of the window set {W,},ey is:

¥ ({Wv}vGV) = Z va(Wv; Cv)

veY

S awm- Y Y aw+b (11)

veVY | peW, wecC, peWw
——
Jo (W) fo (W)

:Z fo(Wy) = Z Jo(W)| + const.

veV L wec,
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Fig. 4. The shaded region is the intersection of W, and R,. W, is allowed to drift
within the shaded region only. Note that the region does not assume a fixed position.
It moves with the parent window W, during deformable template matching.

where f,(W) is the summation of all the pixel costs &, within W. We remark
that f,(W) can be evaluated in O(1) time by the use of an integral image
representation. The constant numbers can be safely removed because they have
no effect on the global minimization.

2.3 Deformation Cost

We also model the typical arrangement of a nested pictorial structure. Similar
to [13] we connect nested parts by conceptual springs in a tree configuration. In
fact, the nesting forest can be directly used for specifying the tree configuration.
More spatial constraints are allowed if there are multiple maximal parts. Let &’
be any spanning tree (e.g. minimal spanning tree) of the set of maximal parts.
Then, the edge set £’ U E remains a directed tree (Figure 3). Any maximal part
can serve as a root node. The deformation cost of a set of windows {W, },¢y is:

(W loev) = > Y X = X)) — (T =T | (12)

(u,v)EEVE’ (u,v)EEUE!

(W ,Wy)

where X,, and X, are the 2D centroid of W,, and W,. T,, — T, is the given
template vector linking part uw to part v. In the definition we use the L; norm
although other metrics such as squared Euclidean [3] or its truncation apply
equally well and enjoy the same computational complexity.
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2.4 Non-Overlapping Constraints

It is important to constrain child parts so as not to overlap, in order to maintain
the validity of Equation (4) and to avoid the degeneracies of parts collapsing
into a single region. This non-overlapping constraint is also new in the context
of pictorial structures. To quantify the range each part is allowed to deform with-
out overlapping, we compute the distance transform spanned by parts’ windows
under the [, norm in the template image!. The rectangle (centered at X,,) that
first touches Voronoi boundaries within the Voronoi region of X, thus bounds
the maximal free space of W,,. Let this rectangle be R,. The non-overlapping
constraint can be expressed as W,, C R,,. Note that R, and W,, share the same
centroid by construction. Moreover, since the nesting relation is W,, C W,,, we
can combine both nesting and non-overlapping constraints into a single con-
straint: W,, C R, N W,,. See Figure 4 for illustration.

2.5 Global Optimization

The inputs to the optimization are: a nesting forest G = (V, &), the template
vectors {1, }uey, the cost functions {f, }uey, the spanning tree among maximal
parts &', the range constraints { R, },ey and a regularization parameter A. The
optimal allocation of a nested pictorial structure is:

WugRuﬂWvalolrncach (u,v)eE {Z [f ( ) Z f ( )

uey wecC,
(13)

+A Z ||(Xu - Xv) - (Tu - Tv)lll
(u,v)EEVE’

(W, Wy)

The nested pictorial structure is reduced to the conventional one when f, = f,
for each (u,v) € £ and when no nesting or overlapping constraints are imposed.
In general, the nested model extends the conventional pictorial structure by
ensuring that parts conform to a nesting forest and child parts do not overlap
in their geometric arrangement.

3 Dynamic Programming

We show that the objective in Equation (13) can be computed in O(NK) time
using dynamic programming and a technique called constrained distance trans-
form. Here N is the image size and K is the number of nested parts. Let O, (W,,)
be the optimal cost when part u is placed at window W,,. Then, for each parent

! In MATLAB, this is easily achieved by the command bwdist(I,’chessboard’). The

distance transform is linear in the image size.
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Fig. 5. The lower envelope of cones with sides beyond a range lifted to infinity.

node p we derive the following recursive state equation:

A = min {OW) ~ (W) + MW W)} (14)
Fy(Wy) = min ¢ Oc(We) + A [|(X — Xe) — (1, — 1) | (15)
S(We,Wp)
Op(Wp) = fp(Wp) + Z A;(Wp) + Z F;(Wp) (16)
c:(c,p)€E c:(c,p)eE’

Equation (15) can be evaluated in O(N) thanks to the generalized distance
transform [3]. Equation (14) can be solved in O(N) time too. Let (xc, yc), (zp, ¥p)
be the centroid of W, and W,,. The constraint W, C R.NW), can be conveniently
expressed by B < 2. —zp < A and C < y. —yp, < D where A4,B,C, D are
constants determined by the size of W, R, and W, (Figure 4). Equation (14) is
equivalent to the following 2D constrained distance transform:

_ : ro r Y
gy =, ain AF@Y) Al o= Bty -y - FII} (7)

where E and F' are constants. Geometrically the transform is equivalent to the
lower envelope of cones with asymmetric sides. The 1D version is shown in Fig-
ure 5. Similar to the generalized distance transform of Felzenszwalb and Hut-
tonlocher [3], it is easy to show that 2D constrained distance transform can be
computed in O(N) time as well. Therefore, the optimal matching of a nested
pictorial structure of K parts takes O(K N) time.
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4 Proof of Concept

We demonstrate the usefulness of the proposed nested pictorial structure in
localizing highly complex patterns, objects being occluded, and objects in a
context. We use a linear SVM as the underlying classifier for training and the
testing is similar to what is used in the recognition system of Felzenszwalb et
al.[13]. Sample results from the 12 categories of [26] are shown in Figure 6.
Some natural applications are: Finding a scene where A is in front of B or
Finding an object of particular nested patterns. For instance, we choose the
example of matching a surfer against the water, and a clown fish nested in a
sea anemone. Our method is also expected to be useful for matching animal or
human faces where the nested features are able to separate features associated
to eyes, nose, mouth, and features associated to the skin and hair, and other fine
scene characteristics. In our MATLAB/MEX implementation it takes less than
0.1 seconds to do the matching in a 400 x 400 image when the number of parts
is less than 10. The running time grows linearly with the number of image pixels
and the number of object parts, both asymptotically and experimentally.

5 Conclusions

Nested pictorial structure finds a part arrangement that is flexible in spatial
configuration, but confined to be nested accordingly. Moreover, we define nested
features which lend themselves to better accounting of pixel data cost, where a
sliding window technique may likely over-count. We develop an O(NK) algo-
rithm for the optimal matching of a nested pictorial structure of K parts on an
image of N pixels.

Promising but anecdotal results are shown. Many questions remain open.
For instance, it is not clear how to automatically construct a reasonable nest-
ing relation from training data. The current nesting relation has to be specified
manually in the training data and is therefore difficult for large scale annota-
tion. A deeper study of matching nested patterns is expected to be useful for
applications in general recognition, tracking, and instance based query systems.
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Grant No. W911NF-10-1-0387 and by the National Science Foundation under
Grant I1S-10-17017.
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Fig. 6. Example matching of nested pictorial structures. We select 12 categories of
images from Caltech256, see [26]. Each category is divided into separate sets for training
and testing. In the training step, we ask a user to mark a number of nested rectangular
windows on each training image, and a linear SVM classifier is trained for each category
from both positive and negative samples using nested feature descriptors. The feature
descriptor of each part is a concatenation of histogram of gradients and colors in that
part, excluding histograms associated to any child parts. In the matching step, the
normal vector derived from the trained linear SVM classifier is used to obtain the per-
pixel cost of Equation (9). The matching is performed on images from the test set for
each category. Similar to the recognition framework of Felzenszwalb et al. [13], we build
an image pyramid of 10 levels ranging from twice the size of the original image to half
of the original image size. Matching a nested pictorial structure is then performed on
each derived image and the one that receives the minimal cost is selected and reshaped
back. In some images the rectangles are attached to a single object. In others the
rectangles include multiple objects and their surrounding context (e.g. clown fish and
anemone, the Sphinx and pyramid, etc).



