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ABSTRACT

We measure the degree of oscillation of a sampled function f
by the number of its local extrema. The greater this number,
the more oscillatory and complex f becomes. In signal de-
noising, we want a restored function g that is simple and fits
the data f well. We propose to model this by a global opti-
mization, coined oscillation regularization, that reduces both
the data fitting error and the number of local extrema of g:

g = arg min
g

err(f,g) +A- #local extrema of g
———

data fitting error oscillation

where err(f, g) measures the discrepancy between f and g
and ) is a regularization parameter. To the best of our knowl-
edge, the number of local extrema of g is a topological prior
that is rarely exploited in the literature of regularization.

We show that this global optimization can be done effi-
ciently for one-dimensional signals. Specifically, we show
that for sampled functions with values out of a discrete al-
phabet with V' symbols defined on a chain of L nodes, the
optimal solution can be found in O(V L) time using dynamic
programming. For functions with continuous ranges (V' —
~+00), we derive a polynomial time algorithm that depends
only on L using linear programming.

Despite its simplicity in concept and algorithms, ex-
periments show that oscillation regularization often yields
state-of-art result. The availability of efficient algorithms also
makes our method highly useful in other applications.

Index Terms— Oscillation, Regularization, Dynamic
Programming, Global Optimization, Linear Programming

1. INTRODUCTION

Regularization constrains ill-posed problems which are com-
monly encountered in areas of signal processing, machine
learning and computer vision. In this paper, we explore a
new prior named oscillation regularization and apply it to the
problem of one-dimensional signal denoising.

Throughout this paper, let f : £ — )V be a given sam-
pled function where the domain @ = {1,2,--- L} is a lin-
ear chain of L nodes and the range V can be either V =

{1,2,---,V} or V = R. In both cases, the function f is
equivalent to a vector in the space V. Denoising restores a
cleaner version g from f, that attempts to remove the noise or
measurement errors embedded in f.

1.1. Literature Review

The literature of denoising is rich and ranges from local meth-
ods [1, 2] to global methods [3, 4, 5, 6]. Local methods view
denoising as a filtering problem and a local operator such as
median, Gaussian or the bilateral filter[2] is applied to each
position 1 < [ < L, with possible iterations. Compared to
global methods, local methods are typically simple, fast, and
effective, but may need parameter tuning and lack optimality
guarantees in general.

Global methods utilize optimization tools which usually
require intensive computation. For instances, many global
methods can be cast as a regularization based optimization:

g =argmin< err(f,g) —+\-Prior(g) ()
g N—— N——

data fitting error prior on g

where err(f, g) measures the discrepancy between function f
and g. For ease of discussion, throughout this paper we use:

L
err(f,9) £ |f — gl = > |fl] — gll] 2
=1

although other measures are possible without affecting the
computational complexity of the algorithms described in this
paper. For example, one useful variation is the truncation:
err(f,g) = Zle min{| f[] — g[!]|, C'} where C is a constant
that upper bounds the penalty induced by large deviations.
The term Prior(g) encodes additional properties on g. It
is often an art to chose which prior to use. For example, a
smooth function that is sparse in its gradient [3] may have:

L—1
Prior(g) = > lgli +1] = gl 3)

However, the original signal may not be smooth at all and
the chosen prior obliviously blurs the possible sharp transi-



Fig. 1. The number of extrema of a sampled function can be
drastically different from the number of zeros of its discrete
gradient. From left to right: the signals have no extrema, 1
local maximum, 3 local maxima and 2 local minima, respec-
tively. The definition of a local extremum is in Section 2.

tions. Can we do better with a prior, that is simple in concept
and avoids transition erosion?

1.2. A Topological Prior

We propose to use the number of extrema of a function to
form the prior term in Equation 1. The rationale is that the
number of extrema of a function is a useful characterization
of its complexity. Take polynomials for example, any poly-
nomial of degree d + 1:

g(x):Coxd+1+Clxd+...+cdx+cd+l (007&0)

has at most d local extrema. In other words, the greater the
number of extrema of g, the higher the degree of the poly-
nomial is required to reconstruct it, the more oscillatory and
complex the function is perceived to be.

The number of extrema of a function is a topological
quantity independent of individual functional values. Sharp
transitions incurs no penalty unless local extrema are induced.
Conversely, two local extrema induce the same amount of
penalty regardless of how much the values differ. In com-
putational topology, this measure has been used to simplify
a Morse function defined on a manifold, a technique also
known as persistence based simplification [7].

Due to possible ties in values and the global patterns ex-
hibited in the function, the number of extrema of ¢ is in gen-
eral different from the number of zero entries of the gradient
of g, expressed by L — ||[Vg|lo (See Figure 1).

1.3. Our Contributions

First, oscillation regularization is a global optimization: The
role of the data term ensures that the restored function re-
spects the actual values of the original input. The topological
prior is conceptually simple but quite effective in practice.
Second, we impose no assumptions on the input function and
allow it to be an arbitrary L-dimensional vector with possi-
bly many ties in values. Third, when the range is finite, our
method enjoys a computational efficiency on par with local
methods.

1.4. Organization

Section 2 presents relevant concepts and the framework of
oscillation regularization. Section 3 introduces efficient al-
gorithms for the global optimization using dynamic program-
ming and linear programming. Section 4 demonstrates the
advantage of oscillation regularization in effect and speed by
comparisons to other popular methods. Section 5 concludes.

2. OSCILLATION REGULARIZATION

In the one-dimensional case, a local maximum or minimum
is either a single point or an interval because of possible ties
in the values. To formalize, we have:

Definition 1 (Local Maximum and Minimum). An interval
T = [i,j] € (1,L) is a local maximum of g if g[k] is a
constant for i < k < j and g[i] > g[i — 1] as well as
gli] > gli + 1] where i,j, k all take integer values. T is a
local minimum of g if it is a local maximum of —g.

We use osc(g) to represent the number of local maxima
and minima of g. The optimization in oscillation regulariza-
tion, as we have described, is therefore to find:

g = arg min
gevet

lf —glli +X osc(g) (€]

data fitting error # extrema of g

where ) is a regularization parameter. Note that A has a physi-
cal meaning: it measures how much “work” needs to be done
in order to remove the unstable local extremum (Figure 2),
where the stability is measured by the incurred data cost.

For the ease of algorithm description, we first define as-
cending and descending intervals, similar to the notion of as-
cending and descending paths in critical net [8]:

Definition 2 (Ascending and Descending Intervals). An in-
terval [i,j],1 < i < j < L, is an ascending interval of g if
glil < gli+1] <--- < gl[j — 1] < g[j]. The interval [i, j] is
a descending interval of g if it is an ascending interval of —g.

The alternation between ascending and descending inter-
vals induces local extrema. An ascending (descending) inter-
val is maximal if it is contained in no other ascending (de-
scending) intervals. Let the number of maximal ascending
and descending intervals of g be asc(g) and des(g), we have:

Theorem 1. For any g € VF with osc(g) > 1,
osc(g) = asc(g) + des(g) — 1 5)

The proof is omitted for brevity. The fact that local ex-
trema are induced by an alternating sequence of maximal as-
cending and descending intervals form the basis for efficient
optimization in oscillation regularization.
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Fig. 2. Top row: input signal with range V' = 500, in the
form of a damped oscillation with increasing frequency from
left to right. The bottom four rows: results of oscillation reg-
ularization with A = 100, 200, 500 and 1000 respectively.

3. THE ALGORITHMS

We describe two algorithms. When the range space is finite
(.e. V =1{1,2,---,V}), we show that the global optimiza-
tion in Equation 4 can be computed in O(V L) time using
dynamic programming. When ¥V = R, we give a polynomial
time algorithm in L alone using linear programming.

3.1. Finite Range: V = {1,---,V}

For ease of exposition, we first describe a simple algorithm of
complexity O(V2L) using dynamic programming. We then
improve the complexity to O(V L) by a book keeping method.

3.1.1. The O(V2L) Algorithm

The dynamic programming procedure is intuitive: At each
step, either an ascending interval continues from a previous
ascending interval or it transits from a descending interval. In
the latter case a penalty A is incurred. The analysis works
similarly for descending intervals as well.

Let ¢t (I, v) be the optimal cost when the optimal solution
takes value v at [. Moreover, the superscript + means that the
value v is reached through an ascending interval. Similarly,
let ¢ (I, v) be the optimal cost at position ! and value v, but
through a descending interval. We then can write the follow-
ing state equations for dynamic programming:

. + ’
n _ . min, <, ¢t (I —1,v)
¢t (lv) = e(l,v) +ming iy ¢ (1 — 1,0')
_ _ . ming >, ¢ (I —1,0)
¢ (l,v) = e(l,v) + min At ming oy (I — 1.0/)

where e(l,v) = |f[l] — v| is the data fitting error.

The boundary conditions ¢t (1,v) = ¢~ (1,v) = | f[1]—v|
hold for each v € V. Since dynamic programming takes L
steps and at each step visits O(V) items, each taking O(V)
time, the overall complexity is O(V2L).

3.1.2. The O(VL) Algorithm

In the above dynamic programming procedure, we visit O (V)
items for each v € V at each step. This is not necessary if we
use a simple book keeping with intermediate variables:

C’;’(l,v) = Hllén ct () ; C(lv) = H/lén ¢ (I,0")
CS(lv) = n/lin ¢ (1,v'); Cg(l,v) = H,lin ct(1,v)

We then obtain the following shortened state equations:

¢t (1,v) = e(l,v) + min {C;(z — L) A+ CZ(l—Lv—1)

¢ (I,v) = e(l,v) —&—min{Cg(l — 1,v),/\+C’§(l —1,v+1)

These variables can be updated in O(1) time:

Ct(l,v) = min{C; Lv—1),c"(l,v)

IV +

(
C’g(l,v) = min{C’ (Lv+1),ct(l,v)
(

CZ(l,v) = min {C

IN ]

Lv—1),¢ (l,v)
~(

N~ Y~~~

Cs(lv) = min{Cg(l,v +1),¢ (I,v)

The overall complexity is therefore reduced t
which is both asymptotically and practically fast.

o

O(VL),

3.2. Infinite Range: V = R

We give a polynomial time algorithm when the range is infi-
nite. Notation is the same except that we write ¢t (/) and drop
the second index on values. Let 7 (4, j) be the minimal cost
of modifying [¢, j| to an ascending interval. 7'~ (i, j) is de-
fined symmetrically. We have the following state equations:

¢t (1) = min {2127121 {c@—-1)+TH6E )+ A}, TH(, l)}

¢ (I) = min {Qr%lrgll {ctE-1)+T G+ A}, T (1, l)}

Suppose that computing 7" (i, ) takes time h(l — i + 1).
The overall time complexity is therefore O(L?h(L)). We
show that h(L) is a polynomial by reducing the computation
of T%(1, L) to linear programming, which is polynomially
solvable. Indeed, we are facing the constrained optimization:

Given: f[1], f[2], -, f[L];
Goal: min Y-, |f[l] — g[l]l;
Require: ¢[1] < g[2] <--- < g[L];

To solve, we introduce auxiliary variables €; > 0 and the
constraints: —g; < g[i] — f[i] < g; for 1 < ¢ < L. The
additional constraints are: g[1] < g[2] < --- < g[L]. The ob-
jective is therefore: minlL:1 g;. Clearly both the objective and
the inequality constraints are linear, and hence the conclusion.

j
j



Fig. 3. Red: input functions with V' = 500 and L = 1000.
Black: results of oscillation regularization with A = 500.

4. EXPERIMENTS

For ease of experiments, we use the O(V L) algorithm for its
efficiency. Three experiments are performed.

The first experiment applies oscillation regularization to
noisy signals. Figure 3 shows two sample results of signal de-
noising. Importantly, our method preserves sharp transitions
and copes well with the ground truth of the inputs.

In the second experiment (Table 1), we compare our
method to state-of-the-art methods, notably median, Gaus-
sian, bilateral and total variation (TV) with [; and [ norms.
For fair comparisons, for each method, we search for the
optimal parameter (e.g. the window size) that minimizes the
error measure when compared against the ground truth. Let ¢
be the ground truth of f. We use the error measure:

|

1 L
=3 lgll) -l ©)
=1

Experiments show that oscillation regularization performs
best in our comparison, regardless of the amount of noise.

In the last experiment, we extend our method to the sim-
plification of a geometric figure, parameterized by its bound-
ary points {(p[l], 0[I])} 2, in polar coordinate, and apply os-
cillation regularization to p (Figure 4).

It takes two milliseconds to compute the global optimiza-
tion of oscillation regularization for a sampled function with
L = 1000 and V' = 500 on a quad-core laptop. The MAT-
LAB/MEX code is available at http://www.cs.duke.
edu/~steve/oscillation.html

5. CONCLUSIONS

Oscillation regularization reduces both the data fitting error
and the number of local extrema in a global optimization.
Interesting, open questions are how to determine the regu-
larization parameter A automatically and how to extend the
computation to high dimensional spaces.

Acknowledgement: This work is supported by the Army
Research Office under Grant No. W911NF-10-1-0387.

Table 1. Error measure. Bold: best. Underlined: second best.
W1 and W2 are the input shown in Figure 3.W2-2 and W2-3
are the same as W2 but with increasing amounts of noise.

Input Gaussian Bilateral Median TV-2 TV-1 OSC
W1 654 6.53 9.53 10.06 5.16 3.87
w2 8.00 7.97 9.35 13.75 7.63 6.80
W2-2 8.12 8.10 9.12 13.50 7.83 17.09
W2-3 19.92 19.27 2143 4320 17.71 15.67

Fig. 4. Red: the input shapes with oscillatory perturbations.
Black: the simplified shape via oscillation regularization. The
bottom row shows the results when A = 1000, 2500, 5000
respectively. As A — oo, the figure reduces to a circle.
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