
Linear Time Offline Tracking and Lower Envelope Algorithms

Steve Gu
Computer Science
Duke University

steve@cs.duke.edu

Ying Zheng
Computer Science
Duke University

yuanqi@cs.duke.edu

Carlo Tomasi
Computer Science
Duke University

tomasi@cs.duke.edu

Abstract

Offline tracking of visual objects is particularly helpful
in the presence of significant occlusions, when a frame-
by-frame, causal tracker is likely to lose sight of the tar-
get. In addition, the trajectories found by offline track-
ing are typically smoother and more stable because of
the global optimization this approach entails. In contrast
with previous work, we show that this global optimiza-
tion can be performed in O(MNT ) time for T frames of
video at M × N resolution, with the help of the gener-
alized distance transform developed by Felzenszwalb and
Huttenlocher[13]. Recognizing the importance of this dis-
tance transform, we extend the computation to a more gen-
eral lower envelope algorithm in certain heterogeneous l1-
distance metric spaces. The generalized lower envelope al-
gorithm is of complexityO(MN(M+N)) and is useful for
a more challenging offline tracking problem. Experiments
show that trajectories found by offline tracking are supe-
rior to those computed by online tracking methods, and are
computed at 100 frames per second.

1. Introduction
The state of the art of visual object tracking has advanced

significantly in the past 30 years [25, 32, 21, 10, 1, 4, 22, 26,
35, 15, 16, 5, 30, 18]. Visual tracking is often cast “online,”
that is, solved as frames become available, because of the
need for instant response to environmental changes or real
time control and surveillance.

On the other hand, when a video is already recorded
(e.g., on YouTube), online tracking is not necessary. “Of-
fline” tracking can then use all the information available
in the video for optimization, and is expected to result in
smoother and more stable trajectories that can recover from
more severe occlusions than the online methods can.

To cast tracking as an optimization problem, a measure
E(xi,M) is defined for the degree of inconsistency be-
tween an appearance model M and a rectangular window
centered at xi ∈ Ωi where Ωi is the ith image frame domain

of sizeM×N . Motion along the trajectory is assumed to be
smooth, so that offline tracking can be cast as the problem
(omitting explicit mention of the modelM for brevity)

Γ̂ = arg min
Γ∈Ω1×···×ΩT

T∑
i=1

E(xi) (1)

with the constraint that the distance d(xi+1,xi) between
xi+1 and xi is less than ε for 1 ≤ i ≤ T − 1. Here and
throughout the paper, d represents the l1 distance metric.
The number ε is a parameter that quantifies how much a
window can move between consecutive frames, and the op-
timization variable Γ = (x1, . . . ,xT ) ranges over the set of
all possible trajectories of length T bounded by the M ×N
pixel image rectangle.

This problem can be solved with dynamic programming,
and the computation is fast in practice when ε is small. With
increasing ε, on the other hand, the time complexity for the
optimization approachesO(M2N2T ). This quadratic com-
plexity in the number of pixels makes the algorithm rather
slow. Imposing a tighter constraint ε is difficult, because
such a hard constraint is inevitably arbitrary.

1.1. The Objective

In a recent paper [36], Uchida et al. replace the hard
constraint by a regularization term:

Γ̂ = arg min
Γ∈Ω1×···×ΩT

F (x1, . . . ,xT ) (2)

where the object takes the following form:

F (x1, · · · ,xT ) =

T∑
i=1

E(xi)︸ ︷︷ ︸
visual inconsistency

+λ

T−1∑
i=1

d(xi+1,xi)︸ ︷︷ ︸
motion discontinuity

(3)
In this formulation, the parameter λ balances the contribu-
tions from visual consistency and motion continuity, and
this is preferable to a hard constraint. Uchida et al. [36] then
states that problem (2) has time complexity O(M2N2T ).
In order to accelerate the computation, the authors intro-
duce the assumption that the inconsistency measure E(x)
is quadratic and constant.

1



1.2. Our Contributions

We improve on Uchida et al.[36] by showing that
problem (2) can be solved without assumptions in time
O(MNT ), using the generalized distance transform [13].

This transform can be viewed as a special lower envelope
algorithm. We extend this class of computations to solve a
more general optimization problem that is encountered in
the offline tracking framework. We show that this extended
version of offline tracking can be solved in O(MN(M +
N)T ) time for the l1 distance.

The literature of offline tracking is rich, ranging from
single [6, 3, 33, 12, 38, 36] to multi-object tracking [20,
40, 27, 23]. Our work stands out in two aspects: First, in
contrast to object tracking systems [40, 27, 23], our tracker
works at the pixel level and does not use any object detec-
tors (e.g. person). Second, our tracker is arguably the fastest
among all the others, both asymptotically and practically.

2. Efficient Offline Tracking
We first write the state equations for the optimization (2)

and show that they can be solved in O(MNT ) time. We
then describe our design of the visual inconsistency mea-
sure E(xi). Careful readers will notice that the generalized
distance transform is used twice, for two different purposes.

2.1. State Equations

We first exhibit the structure of the optimization:

min
Γ
F (x1, · · · ,xT ) = min

xT

 min
x1,··· ,xT−1

F (x1, · · · ,xT )︸ ︷︷ ︸
G(xT )



= min
xT


E(xT ) + min

xT−1

G(xT−1)︸ ︷︷ ︸
to be expanded

+d(xT ,xT−1)


︸ ︷︷ ︸

H(xT )


The dynamic programming is then reduced to the following
two alternating steps for j = 1, 2, · · · , T and each x ∈ Ωj :

Step 1: H(x)← miny∈Ωj−1
[G(y) + λd(x,y)];

Step 2: G(x)← E(x) +H(x);

Clearly, step 2 takes O(MN) time. Felzenszwalb and
Huttenlocher [14] showed an O(MN) algorithm for com-
puting step 1 by using the generalized distance transform,
which is equivalent to computing the lower envelope of a
set of 2D cones with equal slopes (See Figure 1). Dynamic
programming process lasts T steps, so that the overall time
complexity is O(MNT ).

Figure 1. The lower envelope of a set of 1D homogeneous cones.

2.2. Evaluating Visual Inconsistency

We now describe the object modelM and how to com-
pute the inconsistency measure E(x;M). Our model is
simple but effective, as experiments in Section 4 demon-
strate. Of course, any available technique (e.g. [5, 11, 37,
34, 41, 28, 30, 39, 9]) can be used to achieve a desired goal
and a compromise is typically necessary between running
time and quality. For instance, a face detector could be used
to score each window position in every frame. Also, visual
inconsistency could be precomputed for each window posi-
tion in each frame if desired.

For general object tracking, we use a simple tracking
module from the literature [18], but introduce some varia-
tions to simplify the assignment of pixel costs. The idea for
constructing object models and score evaluation is intuitive:

Step 1: Given an arbitrary frame and a specified window,
compute the set of SIFT [24] features (other features
[32, 7, 31, 17] can be used as well) and put all the
features within the window into M and the rest into
a background model B.

Step 2: For each feature v in each frame, compute the cost
S(v) of selecting the feature v as follows:

S(v) =
minu∈M ‖u− v‖
minu∈B ‖u− v‖

. (4)

The rationale behind this formula is that the cost of v
is low if v resembles some object feature more than
it does any background feature, and is high if the sit-
uation is reversed. Note that this cost assignment is
parameter free.

Step 3: For each pixel p in each frame, assign the cost:

S̃(p) = min
q∈F

[S(q) + ξd(p, q)] (5)

where F is the set of SIFT features. The benefit of this
cost model is that each pixel receives a cost that is de-
termined not only by its closeness to extracted features
but also to their own costs. Because the lower envelope
is continuous, the cost function is continuous as well.
This is (again!) in the form of the generalized distance



Figure 2. Top row. Left: the input image with extracted SIFT fea-
tures. Right: the cost of each SIFT feature. The warmer the color,
the higher the cost. Bottom row. Left: the 2D lower envelope in-
duced by SIFT features. Right: the cost summation within each
window. The pixel with lowest cost marks a tracked window.

transform described before, so the costs of each im-
age can be computed in linear time with respect to the
number of pixels.

Step 4: For each window W centered at xi, compute
E(xi) =

∑
p∈W S̃(p). This step can be computed in

linear time with respect to the number of pixels in each
frame because of the integral image representation and
the evaluation step is only O(1).

Figure 2 illustrates these four steps for cost assignment.
In [18], scores where assigned with a binary threshold and
each pixel either received a positive constant score or a neg-
ative constant score. In contrast, our more flexible score
assignment is soft, and guarantees that the cost function is
continuous. An additional advantage is that the entire pro-
cess depends only on one parameter ξ.

In summary, we have presented not only a linear time
algorithm for optimal trajectory estimation but also a fast
way to evaluate visual consistency in a pre-processing step.
The fast evaluation of visual consistency utilizes the mod-
ules from integral image representation and the generalized
distance transform. The process is nearly parameter free
except for ξ that is used in score evaluation.

3. Lower Envelope of Heterogeneous Cones
Recognizing the importance of the distance transform,

we study how to extend it for more complex tracking sce-
narios. This section is mostly theoretical and readers who
are interested in experiments can directly jump to Section 4
without affecting the flow of understanding.

In the generalized distance transform, all the 2D cones

Figure 3. Application scenarios where adaptive or pixel-by-pixel
regularization is useful. From top to bottom: road, river and walk-
way. In each case, one can mark the specific region in order to en-
courage the target being tracked to stay within the region, thereby
incorporating natural physical constraints.

have equal slopes and differ only in their positions. We call
these cones homogeneous. Equivalently, the regularization
term λ has to be a single number for all the pixels in a video
sequence. We study an adaptive regularization scheme so
that λ is a general function defined on image grids.

3.1. Application Scenarios

There are at least two applications that can benefit from
this generalization. First, consider surveillance applications
where the background remains roughly static while the fore-
ground object moves in a physically constraint fashion. For
example, cars stay on the road, boats navigate a river, or
pedestrians are required to stay on walkways. We can then
allow a user to draw a curve that marks the centerline of
road, river, or walkway so that λ is low near the marked
curve and higher far away (See Figure 3). This does not
rule out the possibility for the tracker to drift away from the
centerline, but enforces physical constraints in a soft man-
ner.

For a second application, suppose we are given an “ob-
jectness” measure (e.g. [2]) that tells how likely it is for
each pixel to belong to an object rather than to the back-
ground. We can encode this information into λ so that the
tracker integrates all information (motion continuity, visual
consistency and objectness measure) into a single formula.
Note that visual consistency and objectness measure pro-
vide two types of information that may not be correlated.



Figure 4. The lower envelope of a set of 1D heterogeneous cones.

3.2. The New Concept

We consider a more general distance transform, through
the lens of a geometric lower envelope:

Definition 1 (Lower Envelope of Heterogeneous Cones).
Let λ : Ω→ R+ and µ : Ω→ R be two arbitrary functions.
The lower envelope of a set of heterogeneous cones induced
by λ and µ is a function f [λ, µ] : Ω→ R for each p ∈ Ω:

f [λ, µ](p) = min
q∈Ω

[λ(q)d(p, q) + µ(q)] (6)

Figure 4 shows the lower envelope of a set of 1D cones
with different slopes. It is known [19] how to compute the
1D lower envelope in O(n log n) time. We show how to
compute the 2D lower envelope in O(n1.5) time in this pa-
per. Our strategy is to first decompose the lower envelope
of 2D cones to the lower envelope of 4 separate lower en-
velopes of 1

4 cones. We then show the lower envelope of a
set of 1

4 2D cones can be computed using results from 1D
cones and hence save the computation. The resulting algo-
rithm is also extremely simple to implement.

3.3. The Computation

We first divide the 2D cone hq(x) , λ(q)d(x, q) + µ(q)
into a composite of 1

4 cones (as shown in Figure 5):

hq = min
{
h++
q , h+−

q , h−−q , h−+
q

}
(7)

where h++
q (p) = hq(p) if px ≥ qx and py ≥ qy and h++

q =

+∞ otherwise. The other 1
4 cones are defined similarly by

taking care of the signs properly. We therefore can write:

f [λ, µ] = min
q∈Ω

hq (8)

= min
q∈Ω

min
{
h++
q , h+−

q , h−−q , h−+
q

}
(9)

= min

{
min
q∈Ω

h++
q ,min

q∈Ω
h+−
q ,min

q∈Ω
h−−q ,min

q∈Ω
h−+
q

}
(10)

In other words, the lower envelope of a set of 2D heteroge-
neous cones is equivalent to the lower envelope of the four
lower envelopes of 1

4 cones. It then suffices to understand
how to compute the lower envelope of 1

4 cones. We only

Figure 5. Division of a 2D cone (visualized above) into four sepa-
rate 1

4
cones with different colors.

study the properties of h++
q , the rest being handled simi-

larly.
Writing q = (x0, y0), we note that h++

q (x, y) is a
constant for x + y = C, x ≥ x0 and y ≥ y0. Let
then h++

q1 , · · · , h++
qk

be a set of 2D cones with qi =
(xi, yi). If we take the upper right corner (x̂, ŷ) with
x̂ = maxk

i=1 xi and ŷ = maxk
i=1 yi, we then have the fact

that mink
i=1 h

++
qi (x, y) is a constant for x + y = C, x ≥

x̂, y ≥ ŷ. In particular, this is true when these 1
4 cones lie in

a single column (See Figure 6).
We discuss how to use the above observation to design

a more efficient algorithm than the naive one. First, we re-
alize that for a pixel p located at (m,n), only those pixels
lying to the lower left of p (including p itself) can affect the
lower envelope at p by the definition of h++. Let this rect-
angular set be S = {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. We
use L(S, p) to represent the value of the lower envelope at p
induced by S. We now decompose the set S into n columns
{Cj}nj=1 so that Cj = {(i, j) | 1 ≤ i ≤ m}. By the defini-
tion of lower envelope we have:

L(S, p) =
n

min
j=1

L(Cj , p) (11)

But from the above observation we know that
L(Cj , p) = L(Cj , q) if q = (m + n − j, j). The differ-
ence is that q lies in the same column as the pixels in Cj .
Therefore, computing L(Cj , q) is essentially a one dimen-
sional problem and so is computing L(Cj , p). To make this
clear, we introduce a matrix A so that each column of A,
namely A(:, j) if we use MATLAB notation, stores the 1D
lower envelope induced by Cj . We see that:

L(S, p) =
n

min
j=1

A(m+ n− j, j) (12)

that is, the minimal value along the diagonal x+y = m+n.
This explains how the 2D lower envelope can be reduced to



Figure 6. Left: the lower envelope induced by the dark red dots
share the same value at two green dots . Right: the illustration of
the construction of the 2D lower envelope from bottom to top.

alternatingly evaluating the 1D lower envelope and then tak-
ing the minimal values along the diagonals. This computa-
tion is sketched in Algorithm 1. The first inner double loop
updates the 1D lower envelope of each column after a new
row is inserted. The second inner double loop computes the
values of the 2D lower envelope on the newly inserted row
by taking the minimal values along the diagonals.

Algorithm 1 Compute the 2D lower envelope of 1
4 cones

given two M ×N matrices λ and µ
Initialize a matrix A of size (M +N)×N to +∞;
for r = 1 to M do

for c = 1 to N do
for i = r to M +N do
A(i, c)← min {A(i, c), µ(r, c) + λ(r, c)(i− r)}

end for
end for
for c = 1 to N do

for i = 1 to c do
A(r, c)← min {A(r, c), A(r + c− i, i)}

end for
end for

end for

3.4. Analysis

Figure 6 illustrates the process of the algorithm. The first
double inner for loop takes O(MN(M +N)) time and the
second takes O(MN2) time. If we let M = N =

√
n,

the overall time complexity is O(n1.5). Once we compute
the four separate lower envelopes of 1

4 cones, merging them
together takes only linear time because the min operation
for each pixel is constant. Thus the overall time complexity
for computing the lower envelope of a set of heterogeneous
cones is O(n1.5).

In contrast with the lower envelope of a set of 2D homo-
geneous cones, which can be computed in linear time, we
can only compute the lower envelope of 2D heterogeneous
cones in O(n1.5) time where n is the number of pixels of

an image. It remains an intellectual challenge to see if an
O(n log n) algorithm is possible for the 2D case. Also note
that our presented algorithm utilizes the special structure of
the l1 distance. It seems not obvious how to generalize the
algorithm to the case of squared l2 distances.

4. Experiments

Our experiments focused on the linear time offline track-
ing algorithm. The second algorithm – for the lower enve-
lope of heterogenous cones – is of more theoretical interest
and its implementation and experiments are available in our
companion website (See Section 4.3).

The goal is to verify that our method produces smoother
and more accurate results than online tracking methods.
Our method allows performing this task in linear time with-
out using any heuristics, and this is asymptotically as fast as
it gets without introducing approximations.

4.1. Experimental Setting

Our experiments involve the two parameters ξ in equa-
tion (5) and λ in equation (3). ξ balances feature locations
and costs when computing pixel matching costs. λ trades
off the contributions from visual inconsistency (summation
of pixel costs within a window) and motion discontinuity.
In all the experiments, we fix ξ = 0.01 and λ = 50. The
relative size of these parameters reflects our observation that
a window contains on the order of 1000 pixels.

For simplicity and fair comparison, we do not use any
advanced face detectors or previously learnt object models.
In order to label object and background features, we ran-
domly select 3 frames in a video sequence and ask a user
to mark the object to be tracked. The object model and the
background model are then the SIFT features within and
outside the chosen windows, respectively. Models for on-
line tracking methods can be updated frame by frame while
for offline tracking both the object and background mod-
els are static. Even so, we show that the global trajectories
from offline tracking are often better than those from on-
line tracking, because both visual inconsistency and motion
discontinuity are minimized globally rather than locally.

4.2. Comparisons

We test our linear time offline tracking algorithm on 8
video sequences from multiple data sets [8, 29, 1, 5, 30] in
the literature and compare it to the following state-of-art on-
line tracking methods: FragTracker [1], Multiple Instance
Learning [5], PROST [30] and Nearest Neighbor [18]. This
comparison is mainly proof-of-concept because the nature
of two methods is quite different. However, given the good
performance of these online methods, it is certainly non-
trivial for our offline method to do any better because of the
simplicity of our formulation of the cost function.



Table 1. Mean distance error. Bold: best. Underlined: second best.

Sequences Frag MIL PROST NN Offline

Girl [8] 26.5 31.6 19.0 18.0 12.7
David [29] 46.0 15.6 15.3 15.6 14.3
Faceocc1 [1] 6.5 18.4 7.0 10.0 13.3
Faceocc2 [5] 45.1 14.3 17.2 12.9 12.5
Board [30] 90.1 51.2 37.0 20.0 13.8
Box [30] 57.4 104.6 12.1 16.9 15.3
Lemming [30] 82.8 14.9 25.4 79.1 24.0
Liquor [30] 30.7 165.1 21.6 15.0 14.2

The disadvantage of our offline tracking method is that
both the object and background models are static and hence
there is no adaptation to the appearance change. Online
trackers typically adapt to the appearance change well by
their design. Therefore, if our method can do any better, it
must benefit from a combination of global motion continu-
ity and visual consistency.

In the comparison, we directly quote previously reported
results [30, 18]. This comparison is summarized in Table
1. The evaluation criterion is the same as what is used in
[5, 30] except that we only compute the mean distance er-
ror e. This is because the scale of the tracked objects stay
relatively the same so this measure of error reflects the true
behavior of each tracker well. The mean distance error is:

e =
1

n

n∑
i=1

‖Oi −Og
i ‖ (13)

where n is the number of frames and ‖Oi −Og
i ‖ is the Eu-

clidean distance between the tracked window centroid Oi

and the ground truth window centroidOg
i . The ground truth

is manually labeled by different authors in the works cited.
Table 1 shows that our offline tracking algorithm does

better than most online tracking algorithms, although there
are some exceptions. The most significant improvements
are in the ’girl’ and ’board’ sequences, which exhibit large
occlusions and appearance changes. Our algorithm success-
fully extracts the trajectory for both video sequences. In
other sequences, our tracker either wins, or loses by little.
Figure 7 shows sample error plots for different trackers.

The advantage of our method is even more obvious from
a computational point of view. For instance, finding the
optimal trajectory for a video sequence of 500 frames of
resolution 400 × 300 takes less than 3 seconds on a quad-
core laptop computer, corresponding to a processing speed
of more than 100 frames per second.

4.3. Reproducibility

All the algorithms and described steps in this paper can
be implemented easily. Our experimental platform is writ-
ten in MATLAB while the integral image and the 2D lower

Figure 7. Error plots (measured in pixels) for the board sequence.
The error against the ground truth is evaluated every 5 frames.

envelopes are computed in MEX/C++. The implementation
and the test code that reproduces the results is available at
http://www.cs.duke.edu/˜steve.

5. Conclusions and Future Work
The major contributions of this paper are twofold: First,

we show that optimal offline tracking can be solved in lin-
ear time in the size of the video. This fact makes the global
trajectory estimation highly efficient and practical. Second,
we generalize the notion of distance transform to the lower
envelope of a set of heterogeneous cones and show that this
can be computed in O(n1.5) where n is the number of pix-
els of an image. It remains an open question whether an
O(n log n) algorithm exists for this task.

The disadvantage of the current formulation is that the
appearance models are determined a priori, and hence our
offline tracking method cannot adapt nimbly to changes
of appearance over time. One simple remedy works as
follows: First, find an initial trajectory with our algorithm
and then use features on the entire trajectory to train a
better object model. This process can possibly be repeated
until convergence. Of course, such an approach will slow
down computation considerably. How to achieve a good
balance between result quality and computation cost is an
interesting trade-off we plan to explore.

Acknowledgement: This work is supported by the
National Science Foundation under Grant No. IIS-1017017
and by the Army Research Office under Grant No.
W911NF-10-1-0387.

References
[1] A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-

based tracking using the integral histogram. In IEEE CVPR,



pages 798–805, 2006.
[2] B. Alexe, T. Deselaers, and V. Ferrari. What is an object? In

IEEE CVPR, pages 73–80, 2010.
[3] J. Arnold, S. Shaw, and H. Pasternack. Efficient target track-

ing using dynamic programming. IEEE Trans. Aerospace
and Electronic Systems, 29:44–56, 1993.

[4] S. Avidan. Ensemble tracking. IEEE PAMI, 29(2):261–271,
2007.

[5] B. Babenko, M. Yang, and S. Belongie. Visual tracking with
online multiple instance learning. In IEEE CVPR, pages
983–990, 2009.

[6] Y. Barnoiv. Dynamic programming solution for deteting dim
moving target. IEEE Trans. Aerospace and Electronic Sys-
tems, 21:144–156, 1985.

[7] H. Bay, T. Tuytelaars, and L. Gool. Surf: Speeded up robust
features. In ECCV, pages 404–417, 2006.

[8] S. Birchfield. Elliptical head tracking using intensity gradi-
ents and color histograms. In IEEE CVPR, pages 232–237,
1998.

[9] L. Breiman. Random forests. Mach. Learning, 45(1):5–32,
2001.

[10] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking
of non-rigid objects using mean shift. In IEEE CVPR, pages
2142–, 2000.

[11] T. Dietterich, R. Lathrop, and T. Lozano-Pérez. Solving the
multiple instance problem with axis-parallel rectangles. Ar-
tif. Intell., 89(1-2):31–71, 1997.

[12] P. Dreuw, T. Deselaers, D. Rybach, D. Keysers, and H. Ney.
Tracking using dynamic programming for appearance-based
sign language recognition. In FG, pages 293–298, 2006.

[13] P. Felzenszwalb and D. Huttenlocher. Distance transforms of
sampled functions. Technical Report TR2004-1963, Cornell
Computing and Information Science, 2004.

[14] P. Felzenszwalb and D. Huttenlocher. Pictorial structures for
object recognition. IJCV, 61(1):55–79, 2005.

[15] H. Grabner and H. Bischof. On-line boosting and vision. In
IEEE CVPR, pages 260–267, 2006.

[16] H. Grabner, C. Leistner, and H. Bischof. Semi-supervised
on-line boosting for robust tracking. In ECCV, pages 234–
247, 2008.

[17] S. Gu, Y. Zheng, and C. Tomasi. Critical nets and beta-
stable features for image matching. In ECCV, pages 663–
676, 2010.

[18] S. Gu, Y. Zheng, and C. Tomasi. Efficient visual object track-
ing with online nearest neighbor classifier. In ACCV, 2010.

[19] S. Gu, Y. Zheng, and C. Tomasi. Extended pairwise poten-
tials. In CVPR Workshop on Inference in Graphical Models
with Structured Potentials, 2011.

[20] M. Han, W. Xu, H. Tao, and Y. Gong. An algorithm for
multiple object trajectory tracking. In IEEE CVPR, pages
864–871, 2004.

[21] M. Isard and A. Blake. A smoothing filter for condensation.
In ECCV, pages 767–781, 1998.

[22] Y. Li, H. Ai, T. Yamashita, S. Lao, and M. Kawade. Track-
ing in low frame rate video: A cascade particle filter with
discriminative observers of different life spans. IEEE PAMI,
30(10):1728–1740, 2008.

[23] Y. Li, C. Huang, and R. Nevatia. Learning to associate: Hy-
bridboosted multi-target tracker for crowded scene. In IEEE
CVPR, pages 2953–2960, 2009.

[24] D. Lowe. Object recognition from local scale-invariant fea-
tures. In ICCV, pages 1150–1157, 1999.

[25] B. Lucas and T. Kanade. An iterative image registration tech-
nique with an application to stereo vision. In IJCAI, pages
674–679, 1981.

[26] M. Özuysal, M. Calonder, V. Lepetit, and P. Fua. Fast key-
point recognition using random ferns. IEEE Trans. Pattern
Anal. Mach. Intell., 32(3):448–461, 2010.

[27] A. Perera, C. Srinivas, A. Hoogs, G. Brooksby, and W. Hu.
Multi-object tracking through simultaneous long occlusions
and split-merge conditions. In IEEE CVPR, pages 666–673,
2006.

[28] C. Prakash, B. Paluri, S. Pradeep, and H. Shah. Fragments
based parametric tracking. In ACCV, pages 522–531, 2007.

[29] D. Ross, J. Lim, R. Lin, and M. Yang. Incremental learning
for robust visual tracking. IJCV, 77(1-3):125–141, 2008.

[30] J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof.
PROST Parallel Robust Online Simple Tracking. In IEEE
CVPR, 2010.

[31] E. Shechtman and M. Irani. Matching local self-similarities
across images and videos. In IEEE CVPR, 2007.

[32] J. Shi and C. Tomasi. Good features to track. In IEEE CVPR,
pages 593 – 600, 1994.

[33] J. Sun, W. Zhang, X. Tang, and H. Shum. Bi-directional
tracking using trajectory segment analysis. In ICCV, pages
717–724, 2005.

[34] M. Tian, W. Zhang, and F. Liu. On-line ensemble svm for
robust object tracking. In ACCV, pages 355–364, 2007.

[35] C. Tomasi, S. Petrov, and A. Sastry. 3d tracking = classifica-
tion + interpolation. In ICCV, pages 1441–1448, 2003.

[36] S. Uchida, I. Fujimura, H. Kawano, and Y. Feng. Analytical
dynamic programming tracker. In ACCV, 2010.

[37] P. Viola, J. Platt, and C. Zhang. Multiple instance boosting
for object detection. In NIPS, 2005.

[38] Y. Wei, J. Sun, X. Tang, and H. Shum. Interactive offline
tracking for color objects. In ICCV, pages 1–8, 2007.

[39] M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers,
and H. Bischof. Anisotropic huber-l1 optical flow. In BMVC,
September 2009.

[40] L. Zhang, Y. Li, and R. Nevatia. Global data association for
multi-object tracking using network flows. In IEEE CVPR,
2008.

[41] X. Zhao and Y. Liu. Generative estimation of 3d human pose
using shape contexts matching. In ACCV, pages 419–429,
2007.


