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Abstract

We report on the two areas of our research that
are sponsored by ARPA, namely, the retrieval
of images from data bases and vision for mobile
robots.

In image retrieval, we have developed two de-
mos. The first is based on texture and color
information, while the second explores the use
of shape information in the presence of occlu-
sions. We plan to merge these two retrieval
demos into one once the technologies involved
are well understood in isolation. For our next
demo, we have stored twenty-thousand images
from a stock-photograph collection onto a laser
disc recorder. Thumbnails and retrieval indices
are stored on a computer hard disk.

For robot vision, we have developed, together
with Stanford’s robotics group and Nomadic
(a local robot manufacturer), a robot observer
that uses motion planning and visibility graphs
to stalk a moving target in an environment
cluttered with obstacles. We have also built
a depth-from-focus vision system that allows
a Nomadic robot to navigate for hours in a
crowded environment. The robot avoids obsta-
cles, both static and moving, and turns away
from steps, both up and down, in a very reli-
able fashion.

1 Introduction

This report covers some of the new activities in
computer vision that started with the arrival of
one of us (Tomasi) at Stanford in 1994. Among
these activities, two projects are being spon-

*Research on image retrieval is supported through
ARPA grant DAAHO04-94-G-0284 monitored by the US
Army Research Office. Research on robot vision is sup-
ported through ARPA grant DAAHO01-95-C-R009 moni-
tored by the US Army Missile Command, and by grants
from the NSF and from the US Air Force.

sored by ARPA. The first is on the retrieval of
images from data bases based on pictorial infor-
mation. The interest in this area is growing, as
testified by more academic research [Jain, 1992;
Picard and Minka, 1995], articles in several new
publications on multimedia (Multimedia Sys-
tems, IEEE Multimedia), special issues in sci-
entific journals (PAMI, edited by Picard, to ap-
pear), startup companies (Virage), and the first
commercial retrieval system [Faloutsos et al.,
1994]. In section 2, we summarize the state of
our project in this area.

Our second ARPA-sponsored project concerns
vision for robot navigation. This is a more es-
tablished area of research, but the rewards are
no less important in terms of applications, par-
ticularly in the fields of manufacturing, han-
dling of hazardous materials, and teleoperation.
In section 3, we show two contributions we made
to this area last year.

2 Image Retrieval

That solutions to the image retrieval problem
are still in their infancy is demonstrated by
Time Warner’s decision to have their 20-million
photograph collection scanned and catalogued
by hand, with detailed textual descriptions ap-
pended to each image [Bielski, 1995]. If re-
search by us and others in the field of automatic
image retrieval is successful, this enormous ef-
fort will become unnecessary well before it is
completed at the current rate of about 300,000
photographs per year. Browsing through image
data bases on the World-Wide Web, analyzing
satellite and space exploration images, and ac-
cessing medical images are but a few other ap-
plications of image retrieval.

We have developed two demos. The first is
based on texture and color information, and
is being tested on about two-hundred images
on various subjects. The second demo explores



the feasibility of using shape information in the
presence of occlusions by retrieving drawings
from a collection of about two-hundred illustra-
tions for a computational geometry textbook.
We plan to merge these two retrieval demos into
one once the technologies involved are well un-
derstood in isolation.

The next section summarizes our approach to
image retrieval. Then, section 2.2 describes the
interface and architecture of our retrieval sys-
tem based on texture and color. Section 2.3
examines the principles and implementation of
our shape-based retrieval system. Finally, sec-
tion 2.4 discusses both foundational and techni-
cal work in progress towards larger-scale image
retrieval demonstrations.

2.1 Design Principles

Image queries are both generic and unpre-
dictable. Most of the time, users look for pic-
tures they have never seen before, so they do
not look for a very specific picture. Looking
for a picture of firemen at work may sound spe-
cific, but in the picture there may or may not be
fire, smoldering buildings, water hoses, helmets,
or fire trucks. How does one go about looking
for a fireman picture in a large, unknown data
base of images without captions? Hoping for an
“exact answer,” all and only the pictures with
firemen at work, is unrealistic.

To make retrieval realistic, we require the user
to describe pictorially what s/he wants, so that
the search can proceed completely free of any
semantic interpretation. To look for firemen,
one can sketch fire, a shape detail of a helmet,
blackened building structures, and ask that any
one of them, or perhaps all of them, appear
in the retrieved images. The user can specify
rough image position and size, or instead let
the system decide. Because there is no seman-
tics, one cannot expect to get only semantically
correct answers. For instance, when one looks
for a picture of Manhattan, it may well be that
photographs of VLSI chips are returned as well
(see figure 1). In our approach, satisfying a
query is not a process of interpretation, but one
of restricting the set of pictures to be visually
scanned by the user. In this process, there can
be a large fraction of false positives, and a small
fraction of false negatives. If we can reduce a
200,000-image data base to a 300-image data
base in a few minutes of work, retrieval will be
much easier and cheaper than the $450 average
cost of a typical search in a data base like the
Kodak Picture Exchange or PressLink [Larish,
1995]. And the result will be useful even if 280

Figure 1: Manhattan may be pictorially similar
to a VLSI chip.

of the resulting 300 images are not of firemen at
work.

Another guiding principle in our approach is
that search time should be sublinear in the num-
ber of pictures. At query time, there is just no
time to go through even a cursory description of
each image, so most of the work must be done
at image entry time. Images must be described
in terms of basic primitives that can somehow
be ordered, so the system can find images by
looking up tables in sublinear time. Assuming
that a given data base will be used extensively,
it pays to spend a certain amount of computa-
tion time and resources when the data base is
being built. This cost is then amortized over
many uses of the data base.

2.2 Interface and Architecture

The interface to our texture-based image re-
triever is composed of three X windows: a tex-
ture easel (figure 2), a query window (figure 3)
and a result window (figure 4). The user selects
textures from the easel', a scrollable window
with texture samples, and clicks them into any
of the 25 regions of the query window. Not all
regions need be filled. In the future, the query
window will be replaced by a paint-like interface
that lets the user dip a brush in texture and
paint with it. The user then clicks the “Run
Query” button (bottom of figure 3) and waits
a few seconds for the answer. The system re-
turns the most similar images, in a sense to be
discussed below, to the query image. The four
most similar ones are shown in figure 4.

In brief, here is the architecture of the query sys-
tem that achieves this result. Details are given
in [Rubner and Tomasi, 1996] in these proceed-
ings. When images are entered into the system,

1Some of the textures and images for this demo
are from R. Picard’s texture database, available at
http://www-white.media.mit.edu/vismod/imagery/
VisionTexture/vistex.html.
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Figure 2: The texture easel.

Run Query ‘ Clear Query | Quit ‘

Figure 3: The query window.

they are analyzed for texture and color content.
This analysis returns one descriptor, a vector
of 16 real numbers, for each of 4096 overlap-
ping image regions for a typical 512 x 512 im-
age. Thus, an image of 256 K pixels (bytes) is
described by 16 x 4096 = 64K real numbers
(256 K bytes). In bytes there is no compression,
but only few of the digits in the texture descrip-
tors are significant. We are exploring vector
quantization techniques to reduce the size of the
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Figure 4: The four best matches to the query
in figure 3.

texture descriptors without losing significant in-
formation.

The indexing structure is then conceptually a
large set of points in R'®, one cloud of 4096
points for each image. This large set is split
into 25 subsets, one for each rectangle in the
query window (figure 3). In other words, we
have essentially 25 separate data bases in our
implementation. This incorporates rough posi-
tional information into the query. The mean
texture vector in each query region is then used
as an index into the corresponding data base.

The problem now is to take a query texture vec-
tor for one of the 25 rectangles, and look for
some of its nearest neighbors in the data base.
Nearest neighbor searches or range searches in
a large Fuclidean space are combinatorially ex-
plosive problems, but can be solved well by re-
laxing the guarantees on the returned results.
We use the algorithm described in [Arya and
Mount, 1994] for approximate nearest neighbor
search.? This algorithm returns nearest neigh-
bors with a relative error margin of ¢, in the
sense that a point p is an approximate nearest
neighbor of ¢ if for all points p’ in the data base
the distance between p and ¢ is less than 1+ ¢
times the distance between p’ and ¢. Prepro-
cessing takes O(nlogn) time and O(n) space,
where n is the total number of points in the
data base, and k nearest neighbors can be com-
puted in O(klogn) time. The parameter ¢ can
be specified to be as small as desired, but of
course the constant factors in the asymptotic
performance bounds above depend on ¢, as well
as on the dimension of the space. In practice, we
have found that the algorithm takes only a few
seconds on an SGI Indigo2 workstation to re-
turn a dozen neighbors in a sixteen-dimensional
space of about one-hundred thousand points.

Images returned by the 25 separate queries, one
for each rectangle in the query window, must be
combined into the answer to the user. To this
end, we devised a scoring scheme that accounts
for both the size of a region with a given tex-
ture and the similarity between the query tex-
ture and the image texture. Scores computed
according to this scheme are added over all 25
data bases for each of the returned images, and
a list of images sorted by decreasing scores is
returned to the user.

The representation of textures is described in
[Rubner and Tomasi, 1996] in these proceed-
ings. That paper makes two main contributions.
The first is a computationally sound definition

2We thank the authors of that paper for making their
code available to us.



Figure 5: (a) A picture of the Stanford cam-
pus and (b) the texture edges found by our tex-
ture analysis method. Regions with no strong
texture edges yield clean image descriptors for
retrieval.

of significant texture regions, which allows find-
ing image regions with “clean” texture, that is,
regions that would usually be judged to con-
tain a single texture. This definition is based
on a novel notion of texture contrast. The sec-
ond contribution is a “clustering-by-smoothing”
procedure that coalesces texture vectors from a
given region into small clusters of similar vec-
tors. This procedure is based on a new form of
edge-preserving smoothing, for which we have
also developed an efficient approximate imple-
mentation. Figure 5 shows the texture bound-
aries found by our method in a picture of the
Stanford campus.

With these techniques, a single image can be
processed for entry into our data base in less
than a minute on a workstation and yields clear,
distinct clusters of texture vectors.

2.3 Shape-Based Illustration
Indexing and Retrieval

We have developed a general set of ideas for
indexing computer-generated technical illustra-
tions based on the shapes present in them, so
that they can be efficiently retrieved later using
as the key other ‘similar-looking’ illustrations
(either pre-existing, or interactively drawn by
the user). We have restricted out attention to
the domain of computer-generated technical il-
lustrations for now, where shape information is
both precisely available and the main way in
which pictorial meaning is conveyed. After we
have techniques that can operate successfully
in this domain, we plan to port them to other
kinds of pictorial or image data as well by apply-
ing shape extraction techniques from computer
vision.

We proceed as follows: given an illustration P,

we compute a compact index ¢( P) which records
the principal shapes present in P and their lo-
cation/orientation/size. Then given a collection
of illustrations, we compute a data-structure for
recording their indices so that later queries can
be answered efficiently. At retrieval time we are
given another illustration (); we compute ¢(Q)
and then search the data base for illustrations

P; whose index ¢(P;) is ‘similar’ to ¢(Q).

An illustration P for us is a collection of in-
stanced graphics primitives (lines or polylines,
circular arcs, Bézier cubic or B-spline arcs,
marks, etc.), as is almost universally the case
with the illustrators in common use today (e.g.,
Adobe Illustrator, Aldus Freehand, Xfig, etc.).
We start with a a collection of basic shapes
which may be built-in, or user-definable. In
the index «(P) of an illustration P we record
‘which basic shapes appear where.” In other
words, for each basic shape, we record in the in-
dex the translation, rotation, and scale transfor-
mations which cause this basic shape to match
well some of the shapes present in P, according
to the Hausdorff distance [Chew et al., 1993].
Thus we can think of the index as a list of ‘col-
ored’ points in R*, where the four coordinates
are the four parameters defining the transforma-
tion, and the color is the label of the basic shape
involved. (We actually store the logarithm of
the scale parameter, so as to make variations
in scale correspond to point translations in R*,
just like for translations and rotations).

When a query illustration comes in, we compute
its index ¢(()) in the same way. At the moment
we match ¢(¢)) with the index of every illustra-

tion in the data base, by computing in R* the
colored one-way Hausdorff distance under trans-
lation between the two point sets representing
the indices; a fuller explanation of the match-
ing mechanism is given in [Cohen and Guibas,
1996] in these proceedings. We are optimistic
that in the future we will be able to attain sub-
linear query-time algorithms (algorithms which
do not need to compare «(Q) with every other
illustration index) by using computational geo-
metric techniques on the set of indices — essen-
tially by clustering illustrations whose indices
have a small ‘distance’ from each other.

A library of approximately two-hundred illus-
trations from a geometry textbook was indexed
using this scheme and then used for retrieval
experiments. An interactive interface was pro-
vided for specifying the data base to be searched
and the query illustration, for setting various
parameters regarding the match, and for dis-
playing the best matches found in the data base.
Figure 6 shows the illustrations returned by a



query that asked for figures containing squares.
More details and examples are provided in [Co-
hen and Guibas, 1996].

i
i

Figure 6: Eight illustrations that contain
square-like parts, as returned by our shape-
based query processor.

2.4 Current and Future Work

Having completed proof-of-concept demonstra-
tions in this first year of research in the areas of
texture, color, and shape, we plan to continue
our project in the following directions:

¢ refining the basic representations;

e scaling the demos from a few hundred to
several thousand images;

e merging queries based on texture, color,
and shape.

2.4.1 Basic Representations

Image segmentation is our primary goal in our
work towards better image representations. In
fact, partitioning images into regions with ap-
proximately uniform color and texture content
is important for the following reasons:

e it leads to fewer texture vectors, thereby
improving the performance of range and
nearest-neighbor searches;

e it provides shape primitives to be used in
our shape-based searches;

e it leads to semi-symbolic descriptions of im-
ages as adjacency graphs of regions with
lists of attributes.

This last advantage will enable us to provide a
richer vocabulary for the formulation of queries,
since we will be able to describe position with
better granularity than our current implemen-
tation, as well as adjacency relations, size and
shape of texture and color blobs, and so forth.
We have promising preliminary results in this

area, based on diffusion-like processes for color
segmentation and on the combination of texture
and color boundaries for a crisper definition of
region contours. More on these results will ap-
pear in our future reports.

2.4.2 Merging Queries

A key goal of our image retrieval project is to
provide an indexing structure for the images in
our data base so that those images ‘close’ to a
particular query image can be determined effi-
ciently — in particular without requiring an ex-
plicit comparison with all, or nearly all, of the
data base images. We are willing to pay for pos-
sibly expensive preprocessing of the data base,
if this will allow the queries to be answered in
such a sublinear manner.

Since our queries have to do with distance or
closeness to given images, an appropriate or-
ganization of the data base is to cluster the
stored images according to one or more notions
of distance. When dealing with a data base of
objects with a regular or homogeneous mathe-
matical structure such as, for example, geomet-
ric points, there are well developed techniques
for doing efficient proximity and more generally
range searching [Mulmuley, 1993]. These typi-
cally involve partitioning the objects into a hier-
archical collection of canonical subsets, so that
the answer to any query can be formed by com-
bining a small number of these subsets. Images,
however, do not have such a clean mathematical
structure. Image changes such as object mo-
tion or viewpoint or lighting changes can lead
to images which are close perceptually but far
mathematically, if we view them as arrays of
2D pixel values. That is why, as we already
saw, we plan to base our notion of image simi-
larity on color, texture, and shape indices. It is
hard to see how to incorporate all these differ-
ent modalities into a single homogeneous math-
ematical structure. Furthermore, as our notions
of what are the best color, texture, and shape in-
dices are evolving during this project, we do not
want to closely intertwine our data base search-
ing strategies and the detailed structure of these
indices.

One way out of this dilemma is to base the
data base query algorithms on high level ab-
stract operations satisfying certain mathemati-
cal properties. In this way we can develop effi-
cient searching strategies, while still tuning and
modifying the individual image comparison op-
erations. An example will help to illustrate this
point. Suppose that all we have is a primitive
which, given two images P and @, returns a
non-negative real number d(P, Q) as their ‘dis-



tance’. Perhaps we compute d(P,Q) by using
information from all our indices (color, texture,
shape) to provide a measure of the minimum
work needed to ‘edit’ image P into image ().
The theory of such ‘string-edit’ distance func-
tions is well developed in mathematical biol-
ogy for sequences of nucleotides or amino acids
[Sankoff and Kruskal, 1983]. It should be clear
that such functions naturally satisfy the trian-
gle inequality d( P, R) < d(P,Q)+d(Q, R). This
makes the set of images into a metric space and
so it makes sense to cluster images based on
their mutual distances and use that structure
in answering queries. In fact, if the query is
far from some image in a cluster, it cannot be
that close to any other image in that cluster.
Yianilos [Yianilos, 1993] has developed certain
tree-like structures that allow for efficient near-
est neighbor searching in such general metric
spaces. Alternatively, we can try to use some of
the distance geometry [Havel, 1995] techniques
developed in mathematical chemistry in order
to embed our images as points in a fairly low-
dimensional Euclidean space in a way which
preserves their distances. Then much more
powerful geometric range searching techniques
can be used.

2.4.3 Larger Demos

In our transition to a demo with several thou-
sand images and different query modalities, we
face three main challenges:

e sharpening the basic image descriptors so
that queries still return small image sets
with a small ratio of false negatives;

e tuning the performance of range and
nearest-neighbor search algorithms so that
the larger number of images can still be ac-
commodated in short response times;

e making images and descriptors available on
line at a reasonable cost.

Improvements in the area of image descriptors
have been discussed under “Basic Representa-
tions” above. As to the efficiency of search algo-
rithms, our main tool will be the use of cluster-
ing and vector quantization techniques to “sum-
marize” groups of similar descriptors. Given our
initial experiments and the performance of typ-
ical vector quantization algorithms, we expect
to see a reduction of at least one order of mag-
nitude in the number of descriptors per image.

Making several thousand images available on
line is a technical difficulty, not a concep-
tual one. We have placed an entire data

base of 20,000 images onto a laser disc. The
recorder and player is connected to a worksta-
tion through a serial port for commands and
through a frame grabber for the images, since
the recorder stores data in analog format. A
small thumbnail sketch is stored on computer
disk for every image on the laser disc, so the
latter needs to be accessed only when the data
base is built and when the user requests a spe-
cific image after examining the result of a query.
We have developed a complete software package
for accessing the pictures so that the physical
storage medium is transparent to the user.

3 Vision for Robots

This section highlights two projects on vision for
robots which are sponsored by ARPA. The first,
described in section 3.1, involves a close coop-
eration between the computer vision (Tomasi)
and motion planning (Latombe) groups at Stan-
ford. It led to the construction of a prototype
robot observer, which follows a moving target in
an obstacle-cluttered environment without los-
ing sight of the target.

The second project (section 3.2) adds a safety
margin to the robot observer by allowing detec-
tion of unexpected, possibly moving obstacles.
Using a multi-camera version of depth from fo-
cus to compute a coarse depth map in real time,
this system intentionally compromises accuracy
for reliability. The result is a robot that has
navigated for hours in crowded rooms without
ever hitting anyone or anything, using only a
personal computer for its vision processes.

3.1 The Intelligent Observer

The intelligent observer (10) is a system that
provides a human user with intuitive, high-level
control over a mobile robot which autonomously
plans and executes motions to visually track a
moving target (see Figure 7). The user sends
commands, such as “follow the next moving ob-
ject which enters the view”, and receives real-
time feedback, such as a graphical display of the
positions of the observer and target overlaid on
a map of the environment.

The IO responds to high-level commands which
are specified at the task level. There is no need
for a “virtual joystick” or any other such con-
trol. Furthermore, the robot uses its internal
representation to provide a more flexible feed-
back mechanism than would be possible by sim-
ply displaying the image seen by the observer’s
cameras. The IO can fuse information from var-



Figure 7: The intelligent observer pursuing an-
other robot.

ious sensors and, using geometric information
about the environment, reconstruct a view of
the observed scene. The 10 project brings to-
gether concepts and algorithms from computer
vision, motion planning, and computer graph-
ics in order to create a robust, useful, and inte-
grated system. Possible applications are remote
monitoring, surveillance, and teleoperation.

The complete 1O consists of five major modules:

Landmark Detection. As the observer moves
around it keeps track of its own current position
by visually detecting artificial landmarks placed
throughout the environment. The positions of
the landmarks are included in a map which is
provided to the 10.

Target Tracking. The central task of the 10
is to observe moving targets, so the capability
is provided to both recognize when a new target
enters the 10’s field of view and to track the tar-
get as it moves. Since the robot must respond
to the movement of objects, all tracking occurs
in real time.

Motion Planning. The IO remains in view
of a moving target at all times by employing a
probabilistic on-line algorithm that avoids colli-
sions and minimizes the probability of obstruc-
tions to visibility.

User Interface. The user is presented with
either a two-dimensional overhead view or a
three-dimensional rendering from an arbitrary
vantage point. This module uses a known geo-
metric model of the environment and informa-
tion about the positions of the observer and the

target. Only a small amount of new information
must be transmitted to update the display.

Motion Control. The motion controller co-
ordinates communication with the other com-
ponents and produces low-level commands to
control the robot. It also updates the current
estimate of the robot’s position based on feed-
back from the landmark detector and odometric
information. Finally, it requests goal points of
the motion planner, and sends information up-
dates to the user interface.

More details on the intelligent observer can be
found in [C.Becker et al., 1995].

3.2 Obstacle Avoidance by
Depth-From-Focus

The point of this research is to show that depth
from focus provides an inexpensive and reli-
able sensing method for obstacle avoidance. A
$5,000 prototype of our system has so far accu-
mulated more than twenty hours of navigation
with no failure in demanding indoor and out-
door environments under varying lighting con-
ditions, crowds of people walking past and to-
wards the robot, and treacherous steps and ob-
stacles all around. Our robot gracefully coasts
around tables and chairs, mingles with people
who pay little or no attention to it, and happily
spins around when children hold hands around
it singing "ring around the roses.”

Our system performs no convolutions except
those computed for free by defocused lenses. It
has no explicit mathematical model of how de-
focusing alters an image, and the processing is
simple enough to be carried out at frame rate on
a personal computer. Three images taken from
the same viewpoint but with lenses focused at
different distances are compared for sharpness.
The setting of the corresponding camera’s focal
length is taken to be the desired depth at any
one image position. Although depth resolution
could be increased by using more cameras, the
simple strategy used to control our robot only
needs to tell close from medium-distance from
far at a relatively coarse grid of image regions.
Any control strategy must eventually compress
depth information into a few bits of informa-
tion, since the choices for the robot’s action are
limited. Consequently, determining how much
depth information is required before building
the depth sensing module guarantees that all
and only the necessary information is computed.

This research is about an extremely simple idea.
Simplicity itself is the point, as it yields at the
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Figure 8: Schematic diagram of the depth-from-
motion robot architecture.

same time efficiency and reliability. Our exper-
iments show our depth-from-focus system to be
an alternative to sonars for its greater accuracy,
longer distance range, high reliability, and low
computational cost. This is one of the first ex-
amples of a vision algorithm that is hard to de-
feat. A schematic diagram of the mobile robot
system is shown in figure 8. More details are
given in [Nourbakhsh et al., 1996] in these pro-
ceedings.

Acknowledgements

We acknowledge the contributions of the fol-
lowing people who either did some of the
work described in this report or contributed
with useful discussions: David Andre, Hec-
tor Gonzalez-Baiios, Craig Becker, Scott Co-
hen, Michael Genesereth, David Hoffman, Jean-
Claude Latombe, Illah Nourbakhsh, Brian Ro-
gofl, Yossi Rubner, Mark Ruzon, and Guillermo
Sapiro.

References

[Arya and Mount, 1994]
S. Arya and D. Mount. Approximate near-
est neighbor queries in fixed dimensions. In
Proceedings of the 5th SIAM Symposium on
Discrete Algorithms (SODA ), pages 271-280,
1994.

[Bielski, 1995] L. Bielski. 20 million photos
will be digitized at Time Warner: the im-
age database of the future begins. Advanced
Imaging, 10(10):26-28,91, October 1995.

[C.Becker et al., 1995] C.Becker, H. Gonzélez-
Bafos, J. C. Latombe, and C. Tomasi. An
intelligent observer. In Proceedings of the

Fourth International Symposium on Fzrperi-
mental Robotics, ISEFR "95, June 1995.

[Chew et al., 1993] L. P. Chew, M. T.
Goodrich, D. P. Huttenlocher, K. Kedem,
J. M. Kleinberg, and D. Kravets. Geometric
pattern matching under Euclidean motion. In
Proceedings of the Fifth Canadian Conference
on Computational Geometry, pages 151-156,
1993.

[Cohen and Guibas, 1996] S. D. Cohen and
L. J. Guibas. Shape-based illustration index-
ing and retrieval: some first steps. In Pro-
ceedings of the ARPA Image Understanding
Workshop, 1996.

[Faloutsos et al., 1994] C. Faloutsos, R. Bar-
ber, M. Flickner, J. Hafner, W. Niblack,
D. Petkovic, and W. Equitz. FEfficient and
effective querying by image content. Jour-
nal of Intelligent Information Systems, 3:231—
262, 1994.

[Havel, 1995] T. F. Havel. Distance geometry,
In Encyclopedia of NMR, pages 1-10. John
Wiley & Sons, 1995.

[Jain, 1992] R. Jain. NSF Workshop on Vi-
sual Information Management Systems. Red-
wood, CA, 1992.

[Larish, 1995] J. Larish. Commercial images
on-line: Kodak’s still picture exchange for

print and film wuse. Advanced Imaging,
10(4):38-39, April 1995.

[Mulmuley, 1993] K. Mulmuley. Computa-
tional Geometry: An Introduction Through
Randomized Algorithms. Prentice Hall, En-
glewood Cliffs, N.J, 1993.

[Nourbakhsh et al., 1996] 1. R. Nourbakhsh,
D. Andre, C. Tomasi, and M. R. Genesereth.
Obstacle avoidance via depth fom focus. In
Proceedings of the ARPA Image Understand-
ing Workshop, 1996.

[Picard and Minka, 1995] R. W. Picard and
T. P. Minka. Vision texture for annotation.
Multimedia Systems, 3(1):3-14, 1995.

[Rubner and Tomasi, 1996]
Y. Rubner and C. Tomasi. Spectral texture
descriptors. In Proceedings of the ARPA Im-
age Understanding Workshop, 1996.

[Sankoff and Kruskal, 1983] D. Sankoff and
J. B. Kruskal. Time Warps, String Fdits, and
Macromolecules: The Theory and Practice

of Sequence Comparison. Addison-Wesley,
Reading, MA, 1983.

[Yianilos, 1993] P. N. Yianilos. Data struc-
tures and algorithms for nearest neighbor
search in general metric spaces. In Proceed-
ings of the 4th ACM-SIAM Symposium on
Discrete Algorithms (SODA ), pages 311-321,
1993.



