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We work towards a content-based image retrieval system, where queries can be image-like objects. At entry
time, each image is processed to yield a large number of indices into its windows. A window is a square in a
�xed quad-tree decomposition of the image, and an index is a �xed-size vector, called a descriptor, similar to
the periodograms used in spectral estimation. The �xed decomposition of images was prompted by the need for
fast processing, but leads to windows that often straddle image regions with di�erent textural contents, making
indices less e�ective. In this paper, we investigate di�erent de�nitions of spectral distance which we plan to use
to classify windows according to their texture content.
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1 Introduction

In our research, we work towards a content-based image retrieval system, where the queries themselves can be
image-like objects.TG94 Related research directions are overviewed in.RJ92 At entry time, each image is processed
to yield a large number of indices into all its windows. In general, a window is a rectangle of the image, and
an index is a vector, called a descriptor, that summarizes various attributes of the image intensity distribution
within the window.

Using indices into images avoids searching the entire database at image query time. In fact, a query interface
lets the user select descriptors by picking textures, colors and other attributes out of a set of menus, and by
navigating in the parameter spaces of these attributes by means of cursors, somewhat in the style of IBM's QBIC

system.FBF
+
94 Once a set of descriptors has been computed from the user's selection, or from other images or

even from sketches done by the user, search can be quickly performed through a system of hash tables.

In order to keep the image entry procedure relatively fast, windows are the elements of a �xed decomposition
of each image into a quad-tree. However, a �xed decomposition leads to windows that can straddle image regions
with di�erent textural contents. These \mixed texture" windows generate descriptors that do not correspond by
themselves to any one texture, with the e�ect of cluttering the space of all descriptors. In principle, this problem
could be addressed by windows of variable shape and size. However, determining these variable windows seems to
require the solution to problems, like region segmentation, for which only partial and usually expensive solutions
have been proposed. These high computational costs are sometimes justi�ed in image analysis, but not in the
image database setting, where large numbers of images must be processed and query response time must be made



interactive.

In contrast, we choose to explore the limits and possibilities of the �xed-window approach, and restrict the
use of descriptors to image regions that are large enough to contain windows with homogeneous texture content.
This general problem raises the following issues:

� What is a descriptor?

� When are the descriptors of two windows similar enough to be considered to contain the same texture?

The last question implies the de�nition of a distance between window descriptors that is at least approximately
invariant with respect to the natural variations within a given type of texture and to the changes in illumination
and viewing conditions present in a single image or in perceptually similar images. In other words, we would
like the descriptors of two patches to be close to each other if they contain the same texture, and to be distant
otherwise. Similar windows can then be summarized by a single descriptor, and windows that contain dissimilar
subwindows can be tagged as having mixed textures. Even more importantly, descriptors can be extracted from
the user's query, be it a texture selected from a menu or an example from another image.

Another requirement for a good window descriptor is a high degree of detail, since it is not known at image
entry time, that is, when image descriptors are computed, just what feature of a texture the user is interested
in. In other words, the descriptor should throw away little information. This requirement is in con
ict with that
of invariance. In fact, in general, the more information the descriptor retains about a given window, the more
likely it is that this descriptor will di�er from those of windows that a human observer would consider of the
same texture, but perhaps at a di�erent scale, rotation, or position. For instance, if a descriptor of grass speci�es
generally vertical orientation for the blades, grass in a rotated picture would not be found.

Hard as this dilemma may be, �nding descriptors that approximate these requirements is an easier problem
than texture-based image segmentation. In fact, homogeneous windows can be found by requiring a conservatively
high degree of uniformity, and the exact boundaries of di�erent texture regions are not important. All we need is
to �nd windows of fairly uniform texture. It does not matter much that a region with the same texture is broken
into more regions, or that a few good windows are discarded for being erroneously considered nonuniform.

In Section 2 we propose a de�nition of window descriptor that is in a sense intermediate between the output
of a bank of �lters run on the window and the window itself. Our choice is a slight variation of the classical
periodogram,OS75 that is, a smoothed and normalized version of the magnitude of the Fourier transform. With
some impropriety of language, we call this the spectrum of the window1. Taking the magnitude achieves invariance
to position, while smoothing has two e�ects: one is a certain degree of invariance to small geometric distortions,
and the other is a greater e�ciency and uniformity of the representation. In fact, once suitably smoothed, the
spectrum can be sampled down to a small and possibly �xed size.

The key issue of spectral distance is then addressed in Section 3, where we compare three di�erent de�nitions
of distance. The �rst is based on a Hausdor�-likeHK92 metric on the most signi�cant components of the spectrum.
Our de�nition penalizes variations in the locations of the most signi�cant spectral components on the frequency
plane, but is permissive with regard to changes in the amplitudes of the spectral components. The second and
third de�nition have an opposite behavior: they are both tolerant, but in di�erent degrees, of variations in the
position of the spectral components, but penalize amplitude di�erences. The latter two measures are di�erent
variations of the Sum-of-Squared-Di�erences distanceAna89 used for feature tracking. We give e�cient algorithms
for each distance de�nition in Section 3. Then, in Section 4, we show some preliminary experiments that compare
these three distance de�nitions on real images. We conclude in Section 5 with limitations of our approach and
plans for future work.

1The spectrum is the square of the magnitude.OS75



2 Spectral Descriptors

In this section, we de�ne our particular choice of spectral description of an image window, and relate it to
texture characterization. Spectral estimation is an old science (see for instanceOS75 for the basic theory), so our
de�nition is nothing new. We include it in order to motivate our choice, and to point out a few small di�erences
with respect to the standard de�nitions.

The output of a set of �lters, possibly followed by some nonlinear operation, is often used in the literature
on texture discrimination (see, for instance,Tur86MP90 and many others). This description, although biologically
plausible, is not su�ciently detailed, unless a very large number of �lters is used (for instance, in,MP90 192 separate
channels are used). On the other extreme, the intensities of the image window are as complete a descriptor as
possible of the window itself. However, this descriptor also varies wildly with viewing transformations, lighting,
and noise. The continuum between these two extremes is easily visualized in the frequency domain. In fact, while
at one extreme the discrete Fourier transform of a window contains exactly the same information as the window
itself, a �lter, on the other end, yields as its output a weighted average of some samples of the Fourier transform.
Our choice of a smoothed spectrum is in a sense intermediate between the two, since smoothing amounts to a
weighted average of samples in every neighborhood of the spectrum, and the e�ect of smoothing vanishes as the
smoothing kernel is narrowed to an impulse.

More precisely, given a window W of intensities I(x), we describe it by the most signi�cant components of a
smoothed, normalized, square-root spectrum with its dc component removed. That is, we �rst let

SW (f ) =
���XX

I(x)g(x)ej2�f
Tx
��� (1)

where g(x) is a wide Gaussian window. This windowing, as will be illustrated below, is equivalent to smoothing
the Fourier transform of I(x), but is computed more e�ciently. We then normalize SW (f ) and restrict it to its
p-th percentile most signi�cant components, that is, to those frequency samples that that are greater than p

percent of all the samples in the spectrum, and we normalize the result. Let �W (p) be the p-th percentile of
the values in SW (f ), that is, let p percent of the spectral components be below �W (p). Then, we de�ne a p-th
percentile signi�cance mask as follows:

mW (f ) =

�
1 if SW (f ) > �W (p) and f 6= 0
0 otherwise

: (2)

Notice that this mask zeros the dc component of the spectrum. The window descriptor is then

sW (f ) =
mW (f )SW (f )PP

mW (f )SW (f )
: (3)

Equations (1) through (2) together comprise our de�nition of spectral descriptor. We now analyze this de�nition
in some detail.

Removing phase information discards potentially useful information. For instance, �gure 1 shows a texture
from Brodatz's albumBro66 on the left and the corresponding texture without phase information on the right.
The texture without phase looks more random than the original, and consequently perceptually di�erent: some
potentially important information has been discarded. This problem can be addressed by preserving phase
information after removing the best-�t plane to the phase, for position invariance, and smoothing, as for the
magnitude information. However, we do not pursue this direction in this paper.

Periodograms are usually de�nedOS75 in terms of the squared magnitude of the Fourier transform of the
signal, which is the Fourier transform of the signal's autocorrelation function. This square is important when
power considerations must be made, but is irrelevant for our purposes.

To reduce the variance of random 
uctuations in the spectral components, periodograms are usually computed
as an average spectrum over many subwindows of the given windowW . However, in our application, windows are



Figure 1: Texture (left) created by beans and the corresponding texture without phase information (right).

Figure 2: The support (left) of the 2 percent of most signi�cant frequency components from the texture in the
right part of �gure 1 and the texture (right) obtained by retaining only these components.

often small, while this averaging is of any signi�cance only for much larger signal regions. Our spectrum is also
normalized in order to reduce the e�ect of brightness variations. Furthermore, the dc (zero frequency) component
of the spectrum is ignored (see equation (2)). This component is much larger than the others for nonnegative
signals (like images are), so it would swamp the rest of the spectrum in any comparison. Its removal is equivalent
to subtracting the average image intensity within the window, which further reduces the e�ects o� illumination
changes.

Only the most signi�cant components of the spectrum are preserved. Figure 2 illustrates the point that most
of the texture information is carried by a very small collection of frequency samples. The left part of �gure 2 shows
the �ll pattern of the matrix that contains the frequency components above the 98-th percentile for the right
picture in �gure 1, that is, the locations of these components on the frequency plane (the origin is at the center).
The right part of �gure 2 shows the texture that is obtained by retaining only these components. Although some
sharpness has been lost, a very substantial part of the original texture information is carried by only 2 percent of
the frequency samples. A di�erent, but related, compression of spectra was proposed in,PL94 where the spectrum
is �rst decomposed in to its periodic, directional, and random components. Figure 3 indicates that the shape of
the signi�cance mask of equation (2) can be used as an approximate signature of a particular texture, a fact that
will be used in the �rst spectral distance de�nition of section 3.

Finally, the spectrum is smoothed. This is equivalent to windowing the image intensities (the Fourier dual
of convolution is windowing). Windowing is common practice in spectral estimation, and the particular choice
of window shape is of minor signi�cance. In an e�cient implementation, intensity windowing is preferable to
spectral smoothing.

3 Spectral Distance

Even without phase information and after normalization, smoothing, and dc-component suppression, the
spectrum is not an invariant window descriptor. In fact, viewing deformations like those inherent in perspective
views of a slanted surface can deform the spectrum substantially. How can two spectra be compared to each other



Figure 3: A reptile texture (top left) fromBro66 and the 98-percentile spectral supports of three of its subwindows.
Notice that the bottom right support is slightly rotated with respect to the other two.

in a way that is forgiving of these deformations, but at the same time preserves the distinctions between spectra
that cannot be related by a simple deformation?

In this section we address this question by comparing three di�erent metrics for spectral comparison. The �rst
is based on a variation of the Hausdor� distanceHK92 on the high-percentile spectral supports like those in �gure
3, and the other two are based on the Sum of Squared Di�erences (SSD) distance (see for instanceAna89), with
variations that allow for some 
exibility in the position of a spectrum's components on the frequency plane. We
then consider combinations of these metrics, and look at one way to set thresholds between \small" and \large"
distances.

3.1 A Hausdor�-Like Distance

Our �rst attempt at de�ning spectral distance is based only on the binary masks mW (f ) mentioned in Section
2. As already mentioned there, a very substantial part of the texture information seems to be carried by a very
small percentage of dominant frequencies. In this section we choose to ignore the coe�cients of these dominant
spectral components and match solely on the basis of the location of these components. We report a distance
between two texture windows re
ecting the average distance in the spectral plane of the dominant components
of the two texture spectra.

Suppose we are given two such binary masks �1 and �2 whose underlying windows are congruent|in other
words which are of the same size. We will think of each mask as de�ning a \shape" in the plane, consisting
of all the \on" (white in our Figures 2, 3) pixels in the mask. We wish to de�ne a distance between the two
shapes �1 and �2. Note that, if the percentage p used in obtaining these masks was the same, then (to within
the precision of our 
oating-point computation), these two masks should have the same number of on pixels.
However, in matching these masks as shapes, we do not require a one-to-one matching between their pixels.
Instead, we use a variant of the popular Hausdor� distance.HK92 The Hausdor� distance is de�ned in terms of
the directed Hausdor� distance �(A;B) from shape A to shape B, which is the maximum, over all points x of
A, of the distance from x to the nearest point of B. The Hausdor� distance is then just maxf�(A;B); �(B;A)g.
Note that this distance may match many points of A to the same point of B, and vice-versa. Note also that in
our application it is quite fortunate that we can get by by setting the percentage p quite high, so that each of
the two masks �1 and �2 has only a small fraction of on pixels. Had we, for example, chosen p = 50%, then each



mask would have had half its pixels on and, on the average, an on pixel of �1 would have been within a distance
one of an on pixel of �2, rendering a Hausdor�-like distance useless.

The Hausdor� distance has been used extensively in tracking, OCR, and other vision applications to compare
directly two images. In these applications, because of image noise, one usually selects not the maximumdistance,
as in the de�nition given above, but instead a high percentile of the distance, thus rejecting outliers. Since we
are applying th Hausdor� concept not to images directly but to their already thresholded spectra, we felt it more
appropriate to measure distance by de�ning �(A;B) to be the average over all points x of A, of the distance from
x to the nearest point of B. Also, for computational e�ciency, we compute this distance from x to the nearest
point of B only approximately. Let us explain this more precisely. Suppose we want to compute �(�1; �2). We

construct a sequence of masks �
(0)
2 = �2; �

(1)
2 ; �

(2)
2 ; : : :, as follows. The mask �

(1)
2 is obtained from �

(0)
2 by tiling

�
(0)
2 into 2� 2 pixel blocks and marking all pixels in a block as on if any one of the four of them was on in �

(0)
2 .

For �
(2)
2 we consider blocks of size 4� 4, and so on. If x is an on pixel of �1 that for the �st time becomes on in

�
(i)
2 as i = 0; 1; 2; : : :, we de�ne its distance to �2 to be 2i � 1. It is not hard to check that this distance is within

a factor of 2 of the actual distance, and therefore our �nal average directed distance is also correct to within a
factor of two.

We will denote our Hausdor�-like distance between the spectra thresholded by p of two texture windows W1,
W2 of the same size by #(W1;W2; p).

3.2 The Best-Neighbor SSD

The technique of the previous section fails to distinguish the bean texture of Figure 1 from dissimilar looking
textures (such as the pebble texture in Figure 4), because at the p where the spectra were thresholded, the
corresponding masks look very similar. In the actual spectra, however, we can see that the beans have a very
high intensity ring around the origin, re
ecting the rather uniform bean size and distribution. This example
shows how the Hausdor�-like distance can fail because, after thresholding, it completely ignores spectral intensity
information.

As already mentioned, a method for computing spectral distance based entirely on intensity information is the
Sum of Squared Di�erences (SSD). It is not clear a priori how to weigh intensity di�erence vs. location di�erence
in comparing two spectra | the units are completely di�erent. In this section we report on a method that reports
an SSD-like (intensity-based) distance, but is also sensitive to location information. Suppose we wish to compute
the distance between two spectra A and B of the same size. Let us �x a certain neighborhood shape N , which
we can think of simply as a description of a certain set of location displacements we are willing to allow. Now,
for each pixel a in A we �nd its best-neighbor b in B. This is that pixel in B that is within the neighborhood N

centered at a, and which minimizes the value of jI(A[a])� I(B[b])j, where I denotes intensity. Our best-neighbor
SSD distance is de�ned as the sum of the squares of all these best-neighbor distances, summed over all the pixels
in A. Note that, for example, this method will report a zero distance (up to boundary e�ects) for two spectra
that are simply shifts of each other within some vector in N . We will denote the best-neighbor SSD distance
between the spectra of two texture windows W1, W2 of the same size by �(W1;W2).

In order to speed up this computation, we again approximate this best-neighbor distance, this time by random
sampling. Instead of letting N be some �xed-size square window centered at the origin, we instead de�ne N by
random sampling a number of pixels around the origin using a Gaussian probability density function and then
save those displacements.
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Figure 4: Six texture samples fromBro66.

3.3 The Warped SSD

The best-neighbor SSD allows some 
exibility in the positions of spectral components by searching for the
best match to each component in a small neighborhood. Thus, the allowable deformation between two spectra is
bounded by the size of this search neighborhood. Given, however, that the main family of deformations we are
interested in allowing is associated to the viewing geometry, it seems to make sense to model these deformations
and incorporate the model into the de�nition of the SSD distance. If the geometric deformations of perspective are
approximated by a�ne transformations, the corresponding spectral deformations are a�ne as well. Consequently,
we can de�ne a warped SSD distance between two spectra as the residual SSD distance after one spectrum has
been deformed as well as possible into the other by an a�ne transformation. We compute the optimal warping
by means of a Newton-Raphson style iterative search for the best A, which we devised in past research on feature
tracking.ST94

Intuitively, this new de�nition of SSD would seem to work well. In fact, if two spectra are indeed at least
approximately related by an a�ne transformation, the optimization stage will �nd this transformation, and the
residual SSD distance will be smaller than without it. If on the other hand the two spectra are unrelated, the
optimization stage will not be able to �nd a good transformation, and the residual SSD distance will remain large.
However, the experiments show that this is not the case, unless the deformations due to the viewing geometry are
very large. For small deformations, in fact, the decrease in distance between unrelated spectra is usually greater
than that between related spectra, thereby making performance in fact worse. This is illustrated next.

3.4 Comparison of the Methods

One way to compare the distances given above is to test their discriminating power on a set of textures.
Figure 4 shows six texture samples from.Bro66 Each texture sample (128� 128 pixels in size) is divided into four
subwindows. Figure 5 is a gray-level representation of the 24 � 24 symmetric matrix of the distances between
the resulting 24 subwindows (four from each of the six texture samples). Rows and columns correspond to the
textures in alphabetical order, and to subwindows in the following order: top left, top right, bottom left, bottom
right. A perfect distance matrix would then have its six 4�4 diagonal blocks equal to zero, and all its o�-diagonal
entries very large. The actual matrix obtained with the best-neighbor SSD distance measure is shown in �gure
5. Analogous matrices relative to other SSD distances are not shown. In fact, they are numerically di�erent, but
not enough to make a big di�erence on the gray values of this display. The numerical values are compared below.

The matrix in �gure 5 has smaller entries in the diagonal blocks, as expected, and in particular the beans
texture is very distant from all the others, as evidenced by the bright entries in the �rst four rows and four
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Figure 5: Distance matrix between subwindows of the six textures in �gure 4. Four subwindows are extracted
from each of the six texture samples.

SSD with no warp or jitter 0.1697
warped SSD 0.3358
best-neighbor SSD 0.1357

Table 1: Confusion parameters for three variations of SSD distances.

columns. However, di�erences between cork, grass, and pebbles are somewhat blurred (although still visible).
Cork and grass, in particular, are high-frequency textures with no clear low-frequency distinctions. Their spectra
are rather 
at, making them hard to distinguish. The beans and reptiles texture, on the other hand, have both a
very strong geometric component, which leads to the ring visible in the spectrum of �gure 2 and to the hexagonal
structure of the spectra in �gure 3. These would probably be picked up as strong periodic components in the
Wold decomposition of.PL94

An indication of the relative quality of the SSD measures presented above can be obtained by computing
a confusion parameter as the ratio between the average within-texture distance and the average across-texture
distance. A ratio of 0 is ideal; a ratio of 1 is total confusion (no texture discrimination) and a ratio greater than
one is a distance de�nition that ought to be replaced with its reciprocal.

Table 1 shows the confusion parameters for three di�erent types of SSD distance. While best-neighbor jittering
improves performance, warping makes it substantially worse. The degradation due to warping occurs because the
Brodatz texture samples are taken from nearly fronto-parallel surfaces, with little geometric distortion. Conse-
quently, the a�ne warping has little or no e�ect on the within-texture distances, while it lowers the across-texture
distances. Of course warping would improve the confusion parameter in the presence of large geometric distor-
tions, but the fact that across-texture distances are made worse remains, casting serious doubts on the usefulness
of warping. A�ne distortions applied to a spectrum, if unbounded, can modify the shape of the spectrum too
much, thereby dangerously lowering the distinctions between unrelated textures. If any technique like this is to
be used, some constraint on the amount or type of warping should probably be imposed. The better performance
of the best-neighbor SSD corroborates this point, since in this experiment the neighborhood was constrained to
about three frequency samples.

An analogous experiment using the Hausdor�-like distance gave discrimination results that were qualitatively
similar to the best-neighbor SSD, but in general worse. In particular, the beans and pebble textures of Figure



4 were not well discriminated against each other. This, plus the fact that the Hausdor�-like computation is
signi�cantly slower than the best-neighbor SSD, leads us to conclude the best-neighbor SSD is the preferred
spectral matching method for textures, at least among the one we have examined.

3.5 Combination Distances

Several other distance de�nitions are possible, but we have not experimented with them. For example, we
could imagine using combinations of the Hausdor�-like and best-neighbor SSD distances by an expression of the
form p

�#(W1;W2; p) + ��(W1;W2) ;

with �+ � = 1, though it is not clear how to determine the best choice of weights � and �.

A related possibility is to measure spectral distance using the so-called earth-movers distance between two
images of the same size that have been normalized to have the same average intensity. The idea here is that we
view each image as a height �eld re
ecting the distribution of sand (or earth) in a sandbox. The earth-movers
distance between two such sandboxes is the minimumamount of work needed to move the sand in the �rst box and
give the height distribution in the second box. The work unit is here is moving one unit of sand (intensity distance)
by one unit of horizontal displacement (location distance). The nice aspect of this de�nition is that its unit of
work re
ects both types of earlier distances together, in one common unit. We have not yet considered algorithms
for e�ciently computing this distance. An approximation can be obtained by a variant of the best-neighbor SSD
calculation, where we weigh the best match between a 2 A and b 2 B by jI(A[a])� I(B[b])j(�d(a; b)+ 1)j, where
d(a; b) is the distance between pixels a and b, and � is a parameter.

4 Segmentation Experiments

We have used some of the above distance algorithms to group tiles of a particular level in a quad-tree decom-
position of an image into similar groups, thus achieving a primitive kind of segmentation. We note here that for
our image searching application, it will be enough if we can identify large regions of uniform texture in an image
| we do not need to accomplish a full segmentation in the traditional sense.

For our experiments we compared each tile of an image with its right and bottom neighbors. Ideally, there
should be some distance threshold so that if we mark all tile boundaries across which the tiles have textures with
spectral distance above that threshold, then we should obtain an image segmentation to with the resolution of
the tiling we have. An experiment using the best-neighbor SSD distance and two natural scene images is shown
in Figure 6.

The New York skyline and the roller coaster have a strong textural component and have been well segmented
from their texturally di�erent surroundings. But an assortment of other somewhat random boundaries has also
been introduced. When running this and related experiments on real images, we ran into serious problems related
to the window size. In fact, windows that are too small with respect to the characteristic periods of a texture
result in poor descriptors of that texture. Windows that are too large are likely to contain multiple textures.
Given the irregular shapes of textural regions in real images, it is not too likely that one can �nd a rectangular
window of just the right size for a given region. Unfortunately, the computation of Fourier transforms adapts
poorly to regions of irregular shapes. One solution to this dilemmamay be to stick with a quad-tree decomposition
of images, but to tile textural regions with combinations of elements of the appropriate size from the quad-tree.
This in turn requires methods to combine spectra from adjacent windows of possibly di�erent sizes into a single
spectral descriptor of an irregularly shaped region.



Figure 6: Natural scenes (left) and signi�cant texture tile boundaries (right) at a given quad-tree level.

5 Conclusions

In this paper, we have explored some aspects of texture metrics within the rather popular framework of
Fourier-style descriptors and �xed-size image windows. We have de�ned two di�erent types of distances, the
Hausdor�-like distances and the SSD-like distances which in a sense lie at two opposite ends of a continuum. The
former penalize horizontal distance in the Fourier domain, but are lenient towards vertical di�erences between
values of the spectra. The SSD distances we de�ned do the opposite: through best-neighbor match or a�ne
warping they are tolerant of horizontal deformations of the spectra, but penalize vertical discrepancies. We have
suggested variations of the earth-movers distance as a de�nition that combines aspects of these extremes.

In a sense, the Hausdor�-like distances can be considered as lower bound to the SSD-like distances. Among the
SSD-like distances, best-neighbor matching improves texture discrimination power, while a�ne warping makes
things worse. This negative result surprised us when we �rst saw it, but is in retrospect obvious. In fact, as
explained above, the a�ne warping is more successful at decreasing across-texture discrepancies than at decreasing
within-texture deformations.

Acknowledgement: The authors acknowledge the support of ARPA grant DAAH04-94-G-0284 under which
this research was carried out.
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