
Finite-Element Level-Set Curve Particles

Tingting Jiang and Carlo Tomasi∗

Department of Computer Science, Duke University
Durham, NC 27708

{ruxu, tomasi}@cs.duke.edu

Abstract

Particle filters encode a time-evolving probability den-
sity by maintaining a random sample from it. Level sets
represent closed curves as zero crossings of functions of
two variables. The combination of level sets and particle
filters presents many conceptual advantages when tracking
uncertain, evolving boundaries over time, but the cost of
combining these two ideas seemsprima facieprohibitive. A
previous publication showed that a large number of virtual
level set particles can be tracked with a logarithmic amount
of work for propagation and update. We now make level-
set curve particles more efficient by borrowing ideas from
the Finite Element Method (FEM). This improves level-set
curve particles in both running time (by a constant factor)
and accuracy of the results.

1. Introduction

Tracking an animal in video, a wildfire on the ground, or
a drifting cloud in the sky involves following boundaries on
the plane that move and deform over time: the silhouette of
the animal, the fire front, a vapor iso-density contour in the
cloud pattern.

When the region within the boundary splits and recom-
bines, and as it develops and refills holes, it becomes the-
oretically more elegant and practically simpler to represent
the region’s boundary as the zero-crossing of a scalar func-
tion of the two coordinates on the plane. This is the well
known level setrepresentation of curves. Although encod-
ing a function of two variables is more expensive than en-
coding a set of curves, changes in geometry and topology
become trivial to handle. Computation is now much more
uniform and leads to practical efficiency and simple code.

In many applications, knowledge about the curve’s posi-
tion and shape (the curve’s “state” for short) comes from a
sparse set of uncertain measurements. Particle filters have
been used successfully in many contexts to track and re-
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fine the state of evolving objects from sparse measurements.
These filters maintain random samples (a set of particles)
out of the probability density that represents the current
knowledge about the object’s state. Particles are propagated
as the state changes, and are updated when new measure-
ments become available.

Tempting as the combination of level sets and particle
filters may be, it immediately raises the specter of compu-
tational complexity: the space of curves is infinite, and a
density in such a space needs many samples indeed for a
faithful representation. If each particle is a set of curves
encoded by a level set, the complexity of the naı̈ve com-
bination of these two representational ideas multiplies the
number of particles by the cost of handling a level set func-
tion. This product is invariably a large number, and this ex-
plains why the merge of these ideas has not been attempted
until recently.

The internal structure of individual particles as sets of
curves was exploited in [10]. It was shown that it makes
mathematical sense to “add” two sets of curves by adding
the level set functions that represent them. Using this in-
sight, one can in effect trackC particles while reaping the
combinatorial benefit of implicitly considering the superpo-
sition of all the2C combinations of theC sets of curves
that are explicitly tracked. This device made level-set curve
particles feasible. In that paper, level set functions were
mixtures of Gaussian functions. In contrast, we now show
that a representation based on the combination of piecewise-
linear functions, in the spirit of the Finite Element Method
(FEM), leads at the same time to shorter running times (by a
constant factor)andgreater accuracy in the results ( Fig.1).

2. Related work

Level sets[14, 3, 13] describe the boundaryB of an
evolving (not necessarily connected) region on the plane or
in space as the zero crossing of a functionφ(~x, t) of space
and time. While many functionsφ share the same zero-
crossingB, computational considerations [15] suggest us-
ing the signed distance function ofB, which is then main-
tained in a narrowband [1] around the boundaryB. The
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Figure 1. Compare error rates of FEM and Gaussian methods with
different number of measurement points for human colon tracking.

motion model is then a partial differential equation (PDE)
for φ. The main strength of level sets is that they account
effortlessly for changes of boundary topology, as exempli-
fied in applications to image segmentation [4], object detec-
tion [16], tracking [18], shape modeling [12] and medical
image segmentation [17], among others.

Particle filters[6] have been used in this context mainly
in the area of active contours [9, 2]. These approaches cap-
ture the uncertain position of a boundary at timet by a
probability distribution represented by a random sample of
boundaries (particles). Each boundary is represented ex-
plicitly, e.g. with splines [5] and propagatedforward in
time through an assumed, uncertain motion model. Mea-
surementsupdatethe particles by weighing each particle by
its posterior probability given the measurements.Resam-
pling draws new particles from the posterior to be ready
for a new step of propagation. This cycle is analogous to
the estimation loop of a Kalman filter [11], but maintains a
multi-modal distribution rather than a Gaussian one.

The recent, full-fledged combination of level sets and
particle filtering called “Level-Set Curve Particles” is re-
viewed in the next section.

3. Level-set curve particles

In [10] a method was proposed to represent and track a
dynamic set of closed curves (a “boundary”). This method
capitalizes on the observation that many of the curves that
populate the boundary distribution being tracked are very
similar to each other. Abase curvewhich is called “mother”
particle accounts for the macroscopic shape of the bound-
ary. The base curve is then deformed byC base perturba-
tionswhich provide an implicit representation of the2C de-
formations obtained by applying any subset of theC base
perturbations to the base curve. Through this device, an
exponential number of curves can be propagated and their
likelihoods can be computed at linear cost in the framework
of a particle filter.

More specifically, a particle setχ(t) = {φ
(t)
c }C

c=0 rep-
resents the probability distribution of the boundaryB(t) at
time t. Each particle is a signed distance functionφ

(t)
c :

R
2 → R whose zero level set denotes an estimate of the

boundaryB(t). A weightw(t)
c determined by the measure-

ments is associated to each particle. The functionφ
(t)
0 is

the “mother” particle and the other particles{φ(t)
c }C

c=1 are
explicit “child” particles. Each particle is associated with
a weightw(t)

c . In fact, there can beNM such sets to rep-
resent multi-modal probability distribution of the boundary.
For simplicity, only one particle set is discussed in the fol-
lowing. The result can be extended toNM particle sets in a
straightforward way.

Gaussian mixtures were used in [10] to approximate the
difference∆φ(~x, t) between mother particle and child par-
ticles. Assume that∆φ(~x, t) =

∑C

c=1 ac(t)Gc(~x, t) where
Gc(~x, t) is initialized as a 2D Gaussian function with ran-
domly generated mean and covariance matrix att = 0 and
then propagated by the motion field over time.ac(t) is a
scalar function oft. C is the number of explicit “child”
particles. In fact,ac(t) is restricted to be±1 or 0, thereby
leading to2C combinations of “implicit” child particles. In
other words, the representation of∆φ is simplified as aC-
bit binary vector withC functions which are initialized as
Gaussian functions and changing over time.

The outline of the resulting tracking method is Algo-
rithm 1. At each time step, the input is the particle set
χ(t−1) from last time step and the output is the new particle
setχ(t). Q

(t)
m denotes the estimate of a point on boundary

B(t) returned by each ofM observers.

Algorithm 1 : Tracking algorithm

INPUT: χ(t−1) (t > 0)
OUTPUT:χ(t).
(1) Propagateχ(t−1) to χ̄(t);
(2) Take measurements{Q(t)

m }M
m=1;

(3) Updateχ̄(t) to χ̂(t);
(4) Resamplêχ(t) and generateχ(t).

Initialization: The first iteration of Algorithm1 requires
χ(0) which is initialized as follows. The mother particle of
χ(0) is defined asφ(0)

0 . Its explicit child particles are initial-
ized by choosingC different Gaussian functions and com-
bining them withφ

(0)
0 . Specifically, the initial particle set

is denoted asχ(0) = {φ
(0)
0 , {W

(0)
c , ∆φ

(0)
c }C

c=1, {w
(0)
c }C

c=0}

where∆φ
(0)
c represents the difference between mother and

child c which is only nonzero inside windowW (0)
c andw

(0)
c

is the weight of particlec. All particles have the same ini-
tial weight. If the region of the plan of interest is discretized
into a grid of sizeN , initialization takesO(CN) time.



Propagation: Suppose the motion field at each time step
is externally given by a smooth velocity field~V (~x) on the
plane. Both mother and explicit child particles are propa-
gated by the level set equation:

φt = −~V · ∇φ (1)

which takesO(CN) time. The particle set becomesχ̄(t) =

{φ̄
(t)
0 , {W̄

(t)
c , ∆φ̄

(t)
c }C

c=1, {w
(t−1)
c }C

c=0} where φ̄
(t)
0 is the

propagated mother and the difference between mother and
child c is still represented by∆φ̄

(t)
c within window W̄

(t)
c .

The weights do not change during propagation. Because of
the linearity of the gradient operator∇, implicit child parti-
cles are implicitly propagated for free.

Update: Before update, each observer returns a noisy
measurementQ(t)

m which is the position of the closest point
on the boundary. The likelihood function used to evaluate
the particles is defined as follows:

Λ(t)(φ) =

M∏

m=1

G(φ(Q(t)
m )) (2)

whereG is a Gaussian function whose standard deviation
ζ depends on the noise statistics of the measurements. The
mother’s weight is updated aŝw(t)

0 = Λ(t)(φ̄
(t)
0 ) · w

(t−1)
0 .

Sinceφ̄
(t)
0 is always maintained as a signed distance func-

tion, φ̄(t)
0 (Q

(t)
m ) can be obtained as a simple lookup. Update

of the mother particle takesO(M) time. The likelihoods
and weights for explicit child particles can be obtained by
modifying those of mother particle based on the differences
∆φ̄

(t)
c at a cost ofO(CM).
A small boundary component is added to the mother par-

ticle whenever the measurement information implies that a
new boundary component has appeared. This has a worst-
time costO(MN).

Resampling: To resample all explicit and implicit child
particles, all their weights must be known and therefore
evaluation of the weights of implicit children is necessary.
Two cases are discussed in [10]: disjoint windows and inter-
secting windows. For the latter case, the following lemma
is proven in [10]:

Lemma 1 Let K
(t)
c =

w(t)
c

w
(t)
0

and K̂
(t)
c =

ŵ(t)
c

ŵ
(t)
0

.

Given Z ⊆ {1, . . . , C}, suppose that the com-

bined particle φ
(t)
Z has weightw(φ

(t−1)
Z ) = w

(t−1)
0 ·∏

c∈Z K
(t−1)
c

∏
j,k∈Z,j 6=k S

(t−1)
jk before propagation. Af-

ter update, the weight of̄φ(t)
Z is w(φ̄

(t)
Z ) = ŵ

(t)
0 ·∏

c∈Z K̂
(t)
c

∏
j,k∈Z,j 6=k Ŝ

(t)
jk whereŜ

(t)
jk = S

(t−1)
jk · I

(t)
jk and

I
(t)
jk = exp(

∑
Q

(t)
m ∈W

(t)
j

T

W
(t)
k

−2∆φ̄
(t)
j

(Q(t)
m )∆φ̄

(t)
k

(Q(t)
m )

ζ2 ).

This lemma tells us that besidesχ(t), it is also necessary
to maintain an intersection factor set{S

(t)
jk } for every pair

of explicit child particles over time. This factor is de-
fined recursively by the lemma itself, asS

(t)
jk is updated as

Ŝ
(t)
jk = S

(t−1)
jk · I

(t)
jk . With Ŝ

(t)
jk , the weights of implicit par-

ticles can be obtained. Then the goal of resampling implicit
particles can be achieved by changing the weights of ex-
plicit particles. Resampling costsO(2C) but the constant
factor that multiplies2C is small. For the case of intersect-
ing windows, the cost of maintaining intersection factors
{S

(t)
jk } is O(MC2).

Complexity: The total complexity for Algorithm1 is
O(2C + CN + MN + MC2). A detailed representation
of shape variations requiresC = O(N), so the asymptotic
cost of Algorithm1 is O(2N + MN2).

4. FEM curve particles

Experiments on tracking the boundary of a colon in to-
mographic imagery from sparse edge measurements show
the promise of the above approach. However, the track-
ing results are “bumpy” compared to the ground truth. To
make the tracking results smoother and the tracking ap-
proach more efficient, we replace Gaussian perturbations
with finite element perturbations.

The finite-element method (FEM) [8] originated from
the needs for solving complex elasticity, structural analysis
problems in civil engineering and aeronautical engineering.
It can be used for finding approximate solution of PDE as
well as of integral equations such as the heat transport equa-
tion. We are first inspired to use finite element perturbations
because of their linearity between the nodal points. If the
propagations of the grid points between the nodal points can
be implicitly interpolated by the propagations of the nodal
points, a significant amount of time can be saved. Second,
the approximation error for FEM is inherently better under-
stood than that of mixtures of Gaussian functions.

In this section, we show that FEM is a better way than
Gaussian functions to represent the differences∆φ(t) be-
tween mother and child particles.

Assume that∆φ(~x, t) =
∑E

e=1 de(t)Te(~x) whereTe(~x)
denotes the time-independent finite element function and
the coefficientde(t) is a time-dependent real number.E
is the total number of elements. This representation es-
sentially projects∆φ ontoE elements linearly and reduces
the boundary tracking problem to that of estimating a time-
dependent vector{de(t)}

E
e=1 such that the boundary un-

der tracking can be represented by the zero crossing of
φ(~x, t) = φ0(~x, t) +

∑E

e=1 de(t)Te(~x).
There are several choices for 2D finite elements includ-

ing the bilinear quadrilateral element, isoparametric ele-
ment, linear triangular element, etc. [8]. For convenience,



we choose the linear triangular element. TheN grid points
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Figure 2. Illustration of the linear triangular element. (a) Triangu-
lar domains. (b) The element shape function. (c) The hexagonal
“tent” Te formed by the six element shape functions that share a
nodal point.

is divided intoR × R rectangles each of which hasN/R2

grid points and is cut by its diagonal into two triangles
(Fig. 2 (a)). Each triangle is a domain which has three
nodes. For example, the triangle∆p1p2p3 is a domain. The
element shape function is illustrated in Fig.2 (b). There are
(R − 1)2 nodal points on the plane excluding those on the
bounding box. Each nodal point has six connected neigh-
bors and is adjacent to six element domains. The combina-
tion of six element shape functions which share same nodal
point looks like a tent in Fig.2 (c). These tents are the el-
ementsTe which will be used to represent∆φ. There are
E = (R − 1)2 elements on the plane each of which can
perturb the mother particle in a different area (Fig.3).

Now the particle setχ(t) can be viewed as one mother
particleφ

(t)
0 plus a set ofC E-dimensional vectors each of

which corresponds to an explicit child particle. Let aC by
E matrix D(t) represent the vectors s.t. for every explicit
child particleφ

(t)
c = φ

(t)
0 +

∑E

e=1 D(t)(c, e) · Te. Since
theE elements are fixed, the particle set can be written as
χ(t) = {φ

(t)
0 , D(t), {w

(t)
c }C

c=0}. Compared to [10] , only
the representation of the explicit child particles is changed.
The way to combine them is same and there are still2C

implicit child particles.
Based on the new representation, Algorithm1 can be

implemented with the following differences from previous

work. First of all, the particle setχ(0) is initialized by
choosingC elements from the aboveE elements and adding
them toφ(0). In particular,C ≤ (R − 3)2 because only the
nodal points in the middle of the plane have all the neigh-
bors around them. See the red points in Fig.2 (a). Each el-
ement perturbsχ(0) in a limited area. Fig.3 shows how the
array of tent functions influence the boundary whenR = 8
andC = 12. The blue curve is the mother particle and the
red curves are child particles. The red window denotes the
position of each tent. After initialization, the particle set
is χ(0) = {φ

(0)
0 , D(0), {w

(0)
c }C

c=0} whereD(0) is the rep-

resentation of theC explicit child particles andw(0)
c is the

initial weight which is same for all particles.
Second, the propagation of each tent functionTe can

be approximated by only propagating function values at its
nodal points because the tent function is piecewise linear
and the motion field~V (~x) is smooth. Specifically, use the
level set equation Eqn. (1) to calculate the function value
change for each nodal pointp in the nodal point setNP (e)
of Te. After propagatingTe, construct a matrixU of sizeE
byE such that each row ofU represents how the propagated
Te is approximated by its neighboring tent functions and it-
self, i.e., Te− ~V ·∇Te ≈

∑
p∈NP (e) U(e, p) ·Tp where both

e andp are the indices of the nodal points corresponding
to the tent functions. The changes for nodal points on the
bounding box is set to zero. If the gradient at a nodal point
is not well-defined, take the average of gradients from dif-
ferent directions. Because of the linearity of the∇ operator,
we can propagate each explicit child particle by taking the
product ofD(t−1) andU asD̄(t) = D(t−1) ·U . After propa-
gation, the particle set is̄χ(t) = {φ̄

(t)
0 , D̄(t), {w

(t−1)
c }C

c=0}.
Third, to update each explicit child particle, compute its

signed distance function̄φ(t)
c and thenφ̄(t)

c (Q
(t)
m ) becomes

available by lookup. Evaluate the likelihood of the particle
by Eqn. (2) and update its weight.

Last, to maintain the intersection factor set{S
(t)
jk }, define

I
(t)
jk =

∏M

m=1 exp(−2∆φ
(t)
j (Q

(t)
m )∆φ

(t)
k (Q

(t)
m ))/ζ2). Note

that child particles are allowed to intersect in any combina-
tion. Even so, thanks to the quadratic form of the exponents
in the Gaussians of the likelihood function, only pairwise
intersection factors need to be maintained.

The computational complexity of the algorithm is ana-
lyzed as follows. For initialization, the mother particle and
tent functions costO(N), and the matrixD costsO(C).
Propagation advances the mother particle by the motion
field, at a costO(N) andE tent functions byO(E) because
each tent only takes constant time. Then propagation of ex-
plicit child particles requiresO(CE) time. For update, the
mother particle takesO(M) time and the explicit children
takeO(NC + MC). The cost of maintaining intersection
factorsS(t) isO(MC2). Resampling still costsO(2C). The
generation of new components takes at mostO(MN) time.



Figure 3. Explicit particle set generated by adding tent functions to a mother particle (blue). Resulting perturbations are in red.

Therefore, the total complexity for the proposed tracking
algorithm isO(2C + CE + NC + MC2 + MN). Asymp-
totically,E = O(C) = O(N), so the cost isO(2N +MN2)
which is same as for the Gaussian approach.

If we had used a standard particle filter with2C =
O(2N ) explicit particles, the cost for propagation and up-
date would beO(2N (N + M)) which is much higher than
that for the proposed approach. If we useNM particle
sets each of which has a different mother particle to rep-
resent the probability distribution of the boundary, both
complexities are scaled byNM because the algorithm is
run NM times for each of the particle set. If we use the
so-called narrow-band version of LSM [1] , assume that
the number of grid points in the narrow band isNB and
the number of related elements isEB. The total cost is
O(2C + CEB + CNB + MC2 + MNB). Asymptotically,
EB = O(C) = O(NB), so the cost isO(2NB + MN2

B).
If we had used a standard particle filter with2C explicit
particles the cost for propagation and update would be
O(2NB (NB + M)), which is much higher.

5. Experiments

We implemented the proposed FEM-based level-set
curve particles on two different data sets: human colon data
and sea surface temperature data, and compare the results
with those of Gaussian-based level-set curve particles.

5.1. Colon Tracking

The algorithm in Section 4 has been run on the data
set used in [10] which is a sequence of 355 slices from

a Computerized Axial Tomography (CAT) scan of a human
colon. Results were compared to those reported in [10].
The boundaries being tracked are the cross-sections of the
colon with the horizontal slices of the CAT volume. Bound-
aries appear and disappear as from one slice to the next (See
Fig. 4 (a)). In the experiments, each boundary was first re-
constructed by a standard edge detector and the resulting
boundaries were taken as ground truth. The tracker on the
other hand can only access the ground truth through 100
measurement points in each slice. Fig.4 (b) is the 3D re-
construction of the tracking results from the proposed FEM
approach and Fig.4 (c) is the 3D reconstruction with Gaus-
sian perturbations from [10]. Both tests use 10 explicit
child particles and 100 measurement points per slice. The
grid size is512 × 512 and the element array size is8 × 8.
Although the asymptotic complexities for both approaches
are same, practical running times are different. The average
running time for the FEM approach is about 11s per slice
compared to 20s per slice for the Gaussian approach.

More importantly, the FEM approach yields more accu-
rate results. Accuracy is measured by the error rate defined
as the ratio of the symmetric difference between the 3D re-
constructions of the tracking results and the ground truth

over the volume of the ground truth. Specifically, letB̂
(t)

denote the area enclosed by the tracking result boundary and
B(t) denote the area enclosed by the ground truth boundary
at time stept respectively. Then the error rate is defined as

ErrorRate =
Σt|(B̂

(t)
\B(t)) ∪ (B(t)\B̂

(t)
)|

Σt|B
(t)|

(3)



Figure 4. Compare 3D reconstructions of ground truth (a), FEM tracking results (b) and Gaussian tracking results (c).

where| · | means the size of the area or the number of grid
points inside the area in discrete case.

Our results are compared to the previous Gaussian ap-
proach with the same number of child particles in Fig.1.
With decreasing number of measurement points, the error
rate of FEM approach is increasing more slowly than that
of the Gaussian approach.

5.2. Sea Surface Temperature Tracking

Sea surface temperature (SST) is the water temperature
at the sea surface. SSTs above 26.5 degrees C are favor-
able for the formation and sustaining of tropical cyclones.
In general, the higher the SST, the stronger the storm. So
tracking the isotherms of high SSTs is very helpful in fore-
casting tropical cyclones and hurricanes.

We tracked the SST isotherms in a data set where dense
information of the boundary is available, but we simulate
the sparseness of observers by withholding the dense infor-
mation from our tracking algorithm. Specifically, we ob-
tain NOAA ERSSTV2 data1which is an extended recon-
struction of historical SST monthly mean values using im-
proved statistical methods from 1854 to present and take it
as ground truth. In particular, we define the boundary under
tracking is the isotherm at 25 degrees C. One example of the
boundary (Jan. 1990) is shown in Fig.5. The observers are
simulated by the points on the map and each observer can
report its closest point on the boundary. In real applications,
the observers could be a set of ships or buoys with tempera-
ture sensors. Since SST changes periodically, for simplicity,
a motion model is learned for each calendar month (Jan. to
Dec.) from the historical data between 1990 and 1999. For
example, to get the motion model for Jan., we compare the
data in Jan. and Feb. in every year and find a motion model
by the optical flow method [7], and then take the average of

1provided by NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from
http://www.cdc.noaa.gov/

the motion models over the ten years (Fig.5).
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Figure 6. Compare error rates of FEM and Gaussian methods with
different number of measurement points for SST tracking.

We started tracking from Jan. 2000 and ended in Dec.
2004 (60 months). The particle set was initialized by per-
turbations based on the boundary in Dec. 1999. The pertur-
bations are generated by linear combinations of the element
functions. The number of explicit child particles is 50. The
grid size is89 × 180 (2 degree latitude×2 degree longi-
tude, global grid:88N − 88S, 0E − 358E). The element
array size is9× 18. We have applied both the FEM method
and Gaussian method. The error rate is defined as Eqn. (3).
The comparison of the accuracy of these two methods is
shown in Fig.6. The improvement of the accuracy by the
FEM approach is obvious whenM > 5.

6. Summary and future work

We have introduced “Finite-Element Level-Set Curve
Particles” that combine piecewise-linear functions to make
the merge of level sets and particle filters more efficient.
The source of greater efficiency is that FEM nodal points
carry all the information about the piecewise-linear func-
tions between them. In addition, the approximation error



Figure 5. The red curve is the isotherm of SST at 25 degrees C inJan. 1990 and the blue arrows denote the learned motion modelfor the
isotherm at 25 degrees C in Jan. from the SST data between 1990and 1999. The black dots denote the land.

for FEM is inherently better understood than for mixtures
of Gaussian functions. The new method simplifies the rep-
resentation of the child particles as well as their propaga-
tion. The results show improvements in both running time
(by a constant factor) and accuracy compared to Gaussian
level-set curve particles.

For future work, we are interested in improving the com-
putation efficiency for maintaining the weights of implicit
child particles and resampling which takes exponential cost.
We were puzzled by the fact that in the colon experiment the
improvement introduced by the FEM method increases with
fewer observers, while it increases with more observers in
the temperature experiment. Maybe the more accurate mo-
tion model available in the latter experiment is a factor in
this phenomenon, but we intend to investigate this further
for a more definite explanation.
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