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Abstract fine the state of evolving objects from sparse measurements.
These filters maintain random samples (a set of particles)
Particle filters encode a time-evolving probability den- out of the probability density that represents the current
sity by maintaining a random sample from it. Level sets knowledge about the object’s state. Particles are propdgat
represent closed curves as zero crossings of functions ofas the state changes, and are updated when new measure-
two variables. The combination of level sets and particle ments become available.
filters presents many conceptual advantages when tracking Tempting as the combination of level sets and particle
uncertain, evolving boundaries over time, but the cost of filters may be, it immediately raises the specter of compu-
combining these two ideas seepnsna facieprohibitive. A tational complexity: the space of curves is infinite, and a
previous publication showed that a large number of virtual density in such a space needs many samples indeed for a
level set particles can be tracked with a logarithmic amount faithful representation. If each particle is a set of curves
of work for propagation and update. We now make level- encoded by a level set, the complexity of the naive com-
set curve particles more efficient by borrowing ideas from bination of these two representational ideas multiplies th
the Finite Element Method (FEM). This improves level-set number of particles by the cost of handling a level set func-
curve particles in both running time (by a constant factor) tion. This product is invariably a large number, and this ex-
and accuracy of the results. plains why the merge of these ideas has not been attempted
until recently.
The internal structure of individual particles as sets of
1. Introduction curves was exploited inl[). It was shown that it makes
mathematical sense to “add” two sets of curves by adding
Tracking an animal in video, a wildfire on the ground, or the level set functions that represent them. Using this in-
a drifting cloud in the sky involves following boundaries on sight, one can in effect track particles while reaping the
the plane that move and deform over time: the silhouette of combinatorial benefit of implicitly considering the superp
the animal, the fire front, a vapor iso-density contour in the sition of all the2¢ combinations of the” sets of curves
cloud pattern. that are explicitly tracked. This device made level-seveur
When the region within the boundary splits and recom- particles feasible. In that paper, level set functions were
bines, and as it develops and refills holes, it becomes the-mixtures of Gaussian functions. In contrast, we now show
oretically more elegant and practically simpler to repn¢ése that a representation based on the combination of piecewise
the region’s boundary as the zero-crossing of a scalar funcdinear functions, in the spirit of the Finite Element Method
tion of the two coordinates on the plane. This is the well (FEM), leads at the same time to shorter running times (by a
knownlevel setrepresentation of curves. Although encod- constant factorandgreater accuracy in the results ( Aiy.
ing a function of two variables is more expensive than en-
coding a set of curves, changes in geometry and topology2. Related wor k
become trivial to handle. Computation is now much more
uniform and leads to practical efficiency and simple code.
In many applications, knowledge about the curve’s posi-
tion and shape (the curve’s “state” for short) comes from a
sparse set of uncertain measurements. Particle filters hav
been used successfully in many contexts to track and re-

Level setd14, 3, 13] describe the boundary of an
evolving (not necessarily connected) region on the plane or
in space as the zero crossing of a functigi¥, ¢) of space
gnd time. While many functiong share the same zero-
crossingB, computational consideration$ suggest us-
ing the signed distance function &f, which is then main-
*This research was partially funded under NSF grant 11S-8934 tained in a narrovband [1] around the boundary. The




More specifically, a particle set® = {¢{"}C_, rep-
o resents the probability distribution of the bound#&{) at
i o Testpoint for Gaussian | time t. Each particle is a signed distance functi@ﬁﬁ) :

FEM

\ Test point for FEM R? — R whose zero level set denotes an estimate of the
] boundaryB®. A weightw!” determined by the measure-

ments is associated to each particle. The funcﬂgﬁ is

the “mother” particle and the other particl§$§5)}§:1 are
explicit “child” particles. Each particle is associatecdtwi

a weightwét). In fact, there can bév,; such sets to rep-
S ey resent multi-modal probability distribution of the boumngla
20 P b of reasurement points For simplicity, only one particle set is discussed in the fol
lowing. The result can be extendedXg, particle sets in a
straightforward way.
Gaussian mixtures were used iri] to approximate the

differenceA¢(Z, t) between mother particle and child par-

motion model is then a partial differential equation (PDE) ticles. Assume that\¢(Z,t) = chzl a.(t)G.(Z,t) where

for ¢. The main strength of level sets is that they account G.(Z, t) is initialized as a 2D Gaussian function with ran-
effortlessly for changes of boundary topology, as exempli- domly generated mean and covariance matrix-at0 and
fied in applications to image segmentatidh pbject detec-  then propagated by the motion field over time.(¢) is a
tion [16], tracking [L8], shape modelinglZ] and medical  scalar function oft. C' is the number of explicit “child”
image segmentatiori ], among others. particles. In facta.(t) is restricted to bet1 or 0, thereby
Particle filters[6] have been used in this context mainly leading to2¢ combinations of “implicit” child particles. In
in the area of active contours,[2]. These approaches cap- other words, the representationA is simplified as aC-
ture the uncertain position of a boundary at timby a bit binary vector withC' functions which are initialized as
probability distribution represented by a random sample of Gaussian functions and changing over time.
boundariesfarticleg. Each boundary is represented ex- The outline of the resulting tracking method is Algo-
plicitly, e.g. with splines §] and propagatedforward in rithm 1. At each time step, the input is the particle set
time through an assumed, uncertain motion model. Mea-x*~") from last time step and the output is the new particle
surementsipdatethe particles by weighing each particle by sety(®. ngg denotes the estimate of a point on boundary
its posterior probability given the measuremenfResam- B returned by each af/ observers.
pling draws new particles from the posterior to be ready
for a new step of propagation. This cycle is analogous to Algorithm 1 : Tracking algorithm
the gsumatloq Iopp qf a Kalman filtet ], but malntams a INPUT: y(=1 (¢ > 0)
multi-modal distribution rather than a Gaussian one. OUTPUT: Y.
The recent, full-fledged combination of level sets and
particle filtering called “Level-Set Curve Particles” is-re
viewed in the next section.
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Figure 1. Compare error rates of FEM and Gaussian methots wit
different number of measurement points for human colorkinac

(1) Propagate " to y);

(2) Take measurementg)\ 1M,
(3) Updatey® to x(*);

(4) Resample;(!) and generatg(®).

3. Level-set curve particles

In [10] a method was proposed to represent and track a
dynamic set of closed curves (a “boundary”). This method |ntialization: The first iteration of Algorithm requires
capitalizes on the observation that many of the curves that, (0) which is initialized as follows. The mother particle of
p_op_ulate the boundary d'Str'bUt'On_ be_lng traclﬁed are ’\’/ery @ is defined aasgo). Its explicit child particles are initial-
S|m|_lar to each other. Aase curvevvhmh is called “mother ized by choosing” different Gaussian functions and com-
particle accounts for the macroscopic shape of the bound- . . L (0) e o .
. bining them with¢, . Specifically, the initial particle set
ary. The base curve is then deformed®@yase perturba-
. ; : . . . is denoted as(®) — {¢(O) {W(O) A¢(0)}C {w(O)}C }
tionswhich provide an implicit representation of the de- o X 0 2 1e »B8Pc Je=11We  Je=0
formations obtained by applying any subset of @idase WhereAqu; ) represents the difference between mother and
perturbations to the base curve. Through this device, anchild ¢ which is only nonzero inside window!” andw!”
exponential number of curves can be propagated and theiis the weight of particle. All particles have the same ini-
likelihoods can be computed at linear cost in the framework tial weight. If the region of the plan of interest is discreti
of a particle filter. into a grid of sizeV, initialization takesO(C'N) time.



Propagation: Suppose the motion field at each time step This lemma tells us that besidas?, it is also necessary

is externally given by a smooth velocity fie_I?j(:E’) onthe  to maintain an intersection factor sgs';} for every pair
plane. Both mother and explicit child particles are propa- of explicit child particles over time.  This factor is de-

gated by the level set equation: fined recursively by the lemma itself, 6%}? is updated as
b=V Vo @ S =847 1) with 8, the weights of implicit par-
_ . . ticles can be obtained. Then the goal of resampling implicit
which takesD(C N) time. The particle set becomg$’) = particles can be achieved by changing the weights of ex-

{0 (W AGIYC | {wl VY ) where gl is the  plicit particles. Resampling cost3(2€) but the constant

propagated mother and the difference between mother andactor that multiplie¢ is small. For the case of intersect-

child ¢ is still represented byAé” within window W ing windows, the cost of maintaining intersection factors

The weights do not change during propagation. Because of{Sj(.tk)} isO(MC?).

the linearity of the gradient operat®t, implicit child parti-

cles are implicitly propagated for free. Complexity: The total complexity for Algorithm1 is
O(2° + CN + MN + MC?). A detailed representation

Update: Before update, each observer returns a noisy of shape variations requirés = O(N), so the asymptotic

measuremer®'!) which is the position of the closest point cost of Algorithm1is O(2" + M N?).

on the boundary. The likelihood function used to evaluate

the particles is defined as follows: 4. FEM curve particles
M Experiments on tracking the boundary of a colon in to-
AD(¢) = H G(p(QW)Y) (2) mographic imagery from sparse edge measurements show
m=1 the promise of the above approach. However, the track-

whereG is a Gaussian function whose standard deviation N9 results are “bumpy” compared to the ground truth. To

¢ depends on the noise statistics of the measurements. Th@q"]‘kehthe ”aCk]jff?g retsults sm?othe(r; and the tra::kiggt.ap-
o O _ A 20y . (1) proach more efficient, we replace Gaussian perturbations
mothers weight is updated ak, A9o7) -wy with finite element perturbations.

Sinceq@ét) is always maintained as a signed distance func- ¢ finite-element method (FEMY] originated from

tion, ¢ (Q1) can be obtained as a simple lookup. Update the needs for solving complex elasticity, structural asialy
of the mother particle takeS (1) time. The likelihoods  problems in civil engineering and aeronautical enginegrin
and weights for explicit child particles can be obtained by |t can be used for finding approximate solution of PDE as
modifying those of mother particle based on the differenceswell as of integral equations such as the heat transportequa
A&” atacost oD(CM). tion. We are first inspired to use finite element perturbation
A small boundary componentis added to the mother par-because of their linearity between the nodal points. If the
ticle whenever the measurement information implies that a propagations of the grid points between the nodal points can
new boundary component has appeared. This has a worstbe implicitly interpolated by the propagations of the nodal
time costO(MN). points, a significant amount of time can be saved. Second,
the approximation error for FEM is inherently better under-

Resampling: To resample all explicit and implicit child ~ stood than that of mixtures of Gaussian functions.
particles, all their weights must be known and therefore  In this section, we show that FEM is a better way than
evaluation of the weights of implicit children is necessary Gaussian functions to represent the differenaes”) be-
Two cases are discussed iri]: disjoint windows and inter- ~ tween mother and child particles.

secting windows. For the latter case, the following lemma  Assume that\(&,t) = 37, d.(t)T. (&) whereT (i)
is proven in [L0: denotes the time-independent finite element function and
the coefficientd. (¢) is a time-dependent real numbeE

w(t) ~ ,LD(t) . . .
Lemmal Let K" = —& and K = O is the total number of elements. This representation es-
Given Z C {1,... C}wO suppose that thewocom- sentially project?\¢ onto ' elements linearly and reduces
bined particle ¢(Zt) has Weightw((b(ztfl)) _ w(()t—l) . the boundary tracking problem to that of estimating a time-

(t—1) (t-1) : dependent vectofd.(t)}Z_; such that the boundary un-
[lecz K¢ I kezzr Sjr ~ before propagation. Af- qer tracking can be represented by the zero crossing of

ter update, the weight o is w(¢l) = " - D(F,t) = o (T, 1) + 25, de ()T (T).
N N N . . - _ )
ey KM L, kezicn gj(_tk) WhereSj(.Z) - 552 ). [J(]? and ~ There are several choices for 2D finite elements includ
) —2080 QW) 28 (1) ing the bilinear quadrilateral element, isoparametric ele
I, = e ).

ik = 617?(2@553 W AW &2 ment, linear triangular element, eté).[ For convenience,



we choose the linear triangular element. THayrid points work. First of all, the particle set(® is initialized by
choosing” elements from the aboveé elements and adding
them tog(“). In particular,C' < (R — 3)? because only the
nodal points in the middle of the plane have all the neigh-
bors around them. See the red points in Ri¢a). Each el-
ement perturbg(?) in a limited area. Fig3 shows how the
array of tent functions influence the boundary whea- 8
andC' = 12. The blue curve is the mother particle and the

R red curves are child particles. The red window denotes the
position of each tent. After initialization, the particlets

is x(© = {6\”, DO {w{”1¢ ;} where D(©) is the rep-
resentation of th&' explicit child particles ando” is the
initial weight which is same for all particles.

Second, the propagation of each tent functiincan
be approximated by only propagating function values at its
nodal points because the tent function is piecewise linear
and the motion field/ (%) is smooth. Specifically, use the
level set equation Eqnl) to calculate the function value
change for each nodal poiptin the nodal point sev P(e)
of T,.. After propagating’., construct a matrix/ of size &/
by E such that each row @f represents how the propagated
(b) © T. is approximated by its neighboring tent functions and it-
selfie,Te =V VT, ~ 37 npe) Ule, p)- T, where both
Figure 2. lllustration of the linear triangular element) Taiangu- e andp are the indices of the nodal points corresponding
lar domains. (b) The element shape function. (c) The hexalgon to the tent functions. The changes for nodal points on the
“tent” Te.formed by the six element shape functions that share a bounding box is set to zero. If the gradient at a nodal point
nodal point. is not well-defined, take the average of gradients from dif-
ferent directions. Because of the linearity of Wieperator,

is divided intoR x R rectangles each of which hag/R* we can propagate each explicit child particle by taking the
?lzld |320|(n'[)s) anEd Ii ('EUt byI |t_s dlagonal_ mtoh_tvxr/]ohtrlar][gr;lles productofD(*—1 and asD® = D¢~1). 7. After propa-

ig. 2 (a)). Each triangle is a domain which has three . . St _ (2 @) 1, E-DC
nodes. For example, the triangle pops is a domain. The gat|or.1,the particle set ig .{.% ’.D ’{.wc Fe-ol- .
element shape function is illustrated in F&yb). There are Third, to update eaCh_(%Xpl'C't cth_(p:;arn%e, compute its
(R — 1)2 nodal points on the plane excluding those on the Signed distance function.* and thenj. *(Q.’) becomes
bounding box. Each nodal point has six connected neigh_avallable by lookup. Eyaluatg the likelihood of the pasicl
bors and is adjacent to six element domains. The combinaPY Edn. €) and update its weight.
tion of six element shape functions which share same nodal Last, to maintain the intersection factor $51§.tk)}, define
point looks like a tent in Fig2 (c). These tents are the el- (1) _ HM (—2A¢§t)( %))Aébz(:)( %)))/CQ)- Note

. . 7k m=1 ¢TP
ementsT. which will be used to represert¢. There are  pat child particles are allowed to intersect in any combina

_ 2 i . .
E = (R — 1)° elements on the plane each of which can {jon Even so, thanks to the quadratic form of the exponents

perturb the mother particle in a different area (Hp. in the Gaussians of the likelihood function, only pairwise
Now the particle se ") can be viewed as one mother jyiersection factors need to be maintained.

@

. t . .
par_t|cle¢(()) plus a set o E-dimensional vectors each of The computational complexity of the algorithm is ana-
which corresponds to an explicit child particle. Lef'ay  |yzed as follows. For initialization, the mother particieda
E matrix D) represent the vectors s.t. for every explicit tent functions cosO(N), and the matrixD costsO(C).
child particle¢t” = ¢ + 322, DW(c,e) - T.. Since Propagation advances the mother particle by the motion

the E elements are fixed, the particle set can be written asfield, at a cosO(N') andE tent functions byD(FE) because
X0 = {6, DO {w"}¢ ;}. Compared to 0], only each tent only takes constant time. Then propagation of ex-
the representation of the explicit child particles is chethg  plicit child particles require®(CFE) time. For update, the
The way to combine them is same and there are il mother particle take® (M) time and the explicit children
implicit child particles. takeO(NC + MC'). The cost of maintaining intersection
Based on the new representation, Algoritintan be factorsS() is O(M C?). Resampling still cost®(2¢). The
implemented with the following differences from previous generation of new components takes at nioSt/ V) time.
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Figure 3. Explicit particle set generated by adding tentfioms to a mother particle (blue). Resulting perturbatiare in red.

Therefore, the total complexity for the proposed tracking a Computerized Axial Tomography (CAT) scan of a human
algorithmisO(2¢ + CE + NC + MC? + M N). Asymp- colon. Results were compared to those reportedin]. [
totically, E = O(C) = O(N), so the costi® (2" +M N?) The boundaries being tracked are the cross-sections of the
which is same as for the Gaussian approach. colon with the horizontal slices of the CAT volume. Bound-

If we had used a standard particle filter with' = aries appear and disappear as from one slice to the next (See
O(2") explicit particles, the cost for propagation and up- Fig. 4 (a)). In the experiments, each boundary was first re-
date would beO (2™ (N + M)) which is much higher than  constructed by a standard edge detector and the resulting
that for the proposed approach. If we udg; particle boundaries were taken as ground truth. The tracker on the
sets each of which has a different mother particle to rep-other hand can only access the ground truth through 100
resent the probability distribution of the boundary, both measurement points in each slice. Figb) is the 3D re-
complexities are scaled bi/,; because the algorithm is construction of the tracking results from the proposed FEM
run N,; times for each of the particle set. If we use the approach and Figt (c) is the 3D reconstruction with Gaus-
so-called narrow-band version of LSM][, assume that sian perturbations from 1[J. Both tests use 10 explicit
the number of grid points in the narrow bandNg and child particles and 100 measurement points per slice. The
the number of related elements i%;. The total cost is  grid size is512 x 512 and the element array size§sx 8.
O(2¢ + CEg + CNp + MC? + M Ng). Asymptotically, Although the asymptotic complexities for both approaches
Ep = O(C) = O(Np), so the cost i©)(2V5 + M N3). are same, practical running times are different. The awerag
If we had used a standard particle filter wizh" explicit running time for the FEM approach is about 11s per slice
particles the cost for propagation and update would becompared to 20s per slice for the Gaussian approach.

Np 1 i 1 . .
O(277 (Np + M)), which is much higher. More importantly, the FEM approach yields more accu-

) rate results. Accuracy is measured by the error rate defined
5. Experiments as the ratio of the symmetric difference between the 3D re-

. constructions of the tracking results and the ground truth
We implemented the proposed FEM-based level-set g g

o - ()
curve particles on two different data sets: human colon data®Ver the volume of the ground truth. Specifically, et

and sea surface temperature data, and compare the resmgé(etr)]ote the area enclosed by the tracking result boundary and
with those of Gaussian-based level-set curve particles. 5 denote the area enclosed by the ground truth boundary
at time step respectively. Then the error rate is defined as

5.1. Colon Tracking

. . . )\ (1) &) M
The algorithm in Section 4 has been run on the data Error Rate — S (B A\BY) U (BY\B

set used in 0] which is a sequence of 355 slices from gt|3(t>|

)|

3)
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Figure 4. Compare 3D reconstructions of ground truth (aMFiEcking results (b) and Gaussian tracking results (c).

where| - | means the size of the area or the number of grid the motion models over the ten years (Fy.
points inside the area in discrete case.

Our results are compared to the previous Gaussian ap- 0B
proach with the same number of child particles in Fig.
With decreasing number of measurement points, the error BE: Y ]

rate of FEM approach is increasing more slowly than that
of the Gaussian approach.

0.25r

Error rate

0.2r

5.2. Sea Surface Temperature Tracking

Sea surface temperature (SST) is the water temperature 0.15¢
at the sea surface. SSTs above 26.5 degrees C are favor-
able for the formation and sustaining of tropical cyclones. s 0 Ofﬁ;seasuggmemsfm;fo 45 50
{Paglfizzr?rll,et:;% trrlllgrhn?; tor}ehi;-rs’gjé ?;rsggyerr];T;uslti(:]r:%'r:oF_igure 6. Compare error rates of FEM and Gaussian methods wit
. . . different number of measurement points for SST tracking.
casting tropical cyclones and hurricanes.

We tracked the SST isotherms in a data set where dense We started tracking from Jan. 2000 and ended in Dec.

information of the boundary is available, but we simulate ., , (60 months). The particle set was initialized by per-
the sparseness of observers by withholding the dense infor- . ;

. ) . ° turbations based on the boundary in Dec. 1999. The pertur-
mation from our tracking algorithm. Specifically, we ob-

tain NOAA ERSSTV? datalwhich is an extended recon- bations are generated by linear combinations of the element

struction of historical SST monthly mean values using im- functions. The number of explicit child particles is 50. The
rcl>J eld stat'stl'cal Imethods from 1%54 to \r/eslcjant :n:j '?alke .tgrid size Is89 x 180 (2 degree latitude<2 degree longi-

gs Q\J/round tlrutlh In particular, we define tr?e boundary undelrtUde’ global gricsS V' — 885, 0F — 358F). The element

tracking is the isotherm at 25 degrees C. One example of thearray size ig) x 18, We have applied both the FEM method

. ; and Gaussian method. The error rate is defined as Bjn. (
boundary (Jan. 1990) is shown in Fig.The observers are The comparison of the accuracy of these two methods is

report its closest point on the boundary. In real applicegjo %E\\/llvg p': r'c:)gc'?{ i ;— Qg\,'irgl?;?,\v/ﬁ;n;r: c;)f the accuracy by the

the observers could be a set of ships or buoys with tempera-
ture sensors. Since SST changes periodically, for sintylici

a motion model is learned for each calendar month (Jan. to6- SUmmary and future work

Dec.) from the historical data between 1990 and 1999. For  \v have introduced “Finite-Element Level-Set Curve

gxa”?p'e’ to ge;thegn_otlon model for ‘Lafr,]"dwe compare t:elParticIes” that combine piecewise-linear functions to enak
batar\]m Ja_n. Ell?l Feb. If? every ygar: an Iln r?motlon mofethe merge of level sets and particle filters more efficient.
y the optical flow methodd, and then take the average o The source of greater efficiency is that FEM nodal points

Lprovided by NOAA/OAR/ESRL PSD, Boulder, Colorado, USAsfro  carry all the information about the piecewise-linear func-
http://www.cdc.noaa.gov/ tions between them. In addition, the approximation error




for FEM is inherently better understood than for mixtures

of Gaussian functions. The new method simplifies the rep-

Figure 5. The red curve is the isotherm of SST at 25 degrees)&in1990 and the blue arrows denote the learned motion rfadak
isotherm at 25 degrees C in Jan. from the SST data betweenat@90999. The black dots denote the land.

(7]

resentation of the child particles as well as their propaga- [8]

tion. The results show improvements in both running time

(by a constant factor) and accuracy compared to Gaussian
level-set curve particles.

For future work, we are interested in improving the com-
putation efficiency for maintaining the weights of implicit
child particles and resampling which takes exponentidl cos

We were puzzled by the fact that in the colon experiment the
improvementintroduced by the FEM method increases with 1, ;
fewer observers, while it increases with more observers in

(9]

[10]

the temperature experiment. Maybe the more accurate mo-
tion model available in the latter experiment is a factor in [12]

this phenomenon, but we intend to investigate this further

for a more definite explanation.
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