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ABSTRACT

Some distributed-sensing applications make it necessary to
dispatch a limited number of observers (ships, vehicles, or air-
planes with cameras; field workers with chemical kits; high-
flying balloons with atmospheric sensors) to track the evolv-
ing boundary of a large phenomenon such as an oil spill, a
fire, a hurricane, air or water pollution, or EL Niño. This pa-
per develops a new framework for controlling the movements
of the observers to maximize the information gained about
the boundary’s shape and position. To this end, we repre-
sent boundary uncertainty by a particle filter where each par-
ticle is a binary indicator function. This makes our dispatch
algorithms applicable to arbitrary boundary representations
from which indicator functions can be computed, including
level sets and polygonal approximations. We demonstrate
the benefits of optimal dispatch on both synthetic and real
data. These benefits are most apparent when the observers
are sparse relative to the boundary size.

1. INTRODUCTION

The increasing availability of new sensor types and of sen-
sor networks yields new opportunities and challenges in dis-
tributed sensing. Often sensors are few and expensive, and
need to be carried to appropriate, usually changing locations.
For instance, air temperature, atmospheric pressure, cloud pat-
terns, or wind speeds can be tracked by sensors on high-flying
balloons. Water currents, temperatures, or pollution levels are
recorded over vast areas by vessels or movable buoys. Oil
spills or fires are often monitored by airplanes with cameras.

Applications like these can be abstracted into a complex,
plane boundary, whose shape and topology (the boundary’s
state for short) changes constantly, tracked by a small num-
ber of moving observers. The complexity of the set of pos-
sible boundaries suggests using particle filters [1, 2] to track
and refine the state of evolving objects from sparse measure-
ments. These filters maintain a random sample (a set of par-
ticles) drawn from the probability distribution that represents
the current knowledge about the boundary’s state. Particles
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are propagated as the state changes, and are updated when
new measurements become available.

In the standard particle filter theory [3], the measurement
locations over time are assumed to be given as inputs. How-
ever, the small number of observers and the cost of moving
them in applications like the ones discussed above implies
that observers must be controlled with care, and in a way that
depends on the evolving phenomenon being monitored. We
call this the observer dispatch problem.

Assume that each observer is mobile, controllable and
able to observe local information around some region of the
evolving boundary. An optimal dispatch algorithm must con-
sider the change of the boundary, the time and energy cost
of reallocations, and the distribution of the observers to max-
imize the benefit of their measurements. Such a problem is
naturally addressed in a decision-theoretic framework.

To this end, we formulate dispatch as a utility optimiza-
tion problem for which we propose a real-time algorithm. Our
method can work in concert with any boundary tracking algo-
rithm based on particle filters, regardless of the curve rep-
resentation used by the latter. For instance, boundaries can
be represented as splines or level sets of functions [4, 2].
We obtain this generality by introducing a new, probabilis-
tic boundary indicator function that captures the spatial as-
pects of boundary uncertainty that are relevant to the dispatch
problem. Our experiments on synthetic and real data sets
show that our dispatch method yields a more balanced ob-
server placement and lower overall boundary uncertainty in
comparison with a random dispatch strategy, even if the latter
is guided by the current best estimate of the boundary.

In the next section, we briefly review previous work. Sec-
tion 3 introduces the boundary representation. Section 4 in-
troduces the dispatch algorithm and its analysis. Section 5
presents experimental results, and Section 6 concludes with a
summary and plans for future work.

2. PREVIOUS WORK

Particle filters [3, 5] have been used in the context of bound-
ary tracking mainly in the area of active contours [6, 7]. These
approaches capture the uncertain position of a boundary at
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time t by a probability distribution represented by a random
sample of boundaries (particles). Each boundary in the sam-
ple is represented explicitly, e.g. with splines [4] and propa-
gated forwards in time through an assumed, uncertain motion
model. Measurements update the particles by weighing each
of them by its posterior probability given the measurements.
Resampling then draws new particles from the posterior to be
ready for a new step of propagation. This cycle is analogous
to the estimation loop of a Kalman filter [8], but maintains
a sample-based representation of the distribution rather than
a Gaussian one. Recently, the approach of “level-set curve
particles” was proposed [2] where each boundary particle is
represented by a level set function, instead of a spline. This
approach is based on the notion of “adding” two boundary
curves by adding the level set functions that represent them.
This insight leads to a superposition effect that lets one track
exponential number of boundary particles at linear cost in the
framework of a particle filter and makes a combination of
level sets and particle filters computationally affordable.

The problem of sensor placement has been studied re-
cently by the community of robotics and machine learning
[9, 10, 11]. Guestrin et al. [9] proposed a mutual informa-
tion criterion to place sensors based on a Gaussian process
model (GP). Instead of maximizing the joint entropy of the
Gaussian unknown variables inside “sensing area”, they max-
imize the mutual information between the unknown variables
in the sensing area and those in the rest of the space. The key
assumptions are that the prior (before-observation) and poste-
rior (post-observation) distributions of the unknown variables
both have the form of a Gaussian process which has a fixed
kernel function and further implicitly that the observations are
“perfect” (noise-free). Schwager et al. [10] proposed a con-
trol strategy for mobile robots to optimize the measurement
of sensory information. The target function is based on an
unreliability function of observer measurements and a scalar
sensory function that indicates the relative importance of dif-
ferent areas in the region. They use the centroidal Voronoi
Diagrams [12] to distribute the sensors simultaneously.

However, the existing particle filter techniques for track-
ing dynamic boundaries do not address the issue of optimal
observer placement. Conversely, current sensor placement
work does not accommodate moving boundaries. Our pro-
posed dispatch algorithm is based on known techniques in
location optimization, modified to apply to a different target
function, and to include a specific account of the geometry of
the boundary being tracked without any distribution assump-
tions. This requires devising a general boundary representa-
tion that simultaneously captures the aspects of boundary un-
certainty that are relevant to tracking and can interface with
whatever boundary encoding is used in the tracker of choice.
This new representation is described next.

3. INDICATOR FUNCTIONS FOR BOUNDARIES

Given a boundary B on the plane, define an indicator function
b(x) : R

2 → {0, 1} as :

b(x) =
{

1 if x inside the boundary,
0 otherwise.

When B is uncertain, let b be a random indicator function
whose realizations could be any boundary indicator on the
plane, and let p(b) be a probability density function over the
space of all possible indicator functions. The mean of b is
denoted as

b̄(x) =
∫

b(x)p(b) db ≈
P∑

i=1

bi(x)wi. (1)

The p.d.f. p(b) in (1) is to be understood in a very abstract
sense, as b is a point in the space of all boundary indica-
tor functions. Concretely, p(b) can be represented approxi-
mately by a random sample of weighted particles {bi, wi}P

i=1

of some parametric form. Each particle bi is an indicator func-
tion for a sample boundary Bi and wi is the weight of this
particle with the normalization constraint that

∑P
i=1 wi = 1.

Then the mean of b can be approximated by the sample mean.
Given any point x on the plane, the variance of the indicator
random variable b(x) is denoted as the following function:

v(x) =
∫

[b(x) − b̄(x)]2p(b) db ≈
P∑

i=1

[bi(x) − b̄(x)]2wi.

(2)
When the boundary is evolving and deforming over time, the
random indicator function for the boundary B(t) at time t is
denoted by b(t). A particle set {b(t)

i , w
(t)
i }P

i=1 is then used
to represent the probability distribution of the boundary B(t).
For each time step t, define the variance function v(t)(x) of
the indicator random variable b(t)(x) as in (2).

The above discussion is not rigorous in that the boundary
space is infinite-dimensional and we have not specified an un-
derlying measure. However, we can avoid these technicalities
since in practice, the region of the plane of interest can be
discretized into N grid points, so that each indicator function
b
(t)
i (x) is transformed to a binary vector b(t)

i of size N and
the function v(t)(x) becomes a vector v(t) of size N .

To summarize, a probability density function p(b) for the
random indicator function b of a dynamic boundary at time
t can be approximately represented by a particle set χ(t) =
{b(t)

i , w
(t)
i }P

i=1 on a discretized plane. The sample mean (1)
and variance (2) are a first order summary of the density.

4. DISPATCH PROBLEM

Based on the above representation of the boundary, we formu-
late observer dispatch as the problem of maximizing expected



utility of the observer placements. We solve this problem us-
ing centroidal Voronoi diagrams. We also consider some of
the constraints that arise in real applications.

4.1. Problem Statement

As mentioned earlier, a particle filter works in three steps:
propagation, update and resampling. In addition, we assume
that there are M mobile and controllable observers each of
which gathers some local information around its own loca-
tion. To exploit the resulting freedom to choose where to
take the measurements at each time step t, we insert a new
step called dispatch between propagation and update to redis-
tribute the mobile observers for the new measurements. Now
the particle filter has four steps: propagation, dispatch, update
and resampling.

4.2. Observer Model

Our observer model includes two aspects: how each observer
works, and how different observers interact. The first aspect
specifies the probability that an observer at z can observe a
point x, that is, determine whether it is inside or outside the
boundary:

f(x, z) = Pr[b(x) is observed by observer at z] . (3)

To reflect decreasing acuity with distance, the function f is
assumed to decrease as the Euclidean distance d(x, z) be-
tween the observer position z and the point x increases. In
this model, the observer returns one bit of information about
point x if the point is observed. In this case, the posterior
variance of the indicator function value at x is zero. With no
observation, the posterior variance remains equal to its prior
value.

Concerning observer interaction, we note that observers
are precious and carefully dispatched, so they are likely to be
far apart enough to eliminate overlap between their observa-
tion ranges. This implies that whether a point x can be ob-
served only depends on the observer nearest to x. With M
observer locations Z = {z1, . . . , zM}, let

z(x) = arg min
zm

d(x, zm) (4)

be the location of the observer nearest to x. Then equation (3)
can be rewritten as follows in the multi-observer case:

Pr[b(x) is observed |Z] = f(x, z(x)). (5)

4.3. Optimization Function

To formalize the quality of a given choice of observer dis-
patch, we define a utility function for the placement of ob-
servers. First, define an L2 metric to measure the distance
between any two boundaries as

D(bi, bj) =
∫
x

[bi(x) − bj(x)]2 dx. (6)

Given a probability distribution p(b) and an estimate of
the boundary b̂, the expected loss function is:

L(p(b), b̂) =
∫

D(b, b̂)p(b) db.

The optimal decision-theoretic estimate of the boundary given
p(b) is

b∗ = argmin
b̂

L(p(b), b̂). (7)

For a given dispatch choice Z, the expected utility is defined
as the reduction in expected loss:

U(Z) = L(p(b), b∗) − L(p(b)|Z , b∗|Z) (8)

where p(b)|Z denotes the conditional probability distribution
on the observer placement Z and b∗|Z means the best estimate
given p(b)|Z .

To maximize the utility function in (8), the best choice of
the placement would be

Z∗ = argmax
Z

U(Z) = argmin
Z

L(p(b)|Z , b∗|Z). (9)

The second equality holds because the loss function value
L(p(b), b∗) before dispatch is fixed.

Computing Z∗ for b̂ ∈ {0, 1}N for general p and f is
an exponential computation. However, if we relax the range
of the estimate b̂ to be [0, 1]N instead of {0, 1}N , then the
best estimate for p(b) is easily shown to be the mean of b in
Eqn. (1) and therefore the loss function becomes

L(p(b), b̄) =
∫

D(b, b̄)p(b) db

=
∫ ∫

[b(x) − b̄(x)]2p(b) dxdb

=
∫

v(x) dx.

Therefore, the optimization function L(p(b)|Z , b∗|Z) can
be defined as

F (Z) =
∫
x

v|Z(x) dx , (10)

where v|Z(x) is the posterior variance of the point x after the
observation with observer placement Z.

With the observer model in Section 4.2, the expected pos-
terior variance of point x can be approximated by

E(v|Z(x)) ≈ Pr[b(x) observed |Z] · 0 +
Pr[b(x) not observed |Z] · v̂(x)

= [1 − f(x, z(x))] v̂(x) (11)

where v̂(x) is the estimated prior variance of point x from
propagation result. The optimal dispatch strategy is to send



the observers to locations which minimizes the total expected
posterior loss, approximated as follows:

F (Z) =
∫
x

E(v|Z(x)) dx

=
∫
x

[1 − f(x, z(x))] v̂(x) dx

=
M∑

m=1

∫
Cm

[1 − f(x, zm)] v̂(x) dx . (12)

Here, Cm denotes the cell of point zm in the Voronoi dia-
gram of the observer locations z1:M . This is because each
f(x, z(x)) only depends on the observer nearest to x. Find-
ing a set of zm that minimizes the target function value F is
an unconstrained optimization problem. The grid-discretized
form of (12) is

F (Z) =
M∑

m=1

∑
x∈Cm

[1 − f(x, zm)] v̂(x) . (13)

4.4. Dispatch Algorithm

When the observer model f is a function of the Euclidean
distance between x and z(x), it is geometrically appealing
to cast the optimization problem defined in Section 4.3 into
the form of a centroidal Voronoi diagram computation [12].
To this end, we choose f(x, z(x)) = φ(||x−z(x)||2) and as-
sume that φ(d) is first-order differentiable with (non-positive)
derivative φ′(d). Let zm = {z1

m, z2
m} and x = {x1, x2}. The

partial derivative of F with respect to zj
m for j = 1, 2 is

∂F

∂zj
m

= −
∑

x∈Cm

2φ′(||x − z(x)||2) v̂(x) (zj
m − xj). (14)

Define a nonnegative function ρ(x, z(x)) such that

ρ(x, z(x)) = −φ′(||x − z(x)||2) v̂(x). (15)

At a minimum of F , all terms of the form (14) are equal
to zero. This implies that the optimal position zm of each
observer satisfies

zm =

∑
x∈Cm

ρ(x, zm)x∑
x∈Cm

ρ(x, zm)
(16)

which is the centroid of the cell of zm in the Voronoi diagram
with respect to the density function ρ(x, zm).

From this analysis, we see that the dispatch problem can
be solved by finding the centroids of a Voronoi diagram of
the observers, in which the “mass distribution” ρ depends on
both the observation model φ and the estimated prior variance
v̂(x). Based on Lloyd’s method [13], which iterates between
constructing Voronoi diagrams and finding centroids, we ob-
tain the intuitively simple dispatch Algorithm 1 in the table.
The initial observer positions are randomly generated. The

Algorithm 1 : Dispatch algorithm
INPUT: Observer model φ and estimated prior variance
v̂(x)
OUTPUT: Observer locations z1:M .
0. Let z1:M be the current observer positions;
1. Construct the Voronoi diagram of points z1:M ;
2. Set new values of z1:M as the centroids of the Voronoi
cells Cm to the right-hand sides of equation (16);
3. If the new set of points meet a convergence criterion,
terminate; otherwise, go to step 1.

convergence criterion depends on the specific application. It
is easy to show that the function value of F decreases during
each iteration, but there is no guarantee that it will converge
to the global minimum. The running time of each iteration is
O(M log M + N).

4.5. Constraints

In real applications, the observers are typically subject to con-
straints like the following: (a) A speed limit for each observer,
which limits the range of variation of each zm in a fixed time
interval; (b) A need for a bounded travel cost (e.g., energy
consumption), which is an increasing function of the travel
distance; (c) Mobility constraints, e.g. each observer might
only be allowed to move in a local area. Speed limits and
mobility constraints can be incorporated by turning the opti-
mization problem into a constrained one with the same target
function F . Travel cost can be included as an additive item of
the target function F , and its importance can be regulated by
a weight λ:

F ′ = F + λFc (17)

where Fc is the travel cost. All these constraints reduce the
feasible regions of zm’s.

5. EXPERIMENTS

We test the dispatch algorithm on two kinds of data sets, syn-
thetic and real. Real data refer to the problem of tracking sea
surface temperature. Before showing experimental results,
we illustrate how the form of the estimated prior variance
function v̂(x) affects the dispatch results with the same ob-
server model. In all the experiments, we choose the observer
model

φ(d) = exp(−d2/R2) (18)

where the parameter R models the (soft) observation range of
each observer.

5.1. The Influence of Variance Functions

With the same initialization of observer positions zm and ob-
servation model φ, different prior variance estimate functions
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Fig. 1. (a) The initial positions of observers (black dots) and
their Voronoi diagram (dotted line). (b) The dispatch result
when v̂(x) is uniform. Red pentagrams are the new positions
of the observers. Red lines display the corresponding Voronoi
diagram. The blue dotted line denotes the travel path of each
observer. (c) The dispatch result when v̂(x) is Gaussian. (d)
The dispatch result when v̂(x) is like a crater. (e) v̂(x) is a
Gaussian function. (f) v̂(x) is like a crater.

v̂(x) can result in different outputs by the proposed dispatch
algorithm.

In Fig. 1(a), the black dots denote the initial positions of
the observers and the dotted lines display the Voronoi dia-
gram. As for v̂(x), three different cases are tested: (i) uni-
form. All the points have the same value of v̂(x). The dis-
patch result is shown in Fig. 1(b). The red pentagrams are
the new positions of the observers and the red lines display
the corresponding Voronoi diagram. The blue dotted line de-
notes the travel path of each observer; (ii) Gaussian. v̂(x)
decreases from the center to the edges (See Fig. 1(e)). The
dispatch result is shown in Fig. 1(c). The observers are clus-
tered in the center of the plane where the predicted variance
function value is higher. Therefore the target function F is
minimized; (iii) crater. Suppose the boundary under track-
ing is a circle and the predicted variance function is like a
crater of a volcano (See Fig. 1(f)), which means the variance
is higher if the point is closer to the circle. Fig. 1(d) shows
the corresponding dispatch result. All the observers are dis-

(a) (b)

Fig. 2. (a) shows the variance-based optimal dispatch result
where the red pentagrams are the observers and the contours
are the contours of the estimated prior variance function value
of v̂(x) (from orange, green, cyan to blue, the variance value
is decreasing). The red circles display the observation range
of the observers. (b) shows the random dispatch result where
the black dots are the observers. The black solid line is the last
tracking result and the dotted lines enclosing a narrow band
show the range where the observers are randomly dispatched.

patched uniformly along the circle. In our experiments, the
convergence criterion is set as a threshold on the square sum
of the distances between the new and old observer positions.
If the observers move too little between iterations, the dis-
patch algorithm will stop. The number of iterations for the
above three cases are 21, 23, 19 respectively.

This simulation test tells us that the dispatch algorithm
distributes observers to the places with higher predicted vari-
ance values as expected.

5.2. Synthetic Test

We apply the proposed dispatch strategy in tracking dynamic
planar boundaries in a synthetic data set. The ground truth
is a 30 frame sequence of moving and deforming 2D bound-
aries. These are created by taking level sets of mixture of 2D
Gaussian functions. The motion model is derived from the
difference between the ground truth boundaries at consecu-
tive time steps by an optical flow method [14]. The grid size
is 50 × 50 and the total number of grid points is N = 2500.

The initial particle set is generated by different Gaussian
perturbations based on the ground truth of the first frame. The
total number of particles is P = 80. We test the tracking
algorithm [2] with the proposed dispatch strategy for different
number of measurements M and different observation range
R. Accuracy is measured by the error rate defined as the ratio
of the total symmetric differences between the tracking results
and the ground truth over the total area enclosed by the ground
truth boundaries from all frames. Specifically, it is defined as

Error Rate =
∑

t ‖ b̃(t) − b̂(t) ‖2∑
t ‖ b̃(t) ‖2

(19)
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Fig. 3. Comparison of the error rates generated by the opti-
mal dispatch and random dispatch strategies with the number
of measurements M = 1, 2, 4, 8, 16 and the observation range
R = 1, 2, 4, 6, 8 for boundary tracking in a synthetic data set.
Dotted lines show the results from random dispatch strategy
and solid lines show the results from optimal dispatch strat-
egy. The grid size is 50 × 50.

where b̃(t) and b̂(t) denote the binary indicator vectors of the
ground truth boundary and tracking result at time step t re-
spectively. The tracking result b̂(t) is defined as the MAP
particle after update.

To demonstrate the performance of the proposed dispatch
strategy, we also experiment with the same tracking algorithm
but a different dispatch strategy. We use a naive random dis-
patch strategy that reallocates the observers randomly inside
a narrow band along the tracking result from previous time
step. The bandwidth is set equal to 2R. A comparison of these
two different dispatch strategies is shown in Fig. 2 where (a)
shows how the variance-based optimal dispatch strategy real-
locate the observers to the area corresponding to high value of
v̂(x) and (b) shows how the random dispatch strategy works
with the same probability distribution of the boundary. Based
only on the tracking result at last time step, the random strat-
egy aimlessly dispatches observers inside the narrow band de-
noted by the dotted lines. The intersection between red circles
implies that some observation resource is wasted.

These two experiments only differ by the dispatch strat-
egy. All the other parts including the initial particle set and

observation model are same. The comparison of the experi-
mental results from these two approaches are shown in Fig. 3.
The displayed error rate for each M and each R is the average
error rate of 20 trials. It is easy to see that the error rate has
been improved by the optimal dispatch strategy compared to
random dispatch strategy, especially when the total coverage
by all the observers is small, such as M = 16 and R = 1,
M = 4 and R = 4, 6, or M = 2 and R = 8. In other words,
optimal dispatch uses less observers to achieve the same ac-
curacy with same R compared to random dispatch.

5.3. Sea Surface Temperature Tracking

Sea surface temperature (SST) is the water temperature at the
sea surface. SSTs above 26.5 degrees C are favorable for
the formation and sustaining of tropical cyclones. In general,
the higher the SST, the stronger the storm. So tracking the
isotherms of high SSTs is very helpful in forecasting tropical
cyclones and hurricanes.

Experimental validation of our proposed dispatch frame-
work has two conflicting requirements: On one hand, sparse-
ness of the observers is the main issue we are addressing.
On the other hand, ground truth about the true location of
the boundary is required to measure the performance. To
meet both requirements, we have tracked the SST isotherms
in a data set where we have dense information of the bound-
ary, but where we simulate the sparseness of observers by
withholding the dense information from our tracking and dis-
patch algorithm. Specifically, we obtain NOAA ERSST V2
data 1which is an extended reconstruction of historical SST
monthly mean values using improved statistical methods from
1854 to present and take it as ground truth. In particular,
we track the isotherm at 25 degrees C. One example of the
boundary ( January 1990 ) is shown in Fig. 5. The observers
are simulated by the points on the map and each observer
can report the SSTs for the grid points within the observa-
tion range. In real applications, the observers could be a set
of ships or buoys with temperature sensors. The underlying
motion model for the isotherms of SST is very complicated
because there are many factors which could affect SST. Since
SST changes periodically, for simplicity, we learned a mo-
tion model for each calendar month (Jan. to Dec.) from the
historical data between 1990 and 1999. For example, to get
the motion model for January, we compare the data in Jan-
uary and February in every year and find a motion model by
the optical flow method [14], and then take the average of the
motion models over the ten years (Fig. 5).

We started tracking from January 2000 and ended in De-
cember 2000. The particle set was initialized by small per-
turbations based on the boundary in December 1999. The
size of the particle set is P = 200. The grid size is 89 ×
180 (2.0 degree latitude ×2.0 degree longitude global grid,

1Provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA,
from their web site at http://www.cdc.noaa.gov/
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Fig. 4. Comparison of the error rates generated by the optimal
dispatch and random dispatch strategies with the number of
measurements M = 2, 4, 8, 16, 32 and the observation range
R = 1, 2, 4, 6, 8, 10, 12 for SST tracking. Dotted lines show
the results from random dispatch strategy and solid lines show
the results from optimal dispatch strategy. The grid size is
89 × 180.

88.0N − 88.0S, 0.0E − 358.0E). We have applied both the
proposed dispatch strategy and the random dispatch strategy
described in Section 5.2. The definition of the error rate is
as in (19). The comparison of the tracking performance of
these two strategies is shown in Fig. 4. The error rate shown
for each M and each R is the average of 30 trials. The im-
provement of the error rate by the optimal dispatch strategy is
apparent for most M and R unless the observation range R is
too small (R = 1, 2).

6. SUMMARY AND FUTURE WORK

We have introduced a new framework for dispatching a set of
mobile observers during boundary tracking to maximize the
information gained about the boundary’s state. The probabil-
ity distribution of the boundary is represented by a particle
filter where each particle is a binary indicator function of one
possible boundary. We show that the dispatch problem can
be formulated as the minimization of the sum of the poste-
rior variances of the individual binary indicator values at each
point. We propose an optimal dispatch strategy and compare

it to a random dispatch strategy with same initialization and
observation resources for both synthetic data and real data.
The comparison results show that our approach performs bet-
ter when the observation resource is sparse but not rare.

For future work, we intend to generalize the proposed dis-
patch solution to include constraints on the motions of the ob-
servers. Our experiments suggest that there is a relationship
between the performance of the proposed dispatch approach
and the sparseness of the observers, where the sparseness de-
pends on both the number of observers and the observation
range. This suggests the presence of an optimal point of
sparseness to maximize the benefit of the proposed dispatch
algorithm.

7. REFERENCES

[1] Y. Rathi, N. Vaswani, A. Tannenbaum, and A. Yezzi, “Parti-
cle filtering for geometric active contours with application to
tracking moving and deforming objects,” CVPR, vol. 2, pp.
2–9, June 2005.

[2] T. Jiang and C. Tomasi, “Level-set curve particles,” in ECCV,
A. Leonardis, H. Bischof, and A. Pinz, Eds. 2006, vol. 3953 of
LNCS, pp. 633–644, Springer.

[3] A. Doucet, N. de Freitas, and N. Gordon, editors, Sequential
Monte Carlo in Practice, Springer, New York, NY, 2001.

[4] C. De Boor, A Practical Introduction to Splines, Springer,
New York, NY, 2001.

[5] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A
tutorial on particle filters for on-line non-linear/non-Gaussian
Bayesian tracking,” IEEE Trans. of Signal Processing, vol. 50,
no. 2, pp. 174–188, February 2002.

[6] M. Isard and A. Blake, “Condensation-conditional density
propagation for visual tracking,” IJCV, vol. 29(1), pp. 5–28,
1998.

[7] A. Blake and M. Isard, Active Contours, Springer, New York,
1999.

[8] R. E. Kalman, “A new approach to linear filtering and predic-
tion problems,” Trans. of the ASME J. on Basic Eng., vol. 82,
pp. 34–45, 1960.

[9] C. Guestrin, A. Krause, and A. Singh, “Near-optimal sensor
placements in Gaussian processes,” in ICML, L. Raedt and
S. Wrobel, Eds. 2005, pp. 265–72, ACM.

[10] M. Schwager, J. McLurkin, and D. Rus, “Distributed cover-
age control with sensory feedback for networked robots,” in
Proceedings of Robotics: Science and Systems, Philadelphia,
USA, August 2006.

[11] J. Cortés, S. Martı́nez, T. Karatas, and F. Bullo, “Coverage con-
trol for mobile sensing networks,” in ICRA. 2002, pp. 1327–
1332, IEEE.

[12] Q. Du, V. Faber, and M. Gunzburger, “Centroidal Voronoi tes-
sellations: Applications and algorithms,” SIAM Review, vol.
41(4), pp. 637–676, 1999.

[13] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Trans.
Inform. Theory, vol. IT-28, pp. 129–137, Mar. 1982.

[14] B. Horn and B. Schunk, “Determining optical flow,” Artificial
Intelligence, vol. 20, 1981.



Fig. 5. The red curve is the isotherm of SST at 25 degrees C in January 1990 and the blue arrows denote the learned motion
model for the isotherm at 25 degrees C in January from the SST data between 1990 and 1999. The black dots denote land.


