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Abstract

A resampling procedure based on Efron’s bootstrap
method is proposed for the robust estimation of parame-
ters from redundant data. The procedure handles a sub-
stantial fraction of outliers, has linear complexity even for
superlinear estimation problems, can be applied to any pa-
rameter estimation algorithm without modification, and is
easily parallelized. The problem of estimating camera mo-
tion from instantaneous image velocities is used to illus-
trate the method. Simulations and results show robust and
accurate results.

1 Introduction

Many problems in computer vision involve the compu-
tation of unknown quantities from a set of noisy and usu-
ally redundant measurements. This computation is called
a parameter estimationproblem in the statistics literature.
For instance, the rotation and direction of translation of a
camera moving in a static environment can be computed
from measurements of the motion of five or more image
points. The three-dimensional coordinates of the corre-
sponding world points are a side-result of the computation
as well.

In parameter estimation, the noise corrupting the mea-
surements is assumed to have a known probability distri-
bution. In addition, a small fraction of the data, calledout-
liers, are often entirely wrong, in the sense that the errors
affecting them are not modeled well by this distribution.
To address outliers, so-calledrobustparameter estimation
procedures have been introduced in the past, both in com-
puter vision and in the statistics literature.

Robust methods are based on the fact that from a can-
didate solution one can compute the measurements that
would be obtained in the absence of noise if that solution
were correct. Actual measurements that are in some sense
too far from these predicted measurements are considered
outliers, and either deemphasized or discarded from the
computation altogether. Consider for instance the case of

camera motion computation mentioned above. Given cam-
era rotation and direction of translation, as well as three-
dimensional point coordinates, that is, given a candidate
solution to the problem, the ideal positions and velocities
of the image points can be computed. Theresiduals, that
is, the discrepancies between computed and actual mea-
surements, can then be formed, and used as a basis for in-
jecting robustness into the solution. Intuitively, a solution
is accepted if a sufficient number of measurements has a
sufficiently small residual, while measurements with ex-
cessive residuals are discarded. As summarized in section
4, several methods have been proposed for implementing
this idea, both in computer vision and elsewhere.

In this paper, we propose an alternative to this basic
idea, based on the notion ofresamplingfrom the statisti-
cal literature. Rather than achieving a robust solution by
monitoring the size of the residuals between actual and
computedmeasurements, we propose to reason about the
discrepancies betweensolutions, that is, between parame-
ter estimates computed from distinct subsets of the data. In
other words, we propose to inject robustness by working in
the space of the parameters, rather than in the space of the
measurements. Random subsets of the redundant measure-
ments are used to compute different parameter estimates
through a nonrobust method, and a clustering method iden-
tifies solutions that agree with one another. The final solu-
tion is a representative for the best cluster. In the cam-
era motion example, a standard least-squares method can
be used to compute sets of motion parameters from ran-
dom subsets of the image measurements. Solutions from
outlier-free subsets will cluster, while subsets with outliers
will usually yield parameter estimates that scatter in the
space of all possible solutions. Any of a number of cluster-
ing methods will then return a good solution.

One of the main advantages of this resampling method
is that it can be applied essentially without modification
to any nonrobust parameter estimation procedure. For in-
stance, a standard least-squares method can be used as a
basic subroutine for estimating camera motion. By itself,
this subroutine is not robust. However, as we will see in
more detail in section 4, it usually has a well-understood



behavior, and can be analyzed and made to converge more
easily than, say, a method based on a robust residual norm.
Resampling, then, makes the final results robust to outliers,
at the cost of repeating the nonrobust computation several
times. It must be noted, however, that performing the same
computation several times on subsets of the data can be
comparable to, or even faster than, doing it once on all
of the data. In fact, as we show in section 3, the resam-
pling method makes the complexity of the overall estima-
tion procedurelinear in the number of data points, even
if the original, nonrobust method has superlinear complex-
ity. In addition, different runs of the basic subroutine can
proceed from different starting points, thereby lessening
the dependence of local optimization algorithms on initial
guesses. Finally, the resampling method is parallelizable
in a very straight-forward way.

In the following, we introduce the general idea of re-
sampling in section 2. In section 3, we establish conditions
for the method to work correctly and we examine its com-
plexity. In section 4, we investigate the connections of the
resampling method with other robust methods, as well as
with the so-called “bootstrap” and “jackknife” methods in
statistics. In section 5, we show simultions and experi-
ments for the example of camera motion estimation from
instantaneous flow field measurements.

2 The Resampling Method

Assume that a parametric estimation algorithm is given,
which maps them measurements in the input setX =
{x1, . . . , xm} to an estimateϑ̂ of the unknown, n-
dimensional parameter vectorϑ:

ϑ̂ = s(X) . (1)

The resampling procedure runss a numberr of times,
on random subsets ofj measurements each, and then clus-
ters the results. More specifically, letj satisfy0 < j ≤ m
(typically j is a constant or a small fraction ofm), and letr
be given (e.g.,r = 200 or r = m). The resampling method
has two stages.

Resampling. For eachb = 1, 2, . . . , r, randomly drawj
elements fromX, without replacement, to form the
sample setXb = {xi1 , . . . , xij} ⊂ X, and apply the
given estimation algorithms to eachXb. This yields
a set

Θ = {ϑ̂1, . . . , ϑ̂r}
of r estimates of the parameter.

Clustering. Use a clustering algorithm to find an estimate
of the parameter from ther estimates in the setΘ:

ϑ̂ = Cluster(Θ). (2)

Conceptually, clustering is itself a parameter estima-
tion problem, the data of which are however in param-
eter space, rather than in the original data space.

Thus, resampling essentially transfers the robust esti-
mation problem from the original data space to the space
of parameters. Note that the clustering stage only needs
to identify the point with the highest density of neighbors
in the solution setΘ. In many cases the median, applied
componentwise, is a good clustering method, but any of
a number of mode-seeking algorithms can be used here.
For instance, one can also first compute a histogram to
find a coarse estimation of the highest density point, and
then perform the median in the appropriate bucket. Sev-
eral mode-seeking methods are discussed in [27]. Even the
mean within the selected cluster can be effective in many
cases. For tight clusters, the difference between median,
mode, or mean is often negligible.

3 Correctness and Complexity

The proposed resampling method can reduce or elimi-
nate the effects of outliers altogether. Intuitively, for the
method to work, the good solutions must have a substan-
tial presence in the solution setΘ, so that the clustering
algorithm can single out the desired solution. In this sec-
tion we present some intuitive considerations concerning
this point.

A standard least-squares approach would use all them
data points at once to find a solution to a given estima-
tion problem. In the absence of outliers, this is typically
only slightly better than using, say,q random subsets of
j data points each and averaging all solutions, as long as
qj is substantially greater thanm, and j is substantially
greater than the minimum numberjmin necessary to solve
the problem. In fact,qj À m implies that with high prob-
ability all data are used in the solution, andj À jmin im-
plies that the condition number of a size-j problem is com-
parable to that of the size-m problem.

To illustrate this point, consider anm×n linear system

Ax = b (3)

where the ”measurement” vectorb is corrupted by random
Gaussian noise. Letem be the error in the solution,

em = ‖x̂− x‖
wherex̂ = A†b is the least-squares solution to the system
(A† is the pseudoinverse ofA), andx is the true value of
the solution. Furthermore, letejq be the error obtained by
solving q subsystems of (3), each withj equations, and
then averaging theq solutions together. Figure 1 shows the



mean value, over 30 trials (each with a different random
matrix A), of the ratioejq/em for m = 200, n = 5, j =
15, for q = 1, . . . , 50, and in the case in whichA is a
random matrix with entries uniformly distributed between
0 and 1.
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Figure 1: 30-trial average of the errors obtained by averag-
ing the solutions toq subsystems of size15× 5, randomly
drawn out of a200 × 5 linear systemAx = b with a ran-
dom matrixA and noisy right-hand sideb. The average
errors are expressed as a multiple of the error obtained by
solving the entire system at once.

From this figure, we see that whenqj = 15q becomes
comparable tom = 200, that is, whenq is of the order
of ten or grater, the solution from averagingq subsystems
of sizej = 15 each is at most about twice as bad, on the
average, as the one-shot solution from all them = 200
data points. This result only holds for linear systems with
random matrices, and it is hard to say anything quanti-
tative about nonlinear systems with nonrandom matrices.
However, the underlying intuition applies, and the linear-
random case illustrates the principle.

The main consequence of this fact is that in thepresence
of outliers the resampling procedure will yield a solution
whose quality is comparable to the one-shot solution in the
absence of outliers provided that

• there are enough outlier-free solutions to make the
clustering stage pick the correct cluster; and

• the selected cluster has a numberq of solutions such
thatqj À m.

The first condition ensures that outliers have no effect,
since they do not appear in the main cluster. The second
condition implies that the cluster is tight enough that even
the mean of the cluster solutions is of quality comparable
to the one-shot solution that would be obtained in the ab-
sence of outliers.

Thus, we need to establish conditions for the correct
cluster to be sufficiently populated. To this end, we assume
that when we pick a subset ofj data points, the solution

from this set of data is either in the correct cluster, when
all data points are good, or outside it when one or more
outliers are present. In other words, we assume that out-
liers corrupt the solution very substantially, an assumption
that is generally satisfied at least for the poorly conditioned
problems that are typical of image motion analysis.

When there aren data points withk outliers, the prob-
ability for a solution to be good is the number

(
m−k

j

)
of

good subsets divided by the number
(
m
j

)
of all possible

subsets, that is,

p =
(m− k)(m− k − 1) . . . (m− k − j + 1)

m(m− 1) . . . (m− j + 1)
. (4)

Under very mild conditions on the number of outliersk
and the subset sizej, this probability is bounded away from
zero asm andk are made to vary. For example, ifj is fixed
to be20, and there are about5% outliers (k/m ≈ .05), then
p is close to.35 whenm is large. In the casem = 100 and
k = 5, p ≈ .32, .44, and.58 if the subset sizej = 20, 15,
and 10, respectively. Clearlyp converges to1 if k/m → 0
for fixed j.

Thus, each subset yields a good solution with probabil-
ity p. When we repeat this processr times, the numberg
of good solutions is a random variable with the binomial
distribution (

r

g

)
pg(1− p)r−g.

The mean ofg is
ḡ = rp

and its variance is

σ2 = rp(1− p) .

For larger, this can be approximated by the normal distri-
butionN(rp,

√
rp(1− p)) [14].
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Figure 2: The cumulative distribution function of the nor-
mal approximation tog/r shows that with probability of
.95, more than21%, 24%, 26% of the subsample solutions
are good forr = 50, 100, 200 subsamples, respectively.



Figure 2 shows the graph of the cumulative distribution
function of the normal approximation of the random vari-
ableg/r, with probability densityN(p,

√
p(1− p)/r), for

the casep = .32 andr = 50, 100 and200. We see that
with probability of .95, more than21%, 24% and26% of
the subset solutions are good for a numberr = 50, 100 and
200 of subsets, respectively.

Thus, under mild conditions, when the numberr of sub-
sets is large enough, a fixed percentage of them yield good
solutions with high probability. With this probability (95%
in the numerical example above), the proposed method is
immune to outliers. In practice, we follow the recommen-
dation of [13] to chooser = 200, or r = max{200,m}.
A validation process of selecting the solution with smallest
remainder median, like that in neural networks (cf. [3, p.
373]), can be used to make sure that the solution is accept-
able. Otherwise this process is repeated orr is increased.
In [1], this validation process was used withr = 1.

Complexity

The proposed approach reduces the computational com-
plexity in the following sense: assuming that the one-shot
parametric estimation (1) from all the data has a complex-
ity of O(f(m)) in the size of the input data setX, then a
resampling approach withr subsets requires a complexity
of O(f(j)r). If r is O(m), so that the number of data used
is proportional to the number of data available, the com-
plexity is O(f(j)m). Sincej is a constant, resampling is
essentially a linear complexity algorithm,O(m), even for
problems whose one-shot complexity is superlinear. Clus-
tering may add to the complexity, but not if median cluster-
ing is used, as we do in our experiments below. Note also
that with the proposed method the solution from each sam-
ple can still be computed by least-squares, thereby avoid-
ing the possible complications, such as spurious local min-
ima or narrowed basins of attraction, that can derive from
non-convex robust error functions. Finally, the resampling
procedure can be very obviously parallelized, for example,
by devoting each available processor to the computation of
parameter estimates from one or a fixed number of sample
subsets.

4 Related Methods

There is a rich literature on robust parameter estima-
tion methods in general (see [19] or [31] for comprehensive
treatments) and in computer vision ([27] is a good review).
There is a long list of papers that use robust techniques for
various computer vision problems, and [4, 9, 24, 23, 39]
are but examples of the use of robust estimation for the
computation of camera motion or structure-from-motion.

All these approaches work by somehow discounting
data that are inconsistent with the final solution. In their
simplest forms, these methods userobust normsto mea-
sure the discrepancy between predicted and actual mea-
surements. Robust norms grow less than quadratically as
a function of the discrepancy, and in some cases saturate
to a finite value. As a result, the large discrepancies asso-
ciated with outliers have a lesser effect than they have in
standard least squares. This approach is used for instance
in [39], where ap-norm‖ · ‖p with 1 < p < 2 is used in-
stead of the quadratic norm‖ ·‖2. In addition to the greater
computational complexity of robust norms, they often in-
troduce spurious local minima because of their inflection
points. Also, the basins of attraction of local minima with
robust norm formulations can be narrower than those for
the standard quadratic formulation, thereby making con-
vergence to the correct minimum harder. Rank estimators
[27] weigh residuals by their rank in an ordered list.

Different variations on the idea ofcross-validationhave
appeared as well. In very broad lines, this works as fol-
lows. Part of the data, the validation set, is used to com-
pute an estimatêϑ of the parameters. That estimate is then
used to predict the ideal value that new data would have if
ϑ̂ were correct. Data whose actual values differ from this
prediction too much are discarded as outliers. For instance,
in camera motion estimation, one could determine tenta-
tive values for the epipolar geometry, and validate image
flow measurements by how closely they satisfy the epipo-
lar constraint [40].

Perhaps the most famous example of the cross-
validation approach is RANSAC (RANdom SAmple Con-
sensus, [15]). For an estimation problem, there is usually
a minimum number of data points that determine the so-
lution. For instance, camera motion estimation from two
frames requires at least five image point with correspon-
dences. RANSAC randomly selects a data set of this size,
and adds to it points, one at a time, that are consistent, ac-
cording to a threshold, and in the sense of cross-validation
explained above, with this initial solution. If the initial set
fails to grow (as determined by another threshold on the
number of attempts made to add points to the initial set),
the starting set is discarded, and the procedure is restarted.
Thus, RANSAC performs explicit validation of the data:
a data item is either in or out of the consensus set. This
method has been used for many vision problems ever since
its first appearance, and often with good results. However,
the presence of several thresholds in its definition makes it
sometimes hard to apply. Also, the use of a minimal num-
ber of data points as a seed can yield a statistically poor
validation criterion. To address this, it has been proposed
that the parameter estimate be recomputed every time a
new data point is added. In this version, the complexity



of RANSAC at least equals that of the one-shot solution.
In contrast with these methods, our resampling pro-

cedure uses whichever error norm is appropriate for the
problem, rather than robust norms, and performs a cross-
validation of sortsin the space of parameters, rather than
in data space. In other words,solutionsreinforce one an-
other, rather than data points. As discussed in section 3,
this approach leads to linear complexity for the robust pro-
cedure even for problems that have a superlinear one-shot
solution; it allows using quadratic norms in the basic op-
timization; and it involves essentially no thresholds, since
the only parametersr (number of sample sets) andj (size
of each sample set) can be assigned generous values with
no harm other than computational cost.

The idea underlying the resampling method has already
appeared in the statistical literature under the name of
boostrapor jackknife. In the following, we show that
bootstrap-jackknife subsumes resampling. However, the
former has always been used forperformance evaluation,
that is to evaluate statistical parameters, typically the mean
and covariance, of a parameter estimate that is computed
by some other method.

The classical bootstrap method was first introduced by
Efron (cf. [10, 11, 12, 13]). Given the estimation prob-
lem (1), the original goal of the method was to estimate
the standard deviation of the estimate by resampling, that
is, by drawingm elements fromX repeatedly and with
replacement, sayr times. Let theith sample set be

X∗
i = {x∗1, . . . , x∗m}, i = 1, . . . , r,

where eachx∗l is sampled from the original data setX with
replacement, so that the samples inX∗

i may not be distinct.
Apply the algorithm to getr estimates of the parameter,

θ∗i = s(X∗
i ), i = 1, . . . , r,

and let the mean of these be

θ̄∗ =
1
r

r∑

i=1

θ∗i . (5)

Then an estimation of the standard error is given by

σ∗ =

√√√√ 1
r − 1

r∑

i=1

(θ∗i − θ̄∗)2. (6)

The original jackknife method can be found in [30, 37,
13], where there arem jackknife sample sets, with each set
being obtained from the original data setX by deleting one
sample, that is,

X∗
i = {x1, . . . , xi−1, xi+1, . . . , xm}, i = 1, . . . , m.

The expressions for̄θ∗ andσ∗ have the same form as in
(5) and (6), withr = m. This is the same as in the cross–
validation in many literatures (cf. [16, 17, 12]). To make
the jackknife method work well for non–smooth functions
θ = s(X), the delete–d jackknife methods were studied
[33, 32, 13], where the sample sets are all the sets obtained
by deletingd samples fromX, thus leading to a total of

r =
(

m

d

)

jackknife subsample sets. The deletion sized should be
large (cf. [13, p.149]), preferably of the same order asm.
In other words, most of the points are deleted, that is, the
size j of the subsets is small. Note that the differences
between delete–d jackknife and bootstrap methods are in
their sampling replacement policy (without vs. with), sam-
pling size (deleted vs. sizem) and number of sample sets
(
(
m
d

)
vs. m).

Thus, our resampling method is essentially a jackknife
method, with a large deletion factord, and with a random
rather than systematic selection of the deleted data. How-
ever, we do not use this method for performance evalua-
tion, but we rather augment it with a clustering stage, and
use it to achieve robustness in parameter estimation prob-
lems. We point out that even in vision the bootstrap method
has always been used only to evaluate the covariance of
solutions. For instance, in [8, 26], the bootstrap method is
used to evaluate clustering algorithms and edge detection
algorithms, and in [25] it is used to compute the covariance
of 3D data inputs and confidence regions in stereo–heading
computations.

5 A Case Study: Camera Motion

In this section we first reformulate the camera heading
computation problem from visual angles as a parametric
estimation problem, which we then use to illustrate the re-
sampling method. In this problem, the direction of transla-
tion (heading) of a moving camera is to be determined from
the instantaneous motion of a set of image points. A num-
ber of solutions [21, 29, 18, 36, 35, 28, 39, 7, 20, 38] have
been proposed. Here we apply the resampling method to
a simplified formulation of [35] which is introduced here-
after.

For every pair of feature pointsP andQ in the scene,
as shown in Figure 3, the visual angleα is defined as the
angle between the projection rays ofP andQ. It satisfies

cos α = pT q (7)

wherep andq are unit vectors corresponding to the im-
age measurements. These can be computed from the fea-
ture point positions in the image and the camera internal



parameters. By differentiating both sides of equation (7)
with respect to time we obtain

α̇ = tT V, with V = dP upq + dQuqp (8)

wheret = Ċ is the normalized camera velocity, that is,
a three dimensional vector pointing along the direction of
camera translation,dP = 1/|P − C| anddQ = 1/|Q −
C| are the inverses of the distances ofP andQ from the
camera center, andupq = (p− (cos α)q)/ sin α anduqp =
(q− (cos α)p)/ sinα are the orthogonal projection vectors
shown in Figure 3. For a setX of tracked feature points,

C

Q
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pq

α

q

p

u

uqp

Figure 3: The visual angleα. Feature directionsp, q, and
orthogonal projections vectorsupq, uqp.

we can pick a set of point pairs, that is, a graph, to write a
system of equations

F (t)d = α̇.

In this system, every equation is of the form (8), and corre-
sponds to an edge of a graph whose vertices are the feature
points. The motion directiont is computed by the mini-
mization

t = s(X) = arg min
‖t‖=1

‖F (t)d− α̇‖.

We now show simulations and experiments for the re-
sampling method as applied to the camera heading prob-
lem.

Simulations

Figure 4 shows the results of two sets of simulations
with m = 100 random points in 3D with a known mo-
tion direction oft = [1,−1, 3]/

√
11. A rotation of 20◦

has been added, even though this does not affect visual an-
gles. In all simulations, five outlier points were randomly
selected, and an error of about±10 pixels was added to

them. The plots in the left column are in the absence of
noise. The solutions with sample setsj = 10 (top), 15
(middle) and20 (bottom) cluster densely around the solu-
tion, with close to60%, 50% and40% of the sample sets in
the correct bin. These values compare favorably with the
.95 probability bounds of58%, 44%, and32% discussed
in section 3. In the right column of figure 4, noise is intro-
duced into the data, in addition to outliers, with a normal
distribution with zero mean and a standard deviation of.1
pixels. Although somewhat broadened, the correct clusters
are still sharp.
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Figure 4: Histogram of the angle errors of 200 solutions
from random subsets of sizej = 10 (top),15 (middle) and
20 (bottom) from simulation in the presence of5 outliers
out of100 points. Plots are from both noise-free (left) and
noisy (right) simulations.

Real Experiments

The scene is shown in Figure 5 (a). We experimented
with 50 consecutive frames and computed the camera
heading. Feature points are selected and tracked automat-
ically with the tracker from the algorithms in [22, 34] and
the implementations from [2]. The feature tracking results
are also displayed in Figure 5 (b) from frame 15 to 16. At
least5 obvious outliers are visible in (b).



(a) (b)

Figure 5: (a) The scene and features; (b) Feature tracking
from Frame 15 to 16 (note the outliers).

The camera heading computation from Frame 15 to 16
is challenging due to the existence of at least5 outliers. The
resampling method deals with this problem very nicely,
even though the final direction of camera heading was ob-
tained simply by computing the componentwise median.
In our experiments, the camera motion was controlled by
a precise positioning device. Although absolute directions
cannot be measured precisely,changesin diretion can be
determined accurately to within one hundredth of a degree
with the positioning device, and provide therefore a reli-
able gold standard.

Table 1 records the resampling solution withr = 200
subsets for three choices of subset sizej and with median
clustering. As expected, the effect of increasingj rapidly
tails off once the theoretical minimumj = 5 is comfort-
ably exceeded, andj = 20 is a good choice. The results
for competing methods are also shown in the table. For
least squares (LS), the functionΦ(t) = t2 is used for each
residue error term. Because of the existence of outliers, the
result is a disappointing−51.3162◦, versus the true direc-
tion change of8.1175◦. The result is better forL1.2 where
Φ(t) = |t|1.2 is used, but still far off. Similar error terms
(H.01) are shown for Huber’s robust function (cf.[19]) with
τ = .01

Φ(t) =
{

t2, (|t| ≤ τ)
τ2 + 2τ ∗ (|t| − τ), (|t| > τ)

which usesL2 around zero, and a linear function farther
away. Even though, in theory, the effect of outliers can
decrease asτ → 0, negligible changes were observed in
practice. For the error functionΦ(t) = t2/(t2+σ2), which
is utilized in [4, 5, 6] the result forσ = .01 is recorded in
column (B.01).

Figure 6 shows the camera heading results for 50 con-
secutive frames. The true and computed camera motion
directions are shown in (a) and (b). In (c), the angular
changes of direction relative to the first frame are depicted.
The solid plot represents the true angular changes, as mea-
sured by the positioning device, and the crosses are the

Computed
Method Direction◦ Error ◦

Change
True Value 8.1175 0

Resampling,j = 10 9.1332 1.0157
Resampling,j = 15 7.6672 −0.4503
Resampling,j = 20 8.6156 0.4981

LS 51.3162 43.1987
L1.2 28.2116 20.0941
H.01 24.7685 16.6510
B.01 24.9054 16.7875

Table 1: The camera motion direction changes in degrees
between Frames 15→16 and Frames 16→17, calculated by
various methods.

angular changes from resampling. The few visible errors
occur for almost-vanishing camera translation, in which
case the camera heading problem becomes nearly singu-
lar. Close to singularities, the signal to noise ratio is ex-
ceedingly small, and no method can return very accurate
results.
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Figure 6: Experiments on 50 frames: (a) true and (b) com-
puted camera motion directions; (c) angular changes of di-
rection relative to the first frame.



6 Conclusions

The resampling method has shown to be very effective
for handling outliers in camera motion estimation, achiev-
ing results that are more than an order of magnitude more
accurate than competing robust methods. This method ap-
plies to any optimization procedure without requiring any
modification, is computationally efficient, and can be eas-
ily implemented in parallel.

Conceivably, this method can be applied to many other
problems in computer vision, and we have started to ex-
plore this in our current work.
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