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Abstract

Although steady progress has been made in recent stereo
algorithms, producing accurate results in the neighborhood
of depth discontinuities remains a challenge. Moreover,
among the techniques that best localize depth discontinu-
ities, it is common to work only with a discrete set of
disparity values, hindering the modeling of smooth, non-
fronto-parallel surfaces.

We propose to estimate scene structure as a set of smooth
surface patches. The disparities within each patch are mod-
eled by a spline, while the extent of each patch is repre-
sented by a pixelwise labeling of the source images. Dis-
parities and extents are alternately estimated in an itera-
tive, energy minimization framework. Segmentation is via
graph cuts, aided by image gradients. Input images are
treated symmetrically, and occlusions are addressed explic-
itly. Promising experimental results are presented.

1. Introduction

The foundations of binocular stereo are correspondence
and triangulation. Given two images, if one can find a pair
of left and right image points that correspond to the same
world point, geometry readily yields the three-dimensional
position of that world point. It is the search for such corre-
sponding pairs that is the central part of the stereo problem.

There are several constraints that help to solve this cor-
respondence problem. Given geometric calibration of the
images, the epipolar constraint reduces the search for pos-
sible point matches from two dimensions to one. Given
photometric calibration of the images, and assuming diffuse
surfaces, color constancy further narrows the possibilities to
points that look alike. Marr and Poggio [21] proposed two
additional constraints that mitigate the ill-posedness of the
stereo problem: uniqueness, which states that “each item
from each image may be assigned at most one disparity
value,” and continuity, which states that “disparity varies
smoothly almost everywhere.”

Many stereo algorithms are based upon these four con-
straints. Of these, the former two are relatively straightfor-
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ward, but the manner in which the latter two are applied
varies greatly [3,13,23]. We propose a three-axis catego-
rization of binocular stereo algorithms according to their
interpretation of continuity and uniqueness. In the fol-
lowing subsections, we list last, for all three axes, that cate-
gory which we consider to be the most preferable.

1.1. Continuity

The first axis describes the modeling of continuity over
disparity values within smooth surface patches.

Constant. Every point within any one smooth surface
is assigned the same disparity value. Examples include tra-
ditional SSD correlation, as well as [7,17, 18, 21].

Discrete. Disparities are chosen from a finite set of
possible values, but with multiple distinct values permitted
within each surface. Examples include [4, 16,22, 27].

Real. Disparities within each smooth surface vary over
the real numbers. Examples include [1, 2, 5, 25, 26].

1.2. Discontinuity

The second axis describes the treatment of discontinu-
ities at the boundaries of smooth surface patches. Specifi-
cally, the penalty assigned to a discontinuity is examined as
a function of the size of the jump of the discontinuity.

Free. Discontinuities are not specifically penalized.
Examples include traditional SSD correlation, as well as
[17,21,27].

Infinite. Discontinuities are penalized infinitely; i.e.,
they are disallowed. The recovered disparity map is smooth
everywhere, although potentially not uniformly so. Exam-
ples include [1,25].

Convex. Discontinuities are allowed but penalized
with a finite, positive, convex cost function. The resulting
discontinuities often tend to be somewhat blurred, because
the cost of two adjacent discontinuities is no more than that
of a single discontinuity of the same total size. Examples
include [16,22,26].

Non-convex. Discontinuities are allowed but penal-
ized with a non-convex cost function. The resulting dis-
continuities usually tend to be fairly clean, because the cost
of two adjacent discontinuities is generally more than that
of a single discontinuity of the same total size. Examples
include [4, 10,11, 14].
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1.3. Uniqueness

The third axis describes the application of uniqueness to
the occlusions that accompany depth discontinuities.

One-way. Uniqueness is assumed within a chosen ref-
erence image, but not considered within the other. That is,
each location in the reference image is assigned at most one
disparity, but the disparities at multiple locations in the ref-
erence image may point to the same location in the other
image. Examples include traditional SSD correlation, as
well as [5, 10, 17].

Asymmetric two-way. Uniqueness is encouraged for
both images, but the two images are treated unequally.
Examples include [2,7,21,26,27].

Symmetric two-way. Uniqueness is enforced sym-
metrically. Examples include [4, 14, 16, 18].

1.4. Overview

In this paper, we propose an algorithm that lies in the
most preferable category of all three axes; to the authors’
knowledge, it is the first such algorithm for binocular stereo.
We contend that, for scenes consisting of smooth surfaces,
our algorithm improves upon the state of the art, achieving
better localization in depth of surface interiors via subpixel
disparity estimation, and better localization in the image
plane of surface boundaries via the symmetric treatment
of images with proper handling of occluded regions. Our
method is loosely based upon [5], with the most significant
extension being our simultaneous, consistent estimation of
both left and right disparity maps.

In Section 2, we describe our mathematical model of
the stereo problem and solutions thereof. In Sections 3
and 4, we describe surface fitting and boundary localization,
respectively. In Section 5, we describe the overall optimiza-
tion algorithm. In Section 6, we present some promising
qualitative and quantitative experimental results. Finally, in
Section 7, we offer some concluding remarks.

2. Preliminaries

Belhumeur argued that “depth, surface orientation,
occluding contours, and creases should be estimated simul-
taneously” [4]. To do so, we use a layered model [12]
of possible solutions to the stereo problem. Because we
assume opacity, each image point can be assigned to at most
one surface; this enables the extent of all surfaces to be rep-
resented by a single labeling of image points.

2.1. Mathematical Abstraction

Our algorithm follows the common practice of assuming
that input images have been normalized with respect to both
photometric and geometric calibration. In particular, we
assume that the images are rectified. Let

I={p=(z,y,t)} = (R xR x {'LEFT’, ‘RIGHT"})

be the space of image locations, and let
I1:T—R™

be the given input image pair, where typically m = 3 for
color images, and m = 1 for grayscale images. Note that /
is defined on a continuous domain; in practice, it is interpo-
lated from discrete pixels.

Our abstract model of a hypothesized solution consists
of a labeling (or segmentation) f, which assigns each point
of the two input images to zero or one of n surfaces, plus n
disparity maps d[k], each of which assigns a disparity value
to each point of the two input images:

[segmentation] f : Z+—{0,1,... ,N}

[disparity map] d[k] : Z+— Rforkin{1,2,... ,N}

In other words, these functions are the independent
unknowns that are to be estimated.

The segmentation function f specifies to which one of
n surfaces, if any, each image location “belongs,” where
belonging implies that some world point (a) projects to the
image location in question, and (b) is visible in both images.

For each surface, the signed disparity function d[k]
defines the correspondence (or matching) function mlk]
between image locations:

mlk] : T—7T
m[k] (z,y,t) = (ZE + d[k](x, Y t), Y, ﬁtL)
where (—‘LEFT’ = ‘RIGHT’) and vice versa. That is, for

each surface k, m[k] maps each location in one image to the
corresponding location in the other image. Note that, for all
k, d[k] and m[k] are both defined for all (z, y, t), regardless
of the value of f(z,y, t). Furthermore, for standard camera
configurations, d[k] will generally be positive in the right
image and negative in the left image.

Thus, the interpretation of this model is, for all p,

f(p) =k with k > 0 = p corresponds to m/[k|(p);
f(p) = 0 = p corresponds to nothing.

That is, a hypothesized solution specfies a set of correspon-
dences between left and right image locations, where each
image location is a member of at most one correspondence.

2.2. Desired Properties

Given this abstract representation of a solution, how can
we evaluate any particular hypothesized solution? We pro-
pose three properties that characterize a “good” solution:
non-triviality, smoothness, and consistency.

Non-triviality. Good solutions should explain, rather
than ignore, input data. For example, any two input images
could be interpreted as views of two painted, planar sur-
faces, each presented to one camera. Such a trivial interpre-
tation, yielding no correspondence for any image location,
would be valid but undesirable. In general, we expect that a
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correspondence exists for “most” image locations:
formostp:  f(p) >0

Moreover, although color constancy is sometimes vio-
lated (e.g., due to specularities), and smoothness is needed
to fill in the gap, a solution that supposes a perfectly smooth
surface, at the expense of violating color constancy every-
where, is also not desirable. In other words, we expect that
color constancy holds for “most” image locations:

for most p where f(p) > 0: I(m[f(p)](p)) =~ I(p)

Smoothness. Because the disparity maps d[k| are
continuous-valued functions, we take smoothness of d[k] to
mean differentiability, with the magnitude of higher deriva-
tives being relatively small.

Because the segmentation function f can only take on
the integer values 0... NN, it is piecewise constant, with
line-like boundaries separating those pieces. We take
smoothness of f to mean simplicity of these boundaries,
with the total boundary length being relatively small.

Consistency. Correspondence of image locations
should be bidirectional. In other words, if points p and ¢
are images of the same world point, then each corresponds
to the other; otherwise, neither corresponds to the other. It
would make no sense to say that p corresponds to ¢ but that
q does not correspond to p.

Within our mathematical formulation, this constraint,
applied to surface shape, gives, for all k, p:

m[k](m[k](p)) = p (D
which implies a constraint on each d[k]. In particular, for
each k, given one of d[k](, -, ‘LEFT’) or d[k](-, -, ‘RIGHT’),
the other is uniquely determined.

Regarding segmentation, we also have the constraint on
f that, for all p,

fp) =kwithk>0 = fmE@)=F @

Ideally, these consistency constraints should be satisfied
exactly, but for computational purposes, we merely attempt
to maximize consistency.

2.3. Energy Minimization

We formalize the stereo problem in the framework of
energy minimization. In general, energy minimization
approaches split a problem into two parts: defining the cost
of all hypothesized solutions, and finding the best solution
by minimizing that cost. This separation facilitates the use
of general-purpose minimization techniques, enabling more
focus upon the unique aspects of the specific application.

For our application, we formulate six energy terms, cor-
responding to each of the three desired properties, applied
to both disparity maps over surface interiors, and segmen-
tation via surface boundaries (see Table 1). These terms are
developed in the next two sections; total energy is a positive
linear combination of these terms.

disparity maps | segmentation
non-triviality E_match_I E_unassigned
smoothness E_smooth_d E_smooth_f
consistency E match_d E match_f

Table 1. Contributions to energy.

3. Surface Fitting

In this section, we consider the subproblem of estimating
the disparity maps d[k], supposing that the segmentation
f is known. Using this context, we explain our model
of smooth surfaces; formulate the three energy terms that
encourage surface non-triviality, smoothness, and consis-
tency; and discuss the minimization of these energy terms.

3.1. Surface Model

We model the disparity map of each surface as a bicubic
spline. This gives us the flexibility to represent a wide range
of slanted or curved surfaces with subpixel disparity preci-
sion, while ensuring that disparity values and gradients vary
smoothly over the surface. The control points of the spline
are placed on a regular grid with fixed image coordinates
(but variable disparity value). The resulting spline surface
can be thought of as a linear combination of shifted basis
functions, with shifts constrained to the grid.

Mathematically, we restrict each d[k] to take the form
of a bicubic spline with control points on a fairly coarse,
uniform rectangular grid:

d[k‘](l‘, yvt) = Z(D[k‘][l,], t] . b(l‘ — 4,y — j))
i,
where b is the bicubic basis function, and D is the lattice of
control points.

In general, the spacing of the grid of spline control points
should be fine enough so that surface shape details can be
recovered. In our experiments, we use a fixed, 5 x 5 grid for
each view (left and right) of each hypothesized surface.

3.2. Surface Non-triviality

This energy term, often called the “data term” in other
literature, expresses the assumption of color constancy:

E_match_I =
5 {g(l(m[k](p)) —I(p)) if f(p) = k with k >0,

- 0 otherwise,

where g(v) = vT - A - v, and A is a space-variant measure
of certainty, defined as follows:

Let I be the m x m identity matrix, and x2 be shorthand
for the outer product xxT. Let Gy x I represent the convo-
lution of I with a Gaussian of width o. Then we define

A= [61+G(, «(I2) — (G, *1)2}_1

where € and o are small constants.
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Note that, ideally, E_match_I would be defined as an
integral over all p € Z. However, for computational conve-
nience, we approximate the integral with a finite sum over
discrete pixel positions, for this and other energy terms.
This is reasonable if the summand is spatially smooth.

3.3. Surface Smoothness

Since we consider smooth surfaces to be more likely to
occur, we would like to quantify and penalize any deviation
from perfect smoothness. We take the class of perfectly
smooth surfaces to be the set of planar surfaces (including
both fronto-parallel and slanted planes). The usual measure
of deviation from planarity is quadratic variation [6], but
this measure has the disadvantage of using second deriva-
tives, which can be overly susceptible to high-frequency,
local deviations. Instead, we add an energy term (in addi-
tion to restricting d[k] to take the form of a spline) which,
loosely speaking, is proportional to the global “variance” of
the surface slope:

E_smooth_d[k] = Y _||Vd[k](p) — mean(Vd[k])|”

P
where the mean is taken over all discrete pixel positions p.

In our experiments, this energy term is given a very small
weight, and mainly serves to accelerate the convergence of
numerical optimization by shrinking the nullspace of the
total energy function. This term does not prevent surfaces
from being non-planar.

3.4. Surface Consistency

For perfect consistency, a surface should have left and
right views that coincide exactly with one another [Equa-
tion (1)]. To quantify and discourage any non-coincidence,
we take

E.match_d[k] = (m[K](m[K](p)) — p)

2

or equivalently,

2
E-match-d[k] = (d[F](p) + d[k](m[k](p)))
p
which, intuitively, measures the distance between the sur-
faces defined by the left and right views.

3.5. Surface Optimization

Given a particular k, this section’s subproblem is to min-
imize total energy by varying d[k], while holding f and
the remaining d[j] constant. Total energy is a sum of six
terms, three of which were shown in this section to depend
smoothly on d[k]. In Section 4, the two terms E_unassigned
and F_smooth_f are shown to depend only on f, and the
remaining term E_match_f is shown to depend smoothly on
d[k]. Therefore, the total energy as a function of d[k] is dif-
ferentiable, and can be minimized with standard gradient-
based numerical methods.

For convenience, we use Matlab’s optimization toolbox.
The specific algorithm chosen is a trust region method with
a 2D quadratic subproblem. Experimentally, this algorithm
exhibits more reliable convergence than the quasi-Newton
methods with line searches, and although it requires the cal-
culation of the Hessian, in our implementation, that expense
is a small fraction of the total computational requirements.

In this section, we have shown how to minimize total
energy by varying each d[k] individually. For each k& > 0,
we call minimizing over d[k] a surface-fitting step.

4. Segmentation

In this section, we consider the subproblem of estimating
the segmentation f, supposing that the disparity maps d[k]
are known. Using this context, we explain our model of seg-
mentation; formulate the three energy terms that encourage
segmentation non-triviality, smoothness, and consistency;
and discuss the minimization of these energy terms.

4.1. Segmentation by Graph Cuts

Boykov, Veksler, and Zabih [10] showed that certain
labeling problems can be formulated as energy minimiza-
tion problems and solved efficiently by repeatedly using
maximum flow techniques to find minimum-cost cuts of
associated network graphs.

Formally, let £ be a finite set of labels, P be a finite set
of items, and N' C P x P be a set of interacting pairs of
items. The methods of [10] find a labeling f that assigns
exactly one label f,, € L to each item p € P, subject to the
constraint that an energy function of the form

E(f) = Z Vp,q(fpqu)"‘ZDp(fp) (3)

(P 9)eN peEP

be minimized. Individual energies D,, should be nonnega-
tive but can otherwise be arbitrary; interaction energies V,, ,
should be either semi-metric or metric. Kolmogorov and
Zabih [19] generalize these results, deriving necessary and
sufficient conditions on the form of the energy E in order
for it to be minimizable with graph cut methods.

Given an energy function in the form of Equation (3)
satisfying the relevent conditions, the methods of [10] are
extremely effective at finding a minimizing labeling, in
terms of both computational complexity and the optimality
of the final solution. For this reason, we have chosen to use
these methods to solve our segmentation subproblem.

This generic formulation maps to our stereo problem as
follows: the labels are the integers 0... N (the possible
values of the segmentation function f), and the items are
the pixels of each input image. The individual energies stem
from testing color constancy at varying disparities, and the
interaction energies stem from smoothness and consistency.

Because of computational considerations, in our algo-
rithm, all visible world points are assumed to be completely
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opaque. Furthermore, pixels are prohibited from being split
spatially among several surfaces, but instead are constrained
to be indivisible, forcing surface boundaries to lie on pixel
boundaries. Thus, in representing the continuous-domain
segmentation function f on a discrete grid of pixels, we
essentially perform nearest-neighbor interpolation:

f(x,y,t) = F(round(z), round(y), t)

where F' is defined on an integer lattice.

4.2. Segmentation Non-triviality

The primary goal of the segmentation subproblem is to
assign each pixel to the surface it fits best. This is accom-
plished by minimizing E_match_I as a functional of f, with
all d[k] held constant. However, note that since ¢(-) is non-
negative, E_match_I is trivially minimized by f(p) = 0.
To discourage such solutions with large unassigned regions,
we add a fixed penalty for each unassigned pixel:

E_unassigned = Z { if f(p) =0,
P

0 otherwise.

While it is not uncommon among stereo algorithms to have
an occlusion penalty such as this one, it should be noted that
this term is not solely for handling occlusions; for example,
it also limits the influence of gross outliers in the input
image data.

Thus, the underlying segmentation problem, for the
moment ignoring smoothness and consistency, is to find
the labeling f that minimizes a linear combination of
E_match_I and E_unassigned. Put into the form of Equa-
tion (3), this corresponds to the following definition of indi-
vidual pixel energies:

Dy(fp) = g(I(mlk](p)) — I(p)) for f, >0,
D, (0) = A_unassigned,

where \_unassigned is a constant.

4.3. Segmentation Smoothness

In addition to minimizing pointwise costs, we would
also like to encourage a simple segmentation with “smooth”
boundaries of surface extents. There are several attributes
that can be used to formalize this notion, including
boundary length and curvature [6]. We choose to minimize
boundary length without separate regard for boundary cur-
vature, because it is simpler to optimize, and works fairly
well in practice.

Furthermore, there is an expectation that boundaries will
be correlated with monocular image features (called “static
cues” in [10]). Thus, we would like to reward the placement
of boundaries at edge-like image locations. There are many
ways to estimate edge likelihood; we use a function of gra-
dients and local contrast. This measure of edge likelihood
at each point is then used to adjust the cost per unit length
of boundaries passing through that point.
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We define this energy term for each surface k£ > 0:
E_smooth_f k] =

Z {Svs(paq)

p adjacent to ¢

if f(p) = kxor f(q) =k,
otherwise,

where adjacency is according to 4-connectedness within
each image, and where

ws(p, q) = 1+ e~ (IVITAIVID/7

for p adjacent to ¢, where 7 is a constant, and VI and A are
both evaluated at the subpixel position (p + q)/2.

Put into the form of Equation (3), E_smooth_f [k] corre-
sponds to this penalty function:

V;?,q(fpqu) =

A_smooth_f - ws(p, q) - Z T(fp =k xor f, = k)
k>0

for p adjacent to ¢, where T'(-) equals 1 if its argument is
true, and equals O otherwise.

4.4. Segmentation Consistency

For perfect consistency, the segmentation f should sat-
isfy Equation (2). To quantify and discourage any segmen-
tation inconsistencies, we formulate an energy term for each
surface k > 0:

E-match_f[k] =
if f(p) = k xor f(m[k](p)) = k.

1
zp: {O otherwise,

which approximates the area of inconsistent regions, where
(2) does not hold. As before, this term should ideally be
defined with an integral, but in this case, a naive finite sum
is not an adequate substitute, as we explain in [20]. Instead,
we take

E_match_f[k] =
3 h(|m[k)(p) —al) if f(p) = k xor f(q) =,
0 otherwise,
P.q
where p and ¢ are on matching epipolar lines, and where
z for |Ad| < 3,
h(Ad) =< 2 -84 for L < |Ad| < 2,
0 for |Ad| > 3.

Our implementation modifies h by rounding its “corners”
(at [Ad| = 1 and |Ad| = 2) so that total energy remains
differentiable with respect to d[k].

Put into the form of Equation (3), E_match_f[k] corre-
sponds to this penalty function:

Vp,q(fpafq) =
Amatch_f -3 [wc[k](p, q)-T(f, =k xor f = k)},

k>0
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for p and ¢ in corresponding scanlines, where
welk](p,q) = h(m[K](p) — q) + h(m[k](q) - p),

and A\_match_f is a constant.

4.5. Segmentation Optimization

This section’s subproblem is to minimize total energy by
varying f, while holding all d[k] constant. Total energy
is a sum of six terms, two of which (E_smooth_d and
E_match_d) are independent of f. In this section, the
remaining four terms are written in the form of Equation
(3); moreover, the penalty functions V), ;, can be verified to
be metric. Hence, the total energy as a function of f can be
optimized with graph cut methods [10, 19].

We use a modified version of the expansion algorithm of
[10]. This greedy algorithm is built from expansion moves,
and gets its power from the generality of such moves:
an expansion move on a label % finds the best configura-
tion reachable by relabeling any subset of pixels with k.
Our modification is to precede each expansion with a con-
traction of the same label, which strictly enlarges the set
of reachable configurations. We call such a contraction-
expansion pair on any one label, a segmentation step.

5. Overall Optimization

In this section, we consider the complete problem of
simultaneously determining surface shape in the form of
disparity maps, and surface support in the form of segmen-
tation, when both are initially unknown.

Our overall algorithm is built from the surface-fitting and
segmentation steps that were defined in Sections 3 and 4.
Because each of these steps decreases total energy, given a
reasonable initial hypothesis, iterating these steps until con-
vergence might give a reasonable final solution. However,
there are a few complications.

During the course of component-wise optimization using
the surface-fitting and segmentation steps, it is quite pos-
sible to reach an undesirable local minimum. These prob-
lematic configurations are generally of two types: those in
which one hypothesized surface spans several actual sur-
faces, and those in which several hypothesized surfaces
span one actual surface.

Our algorithm currently cannot reliably extract itself
from the former type of local minima. It thus requires
careful initialization to avoid getting into such situations.
Our algorithm requires that, alongside the input image pair,
the range of possible disparities also be specified. The ini-
tial hypothesis is then formed by placing one fronto-parallel
surface at every integer disparity within that range. All
pixels are initially unassigned (with f = 0).

The latter type of situation is more easily handled. Often,
when several hypothesized surfaces span one actual surface,
one hypothesized surface will eventually come to dominate,

and the others will naturally be driven to extinction. When
this is not the case, and a true local minimum is reached, a
merge step will generally remedy the situation.

To take a merge step, the algorithm first saves a check-
point of the current state. It then forcefully removes one sur-
face. The “orphaned” pixels are relabeled with f = 0, but
are immediately redistributed among the remaining surfaces
by a series of segmentation steps. Further surface fitting
and segmentation steps are then taken, until either the total
energy falls below that of the saved checkpoint, in which
case the merge succeeds and the checkpoint is discarded,
or the total energy plateaus above that of the checkpoint, in
which case the merge fails and the checkpoint is restored.

The complete algorithm is as follows:

1. Initialize hypothesis with surfaces at integer disparity.
2. Repeat:

(a) Alternately apply segmentation and surface fit-
ting steps until progress is negligible.
(b) For each hypothesized surface:
e Attempt to merge it.
until one merge succeeds or all merges fail.

until all merges fail.

3. Optionally “fill in” unmatched regions (see [20]).

6. Experimental Results

We have implemented our algorithm using a combina-
tion of Matlab and C, and tested it on several stereo pairs
available online [5,23]. Due to space limitations, we only
present a representative subset of our results; complete
results can be found in [20].

6.1. Quantitative Results

To evaluate the accuracy of our algorithm, we use the
general framework proposed by Scharstein and Szeliski
[23], who provide four sample stereo pairs with ground
truth, describe a metric for comparing results against
ground truth, and tabulate results for 20 algorithms.

Scharstein and Szeliski [23] evaluate overall results by
measuring the fraction of “unoccluded” pixels at which
estimated and ground truth disparities differ by more than
one pixel. In contrast, we retain the occluded pixels, and
measure the fraction of all pixels at which disparity error
exceeds a threshold. We also consider a range of thresholds,
and plot the fraction of “bad” pixels as a function thereof.

For our comparison, we used two sets of parameters, dif-
fering only in the relative weight of E_smooth_f within total
energy, to produce slightly coarser or finer segmentations.
In the aforementioned plots, we summarize results for both
sets of parameters, and compare them to results obtained
by the four algorithms that appear to be the most accurate
among the remaining algorithms tabulated in [23].
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Figure 1. “Venus.” Top: our result; disparity error.
Bottom: errors for our algorithm and [5, 15, 18, 24].

Venus. This stereo pair (Figure 1) shows five slanted
planes with varying amounts of texture. Regarding dis-
parity estimation, our algorithm does extremely well, with
the only gross error occurring at the corner of a V-shaped
depth discontinuity, where our penalty for boundary length
causes the tip of the “V” to be missed. Regarding segmen-
tation, however, our algorithm recovers only four distinct
surfaces, missing the vertical crease in the sports page.

Tsukuba. This stereo pair (Figure 2) shows a labora-
tory scene consisting of various planar, smoothly curved,
and non-smooth surfaces; boundaries are fairly complex,
with several long and thin structures. Our algorithm tends
to over-simplify these boundaries, even with the parameter
set that prefers a finer segmentation. However, it is notable
that, while the given ground truth represents all surfaces as
being fronto-parallel at integer disparity, our algorithm pro-
duces curved surfaces with subpixel disparities. In partic-
ular, our algorithm models the entire head as one curved sur-
face, with the nose and chin being closest to the camera, and
the left and right sides of the head being farther by approx-
imately one half pixel of disparity.

6.2. Qualitative Results

Among the four stereo pairs used in the benchmark by
Scharstein and Szeliski, three consist solely of planar sur-
faces, with all but one boundary being discontinuous in
depth. However, our algorithm was designed to be able to
handle curved surfaces and crease edges as well, so to test
its ability to do so, we photographed our own scene with
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* Sun Shum Zheng
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Figure 2. “Tsukuba.” Top: our result; disparity error.
Bottom: errors for our algorithm and [8, 9, 18, 24].

those features. Although we were unable to obtain ground
truth data, we present the results for qualitative evaluation.

This stereo pair (Figure 3) shows five surfaces. The
floor has some fine-grained texture, and is planar. The right
checkerboard pattern is also planar, but the left checker-
board pattern is very slightly warped. The rear surface
is a more severely warped, unmarked sheet of cardboard.
The two-tone umbrella is obviously curved, and rests on the
floor, but does not contact the rear sheet of cardboard.

Our algorithm correctly segments the scene into five sur-
faces, and places boundaries accurately at crease edges as
well as at edges accompanied by occlusion regions. Our
algorithm qualitatively recovers the warped shape of the
background and the curvature of the umbrella, both with
very little help from texture.

7. Conclusion

The quantitative and qualitative results presented suggest
that, for scenes consisting of smooth surfaces, our algorithm
obtains accurate results, with subpixel disparity values, and
explicit and precise localization of boundaries. For other
scenes, however, further work is needed.

The most limiting aspect of the current implementation
is its model of surfaces. To be able to reconstruct surfaces
with finer detail, it should use a finer grid of control points
for the splines that define surface shape. Implementing this
efficently would likely require a more scalable technique for
optimization that does not require an exact Hessian.

As mentioned in Section 5, one failure mode of the cur-
rent algorithm occurs in some cases when a single hypoth-
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Figure 3. “Umbrella” Top: input. Bottom: our result; with isocontours emphasized. Right: Reprojected views.

esized surface spans what is actually multiple surfaces.
That is, although our algorithm attempts to ensure that
no merging of surfaces could result in a decrease of total
energy, it does not do the same for the splitting of surfaces.
It would be useful if some method were devised for auto-
matic splitting as well as automatic merging of surfaces.

Finally, we note that many of the parameters of our algo-
rithm, controlling such things as coarseness of segmenta-
tion and amount of surface shape detail, do not have to be
constant, but could vary from surface to surface, and even
within the same surface. If, in addition to the disparity maps
and segmentation, these parameters themselves could also
be estimated adaptively for each surface, we believe that
our algorithmic framework would be capable of producing
accurate results for a wide variety of scenes.
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