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Abstract

A critical challenge in the creation of au-
tonomous mobile robots is the reliable detection
of moving and static obstacles. In this paper,
we present a passive vision system that recovers
coarse depth information reliably and efficiently.
This system is based on the concept of depth
from focus, and robustly locates static and mov-
ing obstacles as well as stairs and dropoffs with
adequate accuracy for navigation. We describe
an implementation of this vision system on a
mobile robot as well as real-world experiments
both indoors and outdoors. These experiments
have involved several hours of continuous and
fully autonomous operation in crowded, natu-
ral settings.

1 Introduction

A mobile robot must be able to avoid both static
and moving obstacles in its path. This essential
task often relies on sonars to provide distance
measurements in the immediate vicinity of the
robot. Sonars are inexpensive, relatively reli-
able, and require little computation to process
the data they provide. However, they are also
limited in range and resolution, and are sensi-
tive to false echoes caused by specular reflec-
tions. In some applications, sonars may also
be undesirable because of interference problems
with other sonar systems and because they are
active devices that send ultrasounds into the en-
vironment. Infrared devices share many of these
problems with sonars.

Vision systems are passive, have in principle
no resolution limitations and have potentially
a very long depth range. However, vision sys-
tems for the computation of depth from stereo
correspondence or image motion are still in
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their infancy. They make sometimes unrealistic
assumptions about the environment and even
when the latter are satisfied these systems are
brittle and sensitive to image measurement er-
rors.

In this paper, we show that depth from fo-
cus provides an inexpensive and reliable sens-
ing method for obstacle avoidance. The idea
of depth from focus is not new and is even in-
corporated in some cameras in the consumer
market. However, our particular embodiment
of this concept is the first to make depth from
focus useful for robot navigation, relatively in-
expensive, and remarkably reliable. A $5,000
prototype of our system has so far accumulated
more than twenty hours of navigation with no
failure in demanding indoor and outdoor en-
vironments under varying lighting conditions,
crowds of people walking past and towards the
robot, and treacherous steps and obstacles all
around. OQur robot gracefully coasts around ta-
bles and chairs, mingles with people who pay
little or no attention to it, and happily spins
around when children hold hands around it
singing “ring around the roses.”

Our system performs no convolutions except
those computed for free by defocused lenses. It
has no explicit mathematical model of how de-
focusing alters an image, and the processing is
simple enough to be carried out at frame rate on
a personal computer. Three images taken from
the same viewpoint but with lenses focused at
different distances are compared for sharpness.
The setting of the corresponding camera’s focal
length is taken to be the desired depth at any
one image position. Although depth resolution
could be increased by using more cameras, the
simple strategy used to control our robot only
needs to tell close from medium-distance from
far at a relatively coarse grid of image regions.
Any control strategy must eventually compress
depth information into a few bits of informa-
tion, since the choices for the robot’s action are
limited. Consequently, determining how much



depth information is required before building
the depth sensing module guarantees that all
and only the necessary information is computed.

In summary, this paper is about an extremely
simple idea. Simplicity itself is the point, as it
yields at the same time efficiency and reliability.
Our experiments, summarized in this paper and
recorded on long video tapes, show our depth-
from-focus system to be an alternative to sonars
for its passive nature, greater accuracy, longer
distance range, high reliability, and low compu-
tational cost. This is one of the first examples
of a vision algorithm that is hard to defeat.

In section 2, we introduce the general idea of
depth from focus and survey some of the previ-
ous work in this area. Section 3 describes the
details of the implementation, and section 4 dis-
cusses our experiments. We conclude in section
5 with some general remarks.

2 Depth From Focus

The focusing ring of a modern autofocus camera
provides approximate depth information about
the object in the center of the camera’s field
of view. One could walk around with such a
camera and avoid obstacles using the position
of the focusing ring as a range sensor.

The robustness and simplicity of active aut-
ofocus explain the commercial success of this
“active depth sensor.” Unfortunately, autofo-
cus technology has significant limitations when
applied to mobile robotics. The focusing ring
moves slowly and, most importantly, the aut-
ofocus system yields only one depth value for
the entire field of view. In contrast, our goal is
to recover depth across the entire image while
taking advantage of the intuition behind many
autofocus systems.

Determining depth from focus requires measur-
ing the amount of defocus throughout the im-
age. Computing defocus is hard because objects
do not have the same inherent degree of sharp-
ness. Therefore, an edge that appears blurred
can be the result of either defocus or a soft-
edged object.

A limitation that depth from focus shares with
almost all other passive vision systems, includ-
ing stereopsis and shape-from-motion, is that
the scene must have texture or edges. Happily,
natural and artificial objects are replete with
texture. But depth from focus has an impor-
tant advantage over stereo and motion: there is
no correspondence problem.

In addition, all passive vision systems have an
array of advantages over active ranging systems
such as laser rangefinders, sonars, and active in-
frareds. Passive systems have no intrusive com-
ponent, no interference problems, and no phys-
ical anomalies that accompany active ranging
such as a sonar signal’s specular reflection and
infrared’s reflectivity eccentricities based on ob-
ject color and texture.

The problem of measuring defocus has been the
core challenge of the depth from focus commu-
nity. Early research made simplifying assump-
tions to work around this persistent problem.
For instance, [Grossman, 1987] assumes that all
objects have sharp edges.

A more practical solution is to shine illumina-
tion patterns on the scene, measuring the defo-
cus of the patterns which have a known sharp-
ness [Rioux and Blais, 1986]. The recent work of
[Nayar et al., 1995] has improved on this active
approach, resulting in depth map recovery with
extremely high precision and at speeds of 30 Hz.
Nayar has optimized the illumination pattern
and has minimized registration error by emit-
ting the illumination pattern along the same
optical path as the incoming image. As with
all active illumination methods, this solution is
of limited applicability in natural, outdoor en-
vironments where the emitted radiation can be
either harmful or washed out by solar radiation.

Other recent work has focused on recovering
depth by measuring defocus using the relative
blurring between two images of the same scene.
Pentland introduced the concept of performing
inverse filtering in the spatial frequency domain
to recover the local defocus operator [Pentland
et al., 1989]. In his work, two images of the
same scene are taken, one with a pinhole aper-
ture and one with a large-diameter aperture for
shallow depth of field. He measures the change
in defocus between two corresponding areas in
the two images and thus computes the distance.

Pentland has achieved very good results, citing
speeds of up to 8 frames per second. Others
have improved on accuracy by using more ex-
act defocus models based on diffraction optics
[Bove, 1989]. These methods do suffer from sev-
eral drawbacks. They require significant com-
putational resources to achieve real-time perfor-
mance because of the need to perform convolu-
tions and filtering on the images.

Furthermore, the methods have generally been
tested in constrained, static environments and
over fairly shallow ranges of depth. For exam-
ple, [Ens and Lawrence, 1991] cites results for



depth map recovery over a 15 centimeter range.
[Darrell and Wohn, 1988] provides experimen-
tal data that appears to encompass a compara-
ble range although the specific distances are not
disclosed. In fact, Pentland’s scene, which is 1
meter cubed, appears to define the outer size
limit of this body of work.

In contrast to the above work, [Krotkov, 1987]
initiated the depth from focus approach, in
which a large number of images with different
focus operators is used to estimate the maxi-
mum focus point. Krotkov’s approach also re-
quires a static scene because the method filters
intensities based on temporal averaging. Fur-
thermore, depth is recovered for only one win-
dow in the image, whereas a mobile robot re-
quires a multivalued depth map in order to nav-
igate around obstacles smoothly.

Pyramid-based Depth from Focus [Darrell and
Wohn, 1988] does create a depth map based
on a large number of images. The authors ac-
quire the images using one lens with a servo-
controlled focusing ring. By acquiring between
8 and 30 images and interpolating the sharpness
of objects over distance, they achieve excellent
accuracy. Like its predecessors, this method in-
volves nontrivial computational resources and
requires a static scene.

A recent, successful vision system reported by
[Krotkov and Bajcsy, 1993] combines focus and
stereo ranging to achieve reliable depth over a
range of two meters. Insofar as Krotkov and
Bajcsy demonstrate that a cooperative rang-
ing system is more reliable than the sum of
its contributing technologies, our very simple
depth from focus system can be coupled cheaply
and effectively with stereo at the acquisition
level and with other ranging technologies found
on robots such as sonar, infrared and laser-
rangefinder to create a more reliable whole.

Current research has produced depth from focus
(and defocus) systems capable of high degrees
of accuracy at a high computational cost. Our
research takes a step away from this attitude
by abandoning inverse filtering altogether to
decrease computational cost dramatically while
also exchanging precision in favor of simplicity
and robustness. Our method does not challenge
the above research results in their areas of ex-
pertise; rather, it achieves very successful re-
sults in the domain of mobile robotics, an area
that the depth from focus community has not

addressed.
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Figure 1: Robot control flowchart.

3 Categorization

In building a simple system for robot naviga-
tion, it is important to investigate the minimum
requirements of a perceptual system — what is
the simplest sensing system that will allow ro-
bust obstacle avoidance behavior? Figure 1
suggests a flowchart for a simple robot control
strategy. Although simpler strategies may be
possible, the one shown allows for some degree
of smooth behavior, as it slows down and begins
to turn away from objects rather than coming
to jarring halts in front of them.

What granularity is required of a vision sys-
tem for this strategy? At a minimum, the
sensing system has to differentiate between left
and right and between close, medium, and far.
That is, there are only three categories of dis-
tance that are crucial to this control strategy.
Of course, the distances corresponding to each
distance category depend upon scene dynam-
ics and the robot’s maximum forward speed. It
makes sense to ensure that the distance value
corresponding to “close” be sufficiently large to
allow the robot to come to a complete stop from
its intended forward speed, given the cycle times
of the robot control system and vision system.

Our depth from focus method capitalizes on the
simplicity of this control strategy by categoriz-
ing a scene into only three levels of depth. The
resulting algorithm is much simpler than many
previous depth from focus algorithms [Pentland
et al., 1989; Ens and Lawrence, 1991]. In fact,
we depend upon the convolution that is per-
formed instantly and for free by the defocusing
lens.

We begin by simultaneously recording n images
of the same scene using n cameras. Ideally, the
images would be identical except for the posi-
tion of the focusing rings during image capture.
In practice, this would require a light splitter to
allow all cameras the same scene perspective.
Instead of using such a splitter, we grouped the



Figure 2: Pictures of a concrete step at two dif-
ferent focus settings.

cameras closely and introduced a small vergence
to minimize the image shift error. Although the
image shift is still quite evident, this approach
has proven to be successful in our experiments.

The scene is divided into regions, and the best
distance for each region can be computed by
determining the image that provides the best
focus. This results in a depth map of the scene,
with a depth granularity equal to the number of
images and width/height granularity based on
the number and shape of regions.

Figure 2 shows two focus points of a concrete
sidewalk step. The closer portion of the step,
which occupies the lower half of the images, is
best in focus in image 2 (a), indicating that the
focusing ring position for this image (40 inches)
is a better distance estimate to this step than
the focus position of image 2 (b) (55 inches).

We compute the sharpness of a region as the
sum of the absolute values of the intensity differ-
ences between all horizontally neighboring pix-
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Figure 3: Architecture of the mobile robot.

els in the region. In order to compute this
sharpness measure, the algorithm must make
only one pass over the pixel values. The en-
tire algorithm is linear in cost with the num-
ber of pixels and the number of regions. Thus,
the categorization method we propose yields a
computationally inexpensive method for obsta-
cle avoidance.

4 Implementation

A schematic diagram of the mobile robot system
is shown in Figure 3. This obstacle-avoiding
robot consists of three subsystems: motor, vi-
sion, and motion control. The motor subsys-
tem, which also serves as a chassis for the entire
robot, consists of a Nomad 150 robot (Nomadic
Technologies, Inc.). This cylindrical robot has
three degrees of freedom: it can translate for-
ward and backward; it can rotate its wheel base;
and it can rotate its turret (the upper third
of the robot, which moves separately from the
wheel base).

The task of the vision and control system is
to provide a desired velocity to the robot for
each of the degrees of freedom, approximately
once every .25 seconds. The robot’s sonar ring
and position encoders were disabled to create a
purely vision-driven robot.

The vision subsystem is entirely aboard the No-
mad 150. It consists of four Sony XC77 2/3”
CCD cameras (768 x 493), a neutral density fil-
ter, three lenses, three junction boxes, a Ma-
trox Meteor RGB framegrabber, and a custom
Pentium computer with the Triton chipset and
fastPCI toolkit. The three lenses are identical
12 mm lenses with a field stop range of 0.3m to
infinity. The entire system is powered by on-
board 12-volt PowerSonic batteries and can run
for several hours. The total cost of this vision
hardware is approximately $5,500.



Three cameras are angled down from the hor-
izontal at approximately 35 degrees, with a
small vergence to minimize the image shift er-
ror. A one-to-three image splitter would have
been an even better optical solution to the prob-
lem of minimizing perspective shift between the
three images, although such an optical solution
proved unnecessary. The focusing rings are set
to positions of 0.4m, 1m, and 2m, correspond-
ing to close, medium, and far categories. The
three CCD cameras are synchronized by being
slaved to a fourth Sony CCD’s synch output.
The three signals are fed directly into the sepa-
rate R, G, and B inputs of the color framegrab-
ber. The framegrabber digitizes the signals si-
multaneously and then stores the “color” image
on the Pentium computer’s main memory us-
ing DMA over the PCI bus, which is capable
of a transfer rate greater than 100 megabytes
per second. This high transfer speed enables us
to recover 8 bits of intensity for each “color,”
or image. Qur actual frame rate is approxi-
mately 15 frames per second. However, because
of memory access limitations under DOS, we
were able to capture and access the image data
at only 4 frames per second.

In our experiments, we found that breaking the
640 by 480 images into an 8x5 depth map pro-
vided for reasonable performance and sufficient
granularity for our task. The depth map con-
tains 40 regions, each assigned 2, 1, or 0, corre-
sponding to close, medium, and far.

As a result of the camera’s downward pitch,
the “expected” obstacle-free depth map con-
tains two bottom rows of 'medium’ and three
top rows of far’ categorization. If the depth
map contains more than four far’ values in the
bottom two rows, there is strong evidence that
there is an object farther away than the floor
very near the robot (i.e. a dropoff of some sort).
The robot stops in this circumstance, turns 180
degrees, and begins moving again. Using the
bottom two rows rather than just the bottom
row enables the robot to stop earlier as it ap-
proaches the step because the dropoff is first
detected higher on the image.

In the absence of a step, the algorithm first sets
any ‘'medium’ (1) values in the bottom two rows
to far’ (0), and then sums the values in each of
the eight columns. If any of these sums is larger
than 1, then there must have been at least two
‘medium’ values or one ’close’ value in that col-
umn, and the control system turns away from
impending doom. The robot chooses the di-
rection by comparing the sum of the left four
columns with the sum of the right four columns.

The robot’s rotational velocity in degrees per

second is 5 times the sum of all depth map
columns. The translational velocity in inches
per second is 12 — (m x 35), where m is the
maximum of the depth map column sums. The
rotational velocity is governed to remain in the
range -30 to 30 while the translational velocity
is governed to remain between 0 and 25.

5 Experiments

Initial mobile tests were conducted in several
lecture rooms at the Computer Science Depart-
ment. These rooms have bright, diffuse lighting
and a variety of obstacles: chairs, tables, and
people. The robot detected all obstacles in this
setting and was able to move at a speed of 10
inches per second reliably. We were surprised
to discover that the robot, which is 19 inches
wide, navigates easily through standard 33 inch
doorways— despite having only 6.5 inches clear-
ance on each side.

Further indoor tests were conducted in the hall-
ways and lounge areas of the Computer Science
Department. These test were the most challeng-
ing: lighting conditions and wall texture vary
greatly throughout the area. Additional risks
included two open staircases and slow-moving
students who actively tried to confuse the robot
into falling down the stairs.

The robot performed extremely well in this
complex indoor domain, avoiding the staircase
as well as the students. The robot can reliably
navigate from inside a classroom, through the
doorway, into the hallway, past the stairs, and
into the lounge with perfect collision avoidance
in spite of moving students. We executed this
ten minute sequence, then allowed the robot to
wander the lounge for an additional ten min-
utes several times. In all three runs, the robot
operated fully autonomously and the only envi-
ronmental modification involved the removal of
one coffee table in the lounge that violates our
"beheading’ constraint. Average speeds in this
domain were approximately 8 inches per second.

The transition to outdoor test domains intro-
duced novel environmental characteristics. The
outdoor world contains extremely intense and
direct lighting, forcing us to place sunglasses
(neutral density filter gel) on the robot’s ’eyes’
to preserve the shallow depth of field associated
with a wide iris aperture.

The outdoor environment also contains an
abundance of single steps which have only 7 inch
drops. For safety, the visual system would have
to detect all such steps without error. Further-



more, the floor of the outdoor arcade, where we
ran our first outdoor tests, is composed of twelve
inch tiles with discrete edges and a checkerboard
coloring pattern rather than the homogeneous
texture of indoor carpeting.

Testing at these outdoor steps proved that the
step detection feature is extremely reliable and
does not make assumptions about the homo-
geneity of floor texture. The robot was able
to detect the steps and stop safely in all cases,
even during oblique approach angles of up to
60 degrees. Over several weeks of testing, accu-
mulating more than 15 hours of outdoor time,
the robot detected dropoffs and static obstacles
with 100% reliability. Furthermore, false posi-
tive detection of steps proved to be essentially
nonexistent.

Our final experimental result involved an out-
door demonstration of the robot for members
of the Computer Science department and re-
searchers from industry. On June 12, 1995,
the robot was placed in Memorial Court. This
concrete-floored “playground” is bordered by a
dropoff along one edge, stairs leading up along
the other edge, and bushes and pillars along the
other two edges.

We invited participants of all ages to interact
with the robot, stepping in its way and control-
ling its path by “herding” it. They were also
instructed to herd the robot toward the dropoff
to test its reliability there. During a contin-
uous two-hour demonstration, the robot inter-
acted completely autonomously with twenty to
forty participants at a time. Children even held
hands, successfully encircling the robot to play
ring around the roses.” The robot approached
the dropoft and the staircase more than fifteen
times, detecting them with 100% accuracy.

The robot’s sensory and effectory loops were
sufficiently fast that participants, including
small children, were able to easily herd the robot
from place to place simply by walking alongside
it. The robot moved at a speed of 10 inches
per second, which is approximately slow walk-
ing pace. Over the course of the demonstration,
the robot came in contact with no static obsta-
cles and contacted a moving obstacle (i.e. a
human) only once.

6 Conclusion

Experimental results demonstrate that this vi-
sion system enables robust obstacle avoidance
in a wide variety of environments. Significantly,
the implementation does so with relatively in-

expensive equipment and a highly granular but
reliable depth map. Future work will extend the
current set of experiments by implementing the
Depth Categorization module on a robot with
pan and tilt degrees of freedom. This will al-
low removal of the "beheading’ constraint and
enable the construction of larger depth maps as
well as the implementation of directed attention
approaches.
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