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Abstract

A critical challenge in the creation of autonomous mobile robots is

the reliable detection of moving and static obstacles. In this paper, we

present a passive vision system that recovers coarse depth information

reliably and e�ciently. This system is based on the concept of depth from

focus, and robustly locates static and moving obstacles as well as stairs

and dropo�s with adequate accuracy for obstacle avoidance. We describe

an implementation of this vision system on a mobile robot as well as real-

world experiments both indoors and outdoors. These experiments have

involved several hours of continuous and fully autonomous operation in

crowded, natural settings.

1 Introduction

A mobile robot must be able to avoid both static and moving obstacles in its
path. This essential task often relies on sonars to provide distance measurements
in the immediate vicinity of the robot. Sonars are inexpensive, relatively reli-
able, and require little computation to process the data they provide. However,
they are also limited in range and lateral resolution, and are sensitive to false
echoes caused by specular reections. In some applications, sonars may also
be undesirable because of interference problems with other sonar systems and
because they are active devices that send ultrasounds into the environment. In-
frared devices and laser range�nders share many of these problems with sonars,
with the addition of \washout" problems in the presence of strong radiation
such as direct sunlight.

In contrast, vision systems are passive and can provide lateral and depth
resolution exceeding that of ultrasonic devices. However, vision systems for the
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computation of depth from stereo correspondence or image motion are still in
their infancy. They make sometimes unrealistic assumptions about the envi-
ronment and even when the latter are satis�ed these systems are brittle and
sensitive to image measurement and sensor calibration errors.

In this paper, we show that a simple form of depth from focus provides
an inexpensive and reliable sensing method for obstacle avoidance. The idea
of depth from focus is not new and is even incorporated in some cameras in
the consumer market. However, our particular embodiment of this concept is
remarkable because our focus-based system recovers less than 2 bits of depth
information, yet enables reliable real-world obstacle avoidance. In fact, the low
resolution of the resulting depthmap, usually viewed as a liability, turns out to be
an asset in our system, because it simpli�es both sensing and computation, and
is nevertheless demonstrably adequate for real-world obstacle avoidance. Any
control strategy must eventually compress depth information into a few bits of
information, since the choices for the robot's action are limited. Consequently,
by determining how much depth information is required before building the
depth sensing module, we compute all and only the necessary depth information.

A $5,000 prototype of our system has so far accumulated more than twenty
hours of exploration with no failure in demanding indoor and outdoor envi-
ronments under varying lighting conditions, crowds of people walking past and
towards the robot, and treacherous steps and obstacles all around. Our robot
gracefully coasts around tables and chairs, mingles with people who pay little or
no attention to it, and happily spins around when children hold hands around
it singing \ring around the roses."

The depth from focus system we present is remarkable because of what it
does not have. The system performs no convolutions except those computed
for free by defocused lenses. It has no explicit mathematical model of how
defocusing alters an image. Finally, its computations requirements are easily
met in real time by a PC. Indeed, the algorithm is su�ciently simple that we
have constructed an inexpensive embodiment using purely analog circuitry.

In summary, this paper is about an extremely simple idea. Simplicity itself
is the point, as it yields at the same time e�ciency, reliability and ease of
use. The vision system requires no camera calibration or registration. Our
experiments, summarized in this paper and recorded on long video tapes, show
our depth from focus system to be an attractive alternative to sonars for its
passive nature, greater accuracy, longer distance range, high reliability, and low
computational cost. This is one of the �rst examples of a vision algorithm that
is hard to defeat.

In section 2, we introduce the general idea of depth from focus and survey
some of the previous work in this area. Section 3 describes the details of the
implementation, and section 4 discusses our experiments. We conclude in section
5 with some general remarks.



2 Depth From Focus

The focusing ring of a modern autofocus camera provides approximate depth
information about the object in the center of the camera's �eld of view. One
could walk around with such a camera and avoid obstacles using the position of
the focusing ring as a range sensor.

The robustness and simplicity of active autofocus explain the commercial
success of this \active depth sensor." Unfortunately, autofocus technology has
signi�cant limitations when applied to mobile robotics. The focusing ring moves
slowly and, most importantly, the autofocus system yields only one depth value
for the entire �eld of view. In contrast, our goal is to recover depth across the
entire image while taking advantage of the intuition behind many autofocus
systems.

Determining exact depth from focus requires measuring the amount of defo-
cus throughout the image. Computing defocus is hard because objects do not
have the same inherent degree of sharpness. Therefore, an edge that appears
blurred can be the result of either defocus or a soft-edged object.

A limitation that depth from focus shares with almost all other passive
vision systems, including stereopsis and shape-from-motion, is that the scene
must have texture or edges. Happily, natural and arti�cial objects are replete
with texture. But depth from focus has an important advantage over stereo and
motion: there is no correspondence problem.

In addition, all passive vision systems have an array of advantages over
active ranging systems such as laser range�nders, sonars, and active infrareds.
Passive systems have no intrusive component, no interference problems, and
no physical anomalies that accompany active ranging such as a sonar signal's
specular reection and infrared's reectivity eccentricities based on object color
and texture.

The problem of measuring defocus has been the core challenge of the depth
from focus community. Early research made simplifying assumptions to work
around this persistent problem. For instance, [Grossman, 1987] assumes that
all objects have sharp edges.

A more practical solution is to shine illumination patterns on the scene,
measuring the defocus of the patterns that have a known sharpness [Rioux and
Blais, 1986]. The recent work of [Nayar et al., 1995] has improved on this
active approach, resulting in depth map recovery with extremely high precision
and at speeds of 30 Hz. Nayar has optimized the illumination pattern and has
minimized registration error by emitting the illumination pattern along the same
optical path as the incoming image. As with all active illumination methods,
this solution is of limited applicability in natural, outdoor environments where
the emitted radiation can be either harmful or washed out by solar radiation.

Other recent work has focused on recovering depth by measuring defocus
using the relative blurring between two images of the same scene. Pentland
introduced the concept of performing inverse �ltering in the spatial frequency



domain to recover the local defocus operator [Pentland et al., 1989]. In his
work, two images of the same scene are taken, one with a pinhole aperture and
one with a large-diameter aperture for shallow depth of �eld. He measures the
change in defocus between two corresponding areas in the two images and thus
computes the distance.

Pentland has achieved very good results, citing speeds of up to 8 frames
per second. Others have improved on accuracy by using more exact defocus
models based on di�raction optics [Bove, 1989]. These methods do su�er from
several drawbacks. They require signi�cant computational resources to achieve
real-time performance because of the need to perform convolutions and �ltering
on the images.

Furthermore, the methods have generally been tested in constrained, static
environments and over fairly shallow ranges of depth. For example, [Ens and
Lawrence, 1991] cites results for depth map recovery over a 15 centimeter range.
[Darrell and Wohn, 1988] provides experimental data that appears to encompass
a comparable range although the speci�c distances are not disclosed. In fact,
Pentland's scene, that is 1 meter cubed, appears to de�ne the outer size limit
of this body of work.

In contrast to the above work, [Krotkov, 1987] initiated the depth from focus
approach, in which a large number of images with di�erent focus operators is
used to estimate the maximum focus point. Krotkov's approach also requires a
static scene because the method �lters intensities based on temporal averaging.
Furthermore, depth is recovered for only one window in the image, whereas
a mobile robot requires a multivalued depth map in order to navigate around
obstacles smoothly.

Pyramid-based Depth from Focus [Darrell and Wohn, 1988] does create a
depth map based on a large number of images. The authors acquire the images
using one lens with a servo-controlled focusing ring. By acquiring between 8 and
30 images and interpolating the sharpness of objects over distance, they achieve
good accuracy. Like its ancestores, this method involves nontrivial computa-
tional resources and requires a static scene.

A recent, successful vision system reported by [Krotkov and Bajcsy, 1993]

combines focus and stereo ranging to achieve reliable depth over a range of two
meters. Insofar as Krotkov and Bajcsy demonstrate that a cooperative ranging
system is more reliable than the sum of its contributing technologies, our very
simple depth from focus system can be coupled cheaply and e�ectively with
stereo at the acquisition level and with other ranging technologies found on
robots such as sonar, infrared and laser-range�nder systems to create a more
reliable whole.

Current research has produced precise depth from focus systems capable
of high degrees of accuracy at a high computational cost. Our research takes
a step away from this attitude by abandoning inverse �ltering altogether to
decrease computational cost dramatically while also exchanging precision in
favor of simplicity and robustness. Our method does not challenge the above
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Figure 1: Robot control owchart.

research results in their areas of expertise; rather, it achieves very successful
results in the domain of mobile robotics, an area that the depth from focus
community has not addressed.

3 Categorization

In building a simple system for robot navigation, it is important to investigate
the minimumrequirements of a perceptual system { what is the simplest sensing
system that will allow robust obstacle avoidance behavior? Figure 1 suggests a
owchart for a simple robot control strategy. Although simpler strategies may
be possible, the one shown allows for some degree of smooth behavior, as it
slows down and begins to turn away from objects rather than coming to jarring
halts in front of them.

What granularity is required of a vision system for this strategy? At a mini-
mum, the sensing system has to di�erentiate between left and right and between
close, medium, and far. That is, there are only three categories of distance that
are crucial to this control strategy. Of course, the distances corresponding to
each depth category depend upon scene dynamics and the robot's maximum
forward speed. It makes sense to ensure that the distance value correspond-
ing to \close" be su�ciently large to allow the robot to safely stop from its
intended forward speed, given the cycle times of the robot control system and
vision system.

Our depth from focus method capitalizes on the simplicity of this control
strategy by categorizing a scene into only n discrete levels of depth. The result-
ing algorithm is much simpler than many previous depth from focus algorithms
[Pentland et al., 1989, Ens and Lawrence, 1991]. In fact, we depend only on the
convolution that is performed instantly and for free by the defocusing lens.

We begin by simultaneously recording n images of the same scene using n
cameras (in our embodiment, n = 3). Ideally, the images would be identical
except for the position of the focusing rings during image capture. In practice,



this would require a light splitter to allow all cameras to share the same scene
perspective. Instead of using such a splitter, we grouped the cameras closely
and introduced a small vergence to minimize the image shift error. Although
the image shift is still quite evident, this approach has proven to be successful
in our experiments.

The scene is divided into regions, and the best distance for each region can be
computed by determining the image that provides the best focus. This results
in a depth map of the scene, with a depth granularity equal to the number of
images and width/height granularity based on the number and shape of regions.

Figure 2 shows two focus points of a concrete sidewalk step. The closer
portion of the step, that occupies the lower half of the images, is best in focus
in image 2 (a), indicating that the focusing ring position for this image (40
inches) is a better distance estimate to this step than the focus position of
image 2 (b) (55 inches).

We compute the sharpness of a region as the sum of the absolute values of
the intensity di�erences between all neighboring pixels in the region. In order to
compute this sharpness measure, the algorithm must make only one pass over
the pixel values. The entire algorithm is linear in cost with the number of pixels
and the number of regions. Thus, the categorization method we propose yields
a computationally inexpensive method for obstacle avoidance.

4 Implementation

A schematic diagram of the mobile robot system is shown in Figure 3. This
obstacle-avoiding robot consists of three subsystems: motor, vision, and motion
control. The motor subsystem, that also serves as a chassis for the entire robot,
consists of a Nomad 150 robot (Nomadic Technologies, Inc.). This cylindrical
robot has three degrees of freedom: it can translate forward and backward; it
can rotate its wheel base; and it can rotate its turret (the upper third of the
robot, that moves separately from the wheel base).

The task of the vision and control system is to provide a desired velocity
to the robot for each of the degrees of freedom, approximately once every 0.25
seconds. The robot's sonar ring and position encoders were disabled to create
a purely vision-driven robot.

The vision subsystem is entirely aboard the Nomad 150. It consists of four
Sony XC77 2/3" CCD cameras (768 x 493), a neutral density �lter, three lenses,
three junction boxes, a Matrox Meteor RGB framegrabber, and a custom Pen-
tium computer with the Triton chipset and fastPCI toolkit. The three lenses
are identical 12 mm lenses with a �eld stop range of 0.3m to in�nity. The entire
system is powered by on-board 12-volt PowerSonic batteries and can run for
several hours. The total cost of this vision hardware is approximately $5,500.

Three cameras are angled down from the horizontal at approximately 35
degrees, with a small vergence to minimize the image shift error. A one-to-three
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Figure 2: Pictures of a concrete step at two di�erent focus settings.
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Figure 3: Architecture of the mobile robot.

image splitter would have been an even better optical solution to the problem of
minimizing perspective shift between the three images, although such an optical
solution proved unnecessary. The focusing rings are set to positions of 0.4m,
1m, and 2m, corresponding to close, medium, and far categories. The three
CCD cameras are synchronized by being slaved to a fourth Sony CCD's synch
output. The three signals are fed directly into the separate R, G, and B inputs of
the color framegrabber. The framegrabber digitizes the signals simultaneously
and then stores the \color" image on the Pentium computer's main memory
using DMA over the PCI bus, that is capable of a transfer rate greater than 100
megabytes per second. This high transfer speed enables us to recover 8 bits of
intensity for each \color," or image while maintaining a frame update rate of
15 frames per second. However, memory access limitations under DOS reduced
our processing-side frame update rate to 4 frames per second.

In our experiments, we found that breaking the 640 by 480 images into an 8x5
depth map provided for reasonable performance and su�cient granularity for
the obstacle avoidance task. The depth map contains 40 regions, each assigned
2, 1, or 0, corresponding to close, medium, and far.

These three depth values represent less than two bits of depth information.
How do we take advantage of such minimal information to successfully navigate
in a dynamic world? The �rst step is to recognize that, from a naive perspective,
there are two ways in which an obstacle can be di�erentiated from the expected
world view. In one case, the obstacle is an object that is closer than expected.
That is, the robot expects to see the oor three feet away but instead sees an
object just six inches away. This is, by de�nition, an obstacle to be avoided.
The second case is that of an object that is further away than expected. If the
robot expects the oor to be three feet away but instead detects an object (in
the direction of the oor) ten feet away, then the robot is standing before a cli�
or ledge and must, by de�nition, avoid that obstacle as well.

This expectation-based approach, then, is to position the cameras so that



both convex and concave obstacles will cause a predictable disparity between
the expected and observed three-value depthmap. This process involves a com-
bination of choosing the proper downward pitch for the camera system while
simultaneously choosing the appropriate focus points for each of the three cam-
eras so that the status quo image (that of the oor with neither ledge nor convex
obstacle) registers a `medium' in a prescribed location of the depthmap.

In the case of our particular robot, we adjusted the downward pitch of the
camera system and the camera focus points so that an unobstructed view of
the oor yields a depth map containing two bottom rows of `medium' and three
top rows of `far' categorization. If the depth map contains more than four `far'
values in the bottom two rows, there is strong evidence that there is an object
farther away than the oor very near the robot (i.e. a dropo� of some sort).
The robot stops in this circumstance, turns 180 degrees, and begins moving
again. Using the bottom two rows rather than just the bottom row enables the
robot to stop earlier as it approaches a step because the dropo� is �rst detected
higher on the image.

In the absence of a step, the algorithm �rst sets any `medium' (1) values in
the bottom two rows to `far' (0), and then sums the values in each of the eight
columns. If any of these sums is larger than 1, then there must have been at
least two `medium' values or one `close' value in that column, and the control
system turns away from impending doom. The robot chooses the direction by
comparing the sum of the left four columns with the sum of the right four
columns.

The robot's rotational velocity in degrees per second is 5 times the sum of all
depth map columns. The translational velocity in inches per second is 12�(m�
35), where m is the maximum of the depth map column sums. The rotational
velocity is governed to remain in the range -30 to 30 while the translational
velocity is governed to remain between 0 and 25.

5 Experiments

Initial mobile tests were conducted in several lecture rooms at the Computer
Science Department. These rooms have bright, di�use lighting and a variety of
obstacles: chairs, tables, and people. The robot detected all obstacles in this
setting and was able to move at a speed of 10 inches per second reliably. We were
surprised to discover that the robot, which is 19 inches wide, navigates easily
through standard 33 inch doorways{ despite having only 6.5 inches clearance
on each side.

Further indoor tests were conducted in the hallways and lounge areas of the
Computer Science Department. These test were the most challenging: lighting
conditions and wall texture vary greatly throughout the area. Additional risks
included two open staircases and slow-moving students who actively tried to
confuse the robot into falling down the stairs.



The robot performed extremely well in this complex indoor domain, avoiding
the staircase as well as the students. The robot can reliably navigate from inside
a classroom, through the doorway, into the hallway, past the stairs, and into the
lounge with perfect collision avoidance in spite of moving students. We executed
this ten minute sequence, then allowed the robot to wander the lounge for an
additional ten minutes several times. In all three runs, the robot operated fully
autonomously and the only environmental modi�cation involved the removal of
one co�ee table in the lounge which was vertically beyond the �eld of view of
the vision system. Average speeds in this domain were approximately 8 inches
per second.

The transition to outdoor test domains introduced novel environmental char-
acteristics. The outdoor world contains extremely intense and direct lighting,
forcing us to place sunglasses (neutral density �lter gel) on the robot's `eyes' to
preserve the shallow depth of �eld associated with a wide iris aperture.

The outdoor environment also contains an abundance of single steps that
have only 7 inch drops. For safety, the visual system would have to detect all
such steps without error. Furthermore, the oor of the outdoor arcade, where we
ran our �rst outdoor tests, is composed of twelve inch tiles with discrete edges
and a checkerboard coloring pattern rather than the homogeneous texture of
indoor carpeting.

Testing at these outdoor steps proved that the step detection feature is
extremely reliable and does not make assumptions about the homogeneity of
oor texture. The robot was able to detect the steps and stop safely in all
cases, even during oblique approach angles of up to 60 degrees. Over several
weeks of testing, accumulating more than 15 hours of outdoor time, the robot
detected dropo�s and static obstacles with 100% reliability. Furthermore, false
positive detection of steps proved to be essentially nonexistent.

Our �nal experimental result involved an outdoor demonstration of the robot
for members of the Computer Science department and researchers from industry.
On June 12, 1995, the robot was placed in Memorial Court. This concrete-
oored \playground" is bordered by a dropo� along one edge, stairs leading up
along the opposite edge, and bushes and pillars along the other two edges.

We invited participants of all ages to interact with the robot, stepping in its
way and controlling its path by \herding" it. They were also instructed to herd
the robot toward the dropo� to test its reliability there. During a continuous
two-hour demonstration, the robot interacted completely autonomously with
twenty to forty participants at a time. Children even held hands, successfully
encircling the robot to play `ring around the roses' (see Figure 4). The robot
approached the dropo� and the staircase more than 25 times, detecting them
with 100% accuracy.

The robot's sensory and e�ectory loops were su�ciently fast that partici-
pants, including small children, were able to easily herd the robot from place to
place simply by walking alongside it. The robot moved at a speed of 10 inches
per second, which is approximately a slow walking pace. Over the course of the



Figure 4: The Robot during Outdoor Experimentation.

demonstration, the robot came in contact with no static obstacles and contacted
a moving obstacle (i.e. a human) only once.

6 Conclusion

Experimental results demonstrate that this simple vision system enables robust
obstacle avoidance in a wide variety of environments. Signi�cantly, the imple-
mentation does so with relatively inexpensive equipment and a highly granular
but reliable depth map. A most important conclusion to be drawn from this
work is that extremely coarse vision can provide su�cient depth information to
enable reliable obstacle avoidance in real-world circumstances. Note that the
low resolution of our resulting depth map, which would usually be considered a
liability, is an asset in this case, because it simpli�es both sensing and compu-
tation while providing adequate information for real-world obstacle avoidance.

Future work will extend the current set of experiments by implementing the
Depth Categorization module on a robot with pan and tilt degrees of freedom.
This will signi�cantly increase the robot's �eld of view, enabling the construc-
tion of larger depth maps as well as the implementation of directed attention
approaches.
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